1
|
Chen Z, Xie H, Liu J, Zhao J, Huang R, Xiang Y, Wu H, Tian D, Bian E, Xiong Z. Roles of TRPM channels in glioma. Cancer Biol Ther 2024; 25:2338955. [PMID: 38680092 PMCID: PMC11062369 DOI: 10.1080/15384047.2024.2338955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/01/2024] [Indexed: 05/01/2024] Open
Abstract
Gliomas are the most common type of primary brain tumor. Despite advances in treatment, it remains one of the most aggressive and deadly tumor of the central nervous system (CNS). Gliomas are characterized by high malignancy, heterogeneity, invasiveness, and high resistance to radiotherapy and chemotherapy. It is urgent to find potential new molecular targets for glioma. The TRPM channels consist of TRPM1-TPRM8 and play a role in many cellular functions, including proliferation, migration, invasion, angiogenesis, etc. More and more studies have shown that TRPM channels can be used as new therapeutic targets for glioma. In this review, we first introduce the structure, activation patterns, and physiological functions of TRPM channels. Additionally, the pathological mechanism of glioma mediated by TRPM2, 3, 7, and 8 and the related signaling pathways are described. Finally, we discuss the therapeutic potential of targeting TRPM for glioma.
Collapse
Affiliation(s)
- Zhigang Chen
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders, The First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu, P. R. China
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Han Xie
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - JiaJia Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Ruixiang Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Yufei Xiang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Haoyuan Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Dasheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Erbao Bian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhang Xiong
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders, The First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu, P. R. China
| |
Collapse
|
2
|
Davis MJ. TRPM4 Inhibition: An Unexpected Mechanism of NO-Induced Vasodilatation. FUNCTION (OXFORD, ENGLAND) 2022; 3:zqac007. [PMID: 35359910 PMCID: PMC8962392 DOI: 10.1093/function/zqac007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 01/07/2023]
|
3
|
Pharmacological Modulation and (Patho)Physiological Roles of TRPM4 Channel-Part 2: TRPM4 in Health and Disease. Pharmaceuticals (Basel) 2021; 15:ph15010040. [PMID: 35056097 PMCID: PMC8779181 DOI: 10.3390/ph15010040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
Transient receptor potential melastatin 4 (TRPM4) is a unique member of the TRPM protein family and, similarly to TRPM5, is Ca2+ sensitive and permeable for monovalent but not divalent cations. It is widely expressed in many organs and is involved in several functions; it regulates membrane potential and Ca2+ homeostasis in both excitable and non-excitable cells. This part of the review discusses the currently available knowledge about the physiological and pathophysiological roles of TRPM4 in various tissues. These include the physiological functions of TRPM4 in the cells of the Langerhans islets of the pancreas, in various immune functions, in the regulation of vascular tone, in respiratory and other neuronal activities, in chemosensation, and in renal and cardiac physiology. TRPM4 contributes to pathological conditions such as overactive bladder, endothelial dysfunction, various types of malignant diseases and central nervous system conditions including stroke and injuries as well as in cardiac conditions such as arrhythmias, hypertrophy, and ischemia-reperfusion injuries. TRPM4 claims more and more attention and is likely to be the topic of research in the future.
Collapse
|
4
|
Korishettar AM, Nishijima Y, Wang Z, Xie Y, Fang J, Wilcox DA, Zhang DX. Endothelin-1 potentiates TRPV1-mediated vasoconstriction of human adipose arterioles in a protein kinase C-dependent manner. Br J Pharmacol 2020; 178:709-725. [PMID: 33184836 DOI: 10.1111/bph.15324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE The TRPV cation channels have emerged as important regulators of vascular tone. TRPV1 channels and endothelin-1 are independently associated with the pathophysiology of coronary vasospasm, but the relationship between their vasomotor functions remains unclear. We characterized the vasomotor function of TRPV1 channels in human arterioles and investigated regulation of their vasomotor function by endothelin-1. EXPERIMENTAL APPROACH Human arterioles (mainly from adipose tissue) were threaded on two metal wires, equilibrated in a physiological buffer at 37°C and exposed to increasing concentrations of capsaicin, with or without SB366791 (TRPV1-selective inhibitor) or GF109203X (PKC-selective inhibitor). Some arterioles were pre-constricted with endothelin-1 or phenylephrine or high potassium buffer. TRPV1 mRNA and protein expression in human arteries were also assessed. KEY RESULTS TRPV1 transcripts and proteins were detected in human resistance arteries. Capsaicin (1 μM) induced concentration-dependent constriction of endothelium-intact and endothelium-denuded human adipose arterioles (HAA), which was significantly inhibited by SB366791. Pre-constriction of HAA with endothelin-1, but not high potassium buffer or phenylephrine, significantly potentiated capsaicin (0.1 μM)-induced constriction. GF109203X significantly inhibited potentiation of capsaicin-induced constriction by endothelin-1. CONCLUSION AND IMPLICATIONS TRPV1 channels are expressed in the human vasculature and affect vascular tone of human arterioles on activation. Their vasomotor function is modulated by endothelin-1, mediated in part by PKC. These findings reveal a novel interplay between endothelin-1 signalling and TRPV1 channels in human VSMC, adding to our understanding of the ion channel mechanisms that regulate human arteriolar tone and may also contribute to the pathophysiology of coronary vasospasm.
Collapse
Affiliation(s)
- Ankush M Korishettar
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Medicine - Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yoshinori Nishijima
- Department of Medicine - Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Zhihao Wang
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Geriatrics, The First Hospital of Jilin University, Changchun, China
| | - Yangjing Xie
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Juan Fang
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.,Children's Research Institute, The Children's Hospital of Wisconsin, Milwaukee, WI, USA
| | - David A Wilcox
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.,Children's Research Institute, The Children's Hospital of Wisconsin, Milwaukee, WI, USA
| | - David X Zhang
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Medicine - Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
5
|
Quelhas P, Baltazar G, Cairrao E. The Neurovascular Unit: Focus on the Regulation of Arterial Smooth Muscle Cells. Curr Neurovasc Res 2020; 16:502-515. [PMID: 31738142 DOI: 10.2174/1567202616666191026122642] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/01/2019] [Accepted: 09/20/2019] [Indexed: 02/08/2023]
Abstract
The neurovascular unit is a physiological unit present in the brain, which is constituted by elements of the nervous system (neurons and astrocytes) and the vascular system (endothelial and mural cells). This unit is responsible for the homeostasis and regulation of cerebral blood flow. There are two major types of mural cells in the brain, pericytes and smooth muscle cells. At the arterial level, smooth muscle cells are the main components that wrap around the outside of cerebral blood vessels and the major contributors to basal tone maintenance, blood pressure and blood flow distribution. They present several mechanisms by which they regulate both vasodilation and vasoconstriction of cerebral blood vessels and their regulation becomes even more important in situations of injury or pathology. In this review, we discuss the main regulatory mechanisms of brain smooth muscle cells and their contributions to the correct brain homeostasis.
Collapse
Affiliation(s)
- Patrícia Quelhas
- CICS-UBI - Centro de Investigacao em Ciencias da Saude, University of Beira Interior, 6200-506 Covilha, Portugal
| | - Graça Baltazar
- CICS-UBI - Centro de Investigacao em Ciencias da Saude, University of Beira Interior, 6200-506 Covilha, Portugal
| | - Elisa Cairrao
- CICS-UBI - Centro de Investigacao em Ciencias da Saude, University of Beira Interior, 6200-506 Covilha, Portugal
| |
Collapse
|
6
|
Jahan KS, Shi J, Greenberg HZE, Khavandi S, Baudel MMA, Barrese V, Greenwood IA, Albert AP. MARCKS mediates vascular contractility through regulating interactions between voltage-gated Ca 2+ channels and PIP 2. Vascul Pharmacol 2020; 132:106776. [PMID: 32707323 PMCID: PMC7549404 DOI: 10.1016/j.vph.2020.106776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/16/2020] [Accepted: 07/17/2020] [Indexed: 12/25/2022]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP2) acts as substrate and unmodified ligand for Gq-protein-coupled receptor signalling in vascular smooth muscle cells (VSMCs) that is central for initiating contractility. The present work investigated how PIP2 might perform these two potentially conflicting roles by studying the effect of myristoylated alanine-rich C kinase substrate (MARCKS), a PIP2-binding protein, on vascular contractility in rat and mouse mesenteric arteries. Using wire myography, MANS peptide (MANS), a MARCKS inhibitor, produced robust contractions with a pharmacological profile suggesting a predominantly role for L-type (CaV1.2) voltage-gated Ca2+ channels (VGCC). Knockdown of MARCKS using morpholino oligonucleotides reduced contractions induced by MANS and stimulation of α1-adrenoceptors and thromboxane receptors with methoxamine (MO) and U46619 respectively. Immunocytochemistry and proximity ligation assays demonstrated that MARCKS and CaV1.2 proteins co-localise at the plasma membrane in unstimulated tissue, and that MANS and MO reduced these interactions and induced translocation of MARCKS from the plasma membrane to the cytosol. Dot-blots revealed greater PIP2 binding to MARCKS than CaV1.2 in unstimulated tissue, with this binding profile reversed following stimulation by MANS and MO. MANS evoked an increase in peak amplitude and shifted the activation curve to more negative membrane potentials of whole-cell voltage-gated Ca2+ currents, which were prevented by depleting PIP2 levels with wortmannin. This present study indicates for the first time that MARCKS is important regulating vascular contractility and suggests that disinhibition of MARCKS by MANS or vasoconstrictors may induce contraction through releasing PIP2 into the local environment where it increases voltage-gated Ca2+ channel activity.
Collapse
Affiliation(s)
- Kazi S Jahan
- Vascular Biology Research Centre, Molecular and Clinical Research Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Jian Shi
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK
| | - Harry Z E Greenberg
- Vascular Biology Research Centre, Molecular and Clinical Research Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Sam Khavandi
- Vascular Biology Research Centre, Molecular and Clinical Research Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Miguel Martín-Aragón Baudel
- Department of Pharmacology, University of California, 451, Health Sciences Drive, Suite 3503, Davis, CA 95615, USA
| | - Vincenzo Barrese
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Corso Umberto I, 40, 80138 Napoli, NA, Italy
| | - Iain A Greenwood
- Vascular Biology Research Centre, Molecular and Clinical Research Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Anthony P Albert
- Vascular Biology Research Centre, Molecular and Clinical Research Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK.
| |
Collapse
|
7
|
Li P, Halabi CM, Stewart R, Butler A, Brown B, Xia X, Santi C, England S, Ferreira J, Mecham RP, Salkoff L. Sodium-activated potassium channels moderate excitability in vascular smooth muscle. J Physiol 2019; 597:5093-5108. [PMID: 31444905 PMCID: PMC6800802 DOI: 10.1113/jp278279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS We report that a sodium-activated potassium current, IKNa , has been inadvertently overlooked in both conduit and resistance arterial smooth muscle cells. IKNa is a major K+ resting conductance and is absent in cells of IKNa knockout (KO) mice. The phenotype of the IKNa KO is mild hypertension, although KO mice react more strongly than wild-type with raised blood pressure when challenged with vasoconstrictive agents. IKNa is negatively regulated by angiotensin II acting through Gαq protein-coupled receptors. In current clamp, KO arterial smooth muscle cells have easily evoked Ca2+ -dependent action potentials. ABSTRACT Although several potassium currents have been reported to play a role in arterial smooth muscle (ASM), we find that one of the largest contributors to membrane conductance in both conduit and resistance ASMs has been inadvertently overlooked. In the present study, we show that IKNa , a sodium-activated potassium current, contributes a major portion of macroscopic outward current in a critical physiological voltage range that determines intrinsic cell excitability; IKNa is the largest contributor to ASM cell resting conductance. A genetic knockout (KO) mouse strain lacking KNa channels (KCNT1 and KCNT2) shows only a modest hypertensive phenotype. However, acute administration of vasoconstrictive agents such as angiotensin II (Ang II) and phenylephrine results in an abnormally large increase in blood pressure in the KO animals. In wild-type animals Ang II acting through Gαq protein-coupled receptors down-regulates IKNa , which increases the excitability of the ASMs. The complete genetic removal of IKNa in KO mice makes the mutant animal more vulnerable to vasoconstrictive agents, thus producing a paroxysmal-hypertensive phenotype. This may result from the lowering of cell resting K+ conductance allowing the cells to depolarize more readily to a variety of excitable stimuli. Thus, the sodium-activated potassium current may serve to moderate blood pressure in instances of heightened stress. IKNa may represent a new therapeutic target for hypertension and stroke.
Collapse
Affiliation(s)
- Ping Li
- Dept. of Neuroscience, Washington University School of Medicine, Saint Louis. MO 63110
- Equal contributors
| | - Carmen M. Halabi
- Dept. of Pediatrics, Washington University School of Medicine, Saint Louis. MO 63110
- Equal contributors
| | - Richard Stewart
- Dept. of Neuroscience, Washington University School of Medicine, Saint Louis. MO 63110
| | - Alice Butler
- Dept. of Neuroscience, Washington University School of Medicine, Saint Louis. MO 63110
| | - Bobbie Brown
- Dept. of Neuroscience, Washington University School of Medicine, Saint Louis. MO 63110
| | - Xiaoming Xia
- Dept. of Anesthesiology, Washington University School of Medicine, Saint Louis. MO 63110
| | - Celia Santi
- Dept. of Neuroscience, Washington University School of Medicine, Saint Louis. MO 63110
- Dept. of OBGYN, Washington University School of Medicine, Saint Louis. MO 63110
| | - Sarah England
- Dept. of OBGYN, Washington University School of Medicine, Saint Louis. MO 63110
| | - Juan Ferreira
- Dept. of Neuroscience, Washington University School of Medicine, Saint Louis. MO 63110
- Dept. of OBGYN, Washington University School of Medicine, Saint Louis. MO 63110
| | - Robert P. Mecham
- Dept. of Cell Biology, Washington University School of Medicine, Saint Louis. MO 63110
| | - Lawrence Salkoff
- Dept. of Neuroscience, Washington University School of Medicine, Saint Louis. MO 63110
- Dept. of Genetics, Washington University School of Medicine, Saint Louis. MO 63110
| |
Collapse
|
8
|
Alom F, Matsuyama H, Nagano H, Fujikawa S, Tanahashi Y, Unno T. Involvement of transient receptor potential melastatin 4 channels in the resting membrane potential setting and cholinergic contractile responses in mouse detrusor and ileal smooth muscles. J Vet Med Sci 2019; 81:217-228. [PMID: 30518701 PMCID: PMC6395210 DOI: 10.1292/jvms.18-0631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Here, we investigated the effects of 9-hydroxyphenanthrene (9-phenanthrol), a potent and selective transient receptor potential melastatin 4 (TRPM4) channel blocker, on the resting membrane potential and cholinergic contractile responses to elucidate the functional role of TRPM4 channels in the contractile activities of mouse detrusor and ileal longitudinal smooth muscles. We observed that, 9-phenanthrol (3-30 µM) did not significantly inhibit high K+-induced contractions in both preparations; however, 9-phenanthrol (10 µM) strongly inhibited cholinergic contractions evoked by electrical field stimulation in detrusor preparations compared to inhibitions in ileal preparations. 9-Phenanthrol (10 µM) significantly inhibited the muscarinic agonist, carbachol-induced contractile responses and slowed the maximum upstroke velocities of the contraction in detrusor preparations. However, the agent (10 µM) did not inhibit the contractions due to intracellular Ca2+ release evoked by carbachol, suggesting that the inhibitory effect of 9-phenanthrol may primarily be due to the inhibition of the membrane depolarization process incurred by TRPM4 channels. On the other hand, 9-phenanthrol (10 µM) did not affect carbachol-induced contractile responses in ileal preparations. Further, 9-phenanthrol (10 µM) significantly hyperpolarized the resting membrane potential and decreased the basal tone in both detrusor and ileal muscle preparations. Taken together, our results suggest that TRPM4 channels are constitutively active and are involved in setting of the resting membrane potential, thereby regulating the basal tone in detrusor and ileal smooth muscles. Thus, TRPM4 channels play a significant role in cholinergic signaling in detrusor, but not ileal, smooth muscles.
Collapse
Affiliation(s)
- Firoj Alom
- Department of Pathogenetic Veterinary Science, United Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hayato Matsuyama
- Department of Pathogenetic Veterinary Science, United Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hiroshi Nagano
- Department of Pathogenetic Veterinary Science, United Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Saki Fujikawa
- Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | - Yasuyuki Tanahashi
- Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | - Toshihiro Unno
- Department of Pathogenetic Veterinary Science, United Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
9
|
Harder DR, Rarick KR, Gebremedhin D, Cohen SS. Regulation of Cerebral Blood Flow: Response to Cytochrome P450 Lipid Metabolites. Compr Physiol 2018; 8:801-821. [PMID: 29687906 DOI: 10.1002/cphy.c170025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
There have been numerous reviews related to the cerebral circulation. Most of these reviews are similar in many ways. In the present review, we thought it important to provide an overview of function with specific attention to details of cerebral arterial control related to brain homeostasis, maintenance of neuronal energy demands, and a unique perspective related to the role of astrocytes. A coming review in this series will discuss cerebral vascular development and unique properties of the neonatal circulation and developing brain, thus, many aspects of development are missing here. Similarly, a review of the response of the brain and cerebral circulation to heat stress has recently appeared in this series (8). By trying to make this review unique, some obvious topics were not discussed in lieu of others, which are from recent and provocative research such as endothelium-derived hyperpolarizing factor, circadian regulation of proteins effecting cerebral blood flow, and unique properties of the neurovascular unit. © 2018 American Physiological Society. Compr Physiol 8:801-821, 2018.
Collapse
Affiliation(s)
- David R Harder
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki VA Medical Center, Milwaukee, Wisconsin, USA
| | - Kevin R Rarick
- Department of Pediatrics, Division of Critical Care, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Debebe Gebremedhin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Susan S Cohen
- Department of Pediatrics, Division of Neonatology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
10
|
Provence A, Rovner ES, Petkov GV. Regulation of transient receptor potential melastatin 4 channel by sarcoplasmic reticulum inositol trisphosphate receptors: Role in human detrusor smooth muscle function. Channels (Austin) 2017. [PMID: 28644055 DOI: 10.1080/19336950.2017.1341023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We recently reported key physiologic roles for Ca2+-activated transient receptor potential melastatin 4 (TRPM4) channels in detrusor smooth muscle (DSM). However, the Ca2+-signaling mechanisms governing TRPM4 channel activity in human DSM cells are unexplored. As the TRPM4 channels are activated by Ca2+, inositol 1,4,5-trisphosphate receptor (IP3R)-mediated Ca2+ release from the sarcoplasmic reticulum represents a potential Ca2+ source for TRPM4 channel activation. We used clinically-characterized human DSM tissues to investigate the molecular and functional interactions of the IP3Rs and TRPM4 channels. With in situ proximity ligation assay (PLA) and perforated patch-clamp electrophysiology, we tested the hypothesis that TRPM4 channels are tightly associated with the IP3Rs and are activated by IP3R-mediated Ca2+ release in human DSM. With in situ PLA, we demonstrated co-localization of the TRPM4 channels and IP3Rs in human DSM cells. As the TRPM4 channels and IP3Rs must be located within close apposition to functionally interact, these findings support the concept of a potential Ca2+-mediated TRPM4-IP3R regulatory mechanism. To investigate IP3R regulation of TRPM4 channel activity, we sought to determine the consequences of IP3R pharmacological inhibition on TRPM4 channel-mediated transient inward cation currents (TICCs). In freshly-isolated human DSM cells, blocking the IP3Rs with the selective IP3R inhibitor xestospongin-C significantly decreased TICCs. The data suggest that IP3Rs have a key role in mediating the Ca2+-dependent activation of TRPM4 channels in human DSM. The study provides novel insight into the molecular and cellular mechanisms regulating TRPM4 channels by revealing that TRPM4 channels and IP3Rs are spatially and functionally coupled in human DSM.
Collapse
Affiliation(s)
- Aaron Provence
- a Department of Drug Discovery and Biomedical Sciences , South Carolina College of Pharmacy, University of South Carolina , Columbia , SC , USA
| | - Eric S Rovner
- b Department of Urology , Medical University of South Carolina , Charleston , SC , USA
| | - Georgi V Petkov
- a Department of Drug Discovery and Biomedical Sciences , South Carolina College of Pharmacy, University of South Carolina , Columbia , SC , USA.,b Department of Urology , Medical University of South Carolina , Charleston , SC , USA.,c Department of Pharmaceutical Sciences , College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| |
Collapse
|
11
|
Hristov KL, Smith AC, Parajuli SP, Malysz J, Rovner ES, Petkov GV. Novel regulatory mechanism in human urinary bladder: central role of transient receptor potential melastatin 4 channels in detrusor smooth muscle function. Am J Physiol Cell Physiol 2016; 310:C600-11. [PMID: 26791488 DOI: 10.1152/ajpcell.00270.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/13/2016] [Indexed: 11/22/2022]
Abstract
Transient receptor potential melastatin 4 (TRPM4) channels are Ca(2+)-activated nonselective cation channels that have been recently identified as regulators of detrusor smooth muscle (DSM) function in rodents. However, their expression and function in human DSM remain unexplored. We provide insights into the functional role of TRPM4 channels in human DSM under physiological conditions. We used a multidisciplinary experimental approach, including RT-PCR, Western blotting, immunohistochemistry and immunocytochemistry, patch-clamp electrophysiology, and functional studies of DSM contractility. DSM samples were obtained from patients without preoperative overactive bladder symptoms. RT-PCR detected mRNA transcripts for TRPM4 channels in human DSM whole tissue and freshly isolated single cells. Western blotting and immunohistochemistry with confocal microscopy revealed TRPM4 protein expression in human DSM. Immunocytochemistry further detected TRPM4 protein expression in DSM single cells. Patch-clamp experiments showed that 9-phenanthrol, a selective TRPM4 channel inhibitor, significantly decreased the transient inward cation currents and voltage step-induced whole cell currents in freshly isolated human DSM cells. In current-clamp mode, 9-phenanthrol hyperpolarized the human DSM cell membrane potential. Furthermore, 9-phenanthrol attenuated the spontaneous phasic, carbachol-induced and nerve-evoked contractions in human DSM isolated strips. Significant species-related differences in TRPM4 channel activity between human, rat, and guinea pig DSM were revealed, suggesting a more prominent physiological role for the TRPM4 channel in the regulation of DSM function in humans than in rodents. In conclusion, TRPM4 channels regulate human DSM excitability and contractility and are critical determinants of human urinary bladder function. Thus, TRPM4 channels could represent promising novel targets for the pharmacological or genetic control of overactive bladder.
Collapse
Affiliation(s)
- Kiril L Hristov
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina; and
| | - Amy C Smith
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina; and
| | - Shankar P Parajuli
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina; and
| | - John Malysz
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina; and
| | - Eric S Rovner
- Medical University of South Carolina, Charleston, South Carolina
| | - Georgi V Petkov
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina; and Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
12
|
Earley S, Brayden JE. Transient receptor potential channels in the vasculature. Physiol Rev 2015; 95:645-90. [PMID: 25834234 DOI: 10.1152/physrev.00026.2014] [Citation(s) in RCA: 302] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The mammalian genome encodes 28 distinct members of the transient receptor potential (TRP) superfamily of cation channels, which exhibit varying degrees of selectivity for different ionic species. Multiple TRP channels are present in all cells and are involved in diverse aspects of cellular function, including sensory perception and signal transduction. Notably, TRP channels are involved in regulating vascular function and pathophysiology, the focus of this review. TRP channels in vascular smooth muscle cells participate in regulating contractility and proliferation, whereas endothelial TRP channel activity is an important contributor to endothelium-dependent vasodilation, vascular wall permeability, and angiogenesis. TRP channels are also present in perivascular sensory neurons and astrocytic endfeet proximal to cerebral arterioles, where they participate in the regulation of vascular tone. Almost all of these functions are mediated by changes in global intracellular Ca(2+) levels or subcellular Ca(2+) signaling events. In addition to directly mediating Ca(2+) entry, TRP channels influence intracellular Ca(2+) dynamics through membrane depolarization associated with the influx of cations or through receptor- or store-operated mechanisms. Dysregulation of TRP channels is associated with vascular-related pathologies, including hypertension, neointimal injury, ischemia-reperfusion injury, pulmonary edema, and neurogenic inflammation. In this review, we briefly consider general aspects of TRP channel biology and provide an in-depth discussion of the functions of TRP channels in vascular smooth muscle cells, endothelial cells, and perivascular cells under normal and pathophysiological conditions.
Collapse
Affiliation(s)
- Scott Earley
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada; and Department of Pharmacology, University of Vermont College of Medicine, Burlington, Vermont
| | - Joseph E Brayden
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada; and Department of Pharmacology, University of Vermont College of Medicine, Burlington, Vermont
| |
Collapse
|
13
|
Abstract
Intrarenal autoregulatory mechanisms maintain renal blood flow (RBF) and glomerular filtration rate (GFR) independent of renal perfusion pressure (RPP) over a defined range (80-180 mmHg). Such autoregulation is mediated largely by the myogenic and the macula densa-tubuloglomerular feedback (MD-TGF) responses that regulate preglomerular vasomotor tone primarily of the afferent arteriole. Differences in response times allow separation of these mechanisms in the time and frequency domains. Mechanotransduction initiating the myogenic response requires a sensing mechanism activated by stretch of vascular smooth muscle cells (VSMCs) and coupled to intracellular signaling pathways eliciting plasma membrane depolarization and a rise in cytosolic free calcium concentration ([Ca(2+)]i). Proposed mechanosensors include epithelial sodium channels (ENaC), integrins, and/or transient receptor potential (TRP) channels. Increased [Ca(2+)]i occurs predominantly by Ca(2+) influx through L-type voltage-operated Ca(2+) channels (VOCC). Increased [Ca(2+)]i activates inositol trisphosphate receptors (IP3R) and ryanodine receptors (RyR) to mobilize Ca(2+) from sarcoplasmic reticular stores. Myogenic vasoconstriction is sustained by increased Ca(2+) sensitivity, mediated by protein kinase C and Rho/Rho-kinase that favors a positive balance between myosin light-chain kinase and phosphatase. Increased RPP activates MD-TGF by transducing a signal of epithelial MD salt reabsorption to adjust afferent arteriolar vasoconstriction. A combination of vascular and tubular mechanisms, novel to the kidney, provides for high autoregulatory efficiency that maintains RBF and GFR, stabilizes sodium excretion, and buffers transmission of RPP to sensitive glomerular capillaries, thereby protecting against hypertensive barotrauma. A unique aspect of the myogenic response in the renal vasculature is modulation of its strength and speed by the MD-TGF and by a connecting tubule glomerular feedback (CT-GF) mechanism. Reactive oxygen species and nitric oxide are modulators of myogenic and MD-TGF mechanisms. Attenuated renal autoregulation contributes to renal damage in many, but not all, models of renal, diabetic, and hypertensive diseases. This review provides a summary of our current knowledge regarding underlying mechanisms enabling renal autoregulation in health and disease and methods used for its study.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christopher S Wilcox
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William J Arendshorst
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
14
|
Earley S. Smooth muscle cell Ca²⁺: think locally, act globally. Microcirculation 2013; 20:279-80. [PMID: 23421765 DOI: 10.1111/micc.12049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 02/15/2013] [Indexed: 02/03/2023]
Abstract
Dynamic changes in intracellular Ca²⁺ levels in vascular smooth muscle cells are critically important for cardiovascular regulation. This Special Topic Issue highlights a series of expert opinion articles focused on this important subject. After a brief overview, novel discoveries surrounding smooth muscle cell Ca²⁺ influx via L-type and T-type channels are reviewed. Current work revealing the functional importance of dynamic Ca²⁺ signaling in the control of the parenchymal microvasculature and the emerging role of mitochondrial Ca²⁺ signaling and store-operated Ca²⁺ entry in smooth muscle cells is discussed. Finally, recent data describing a new target of localized Ca²⁺ signaling in arterial myocytes that is responsible for membrane depolarization is reviewed. Authors were encouraged to write in an opinionated and provocative manner with the hope of stimulating discussion in this area of research.
Collapse
Affiliation(s)
- Scott Earley
- Vascular Physiology Research Group, Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.
| |
Collapse
|
15
|
TRPM4 channels in smooth muscle function. Pflugers Arch 2013; 465:1223-31. [PMID: 23443854 DOI: 10.1007/s00424-013-1250-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/08/2013] [Accepted: 02/09/2013] [Indexed: 01/03/2023]
Abstract
The melastatin (M) transient receptor potential (TRP) channel TRPM4 is selective for monovalent cations and is activated by high levels of intracellular Ca(2+). TRPM4 is broadly distributed and may be involved in numerous functions, including electrical conduction in the heart, respiratory rhythm, immune response, and secretion of insulin by pancreatic β-cells. The significance of TRPM4 in smooth muscle cell function is reviewed here. Several studies indicate that TRPM4 channels are critically important for pressure-induced cerebral arterial myocyte depolarization and myogenic vasoconstriction as well as autoregulation of cerebral blood flow. Regulation of TRPM4 activity in arterial smooth muscle cells is complex and involves release of Ca(2+) from the sarcoplasmic reticulum through inositol 1,4,5-trisphosphate receptors and translocation of TRPM4 channels to the plasma membrane in response to protein kinase Cδ. TRPM4 is also present in colonic, urinary bladder, aortic, interlobar pulmonary and renal artery, airway, and corpus cavernosum smooth muscle cells, but its significance and regulation in these tissues is less well characterized.
Collapse
|