1
|
Koletar MM, Dorr A, Brown ME, McLaurin J, Stefanovic B. Refinement of a chronic cranial window implant in the rat for longitudinal in vivo two-photon fluorescence microscopy of neurovascular function. Sci Rep 2019; 9:5499. [PMID: 30940849 PMCID: PMC6445076 DOI: 10.1038/s41598-019-41966-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/19/2019] [Indexed: 12/13/2022] Open
Abstract
Longitudinal studies using two–photon fluorescence microscopy (TPFM) are critical for facilitating cellular scale imaging of brain morphology and function. Studies have been conducted in the mouse due to their relatively higher transparency and long term patency of a chronic cranial window. Increasing availability of transgenic rat models, and the range of established behavioural paradigms, necessitates development of a chronic preparation for the rat. However, surgical craniotomies in the rat present challenges due to craniotomy closure by wound healing and diminished image quality due to inflammation, restricting most rat TPFM experiments to acute preparations. Long-term patency is enabled by employing sterile surgical technique, minimization of trauma with precise tissue handling during surgery, judicious selection of the size and placement of the craniotomy, diligent monitoring of animal physiology and support throughout the surgery, and modification of the home cage for long-term preservation of cranial implants. Immunohistochemical analysis employing the glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule-1 (Iba-1) showed activation and recruitment of astrocytes and microglia/macrophages directly inferior to the cranial window at one week after surgery, with more diffuse response in deeper cortical layers at two weeks, and amelioration around four weeks post craniotomy. TPFM was conducted up to 14 weeks post craniotomy, reaching cortical depths of 400 µm to 600 µm at most time-points. The rate of signal decay with increasing depth and maximum cortical depth attained had greater variation between individual rats at a single time-point than within a rat across time.
Collapse
Affiliation(s)
- Margaret M Koletar
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada.
| | - Adrienne Dorr
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - Mary E Brown
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - JoAnne McLaurin
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A1, Canada
| | - Bojana Stefanovic
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada.,Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| |
Collapse
|
2
|
Ong PK, Moreira AS, Daniel-Ribeiro CT, Frangos JA, Carvalho LJM. Reversal of cerebrovascular constriction in experimental cerebral malaria by L-arginine. Sci Rep 2018; 8:15957. [PMID: 30374028 PMCID: PMC6206133 DOI: 10.1038/s41598-018-34249-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/08/2018] [Indexed: 12/15/2022] Open
Abstract
Vascular dysfunction associated with low nitric oxide (NO) biavailability and low plasma L-arginine levels is observed in both human and experimental cerebral malaria (ECM). In ECM, cerebrovascular constriction results in decreased pial blood flow and hypoxia, and administration of NO donors reverses constriction and increases survival. Supplementation of L-arginine, the substrate for NO synthesis by NO synthases, has been considered as a strategy to improve vascular health and act as adjunctive therapy in human severe malaria. We investigated the effect of L-arginine supplementation on pial vascular tonus of mice with ECM after direct superfusion on the brain surface or systemic delivery. Pial arteriolar diameters of Plasmodium berghei-infected mice with implanted cranial windows were measured using intravital microscopy methods, before and after L-arginine administration. Systemic delivery of L-arginine was performed intravenously, at 10, 50, 100 and 200 mg/kg, as bolus injection or slowly through osmotic pumps, combined or not with artesunate. Direct superfusion of L-arginine (10-7M, 10-5M and 10-3M) on the brain surface of mice with ECM resulted in immediate, consistent and dose-dependent dilation of pial arterioles. ECM mice showed marked cerebrovascular constriction that progressively worsened over a 24 h-period after subcutaneous saline bolus administration. L-arginine administration prevented the worsening in pial constriction at all the doses tested, and at 50 mg/kg and 100 mg/kg it induced temporary reversal of vasoconstriction. Slow, continuous delivery of L-arginine by osmotic pumps, or combined bolus administration of artesunate with L-arginine, also prevented worsening of pial constriction and resulted in improved survival of mice with ECM. L-arginine ameliorates pial vasoconstriction in mice with ECM.
Collapse
Affiliation(s)
- Peng Kai Ong
- La Jolla Bioengineering Institute, La Jolla, CA, USA
| | - Aline S Moreira
- Laboratory of Malaria Research, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | | | | | - Leonardo J M Carvalho
- La Jolla Bioengineering Institute, La Jolla, CA, USA. .,Laboratory of Malaria Research, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Carvalho LJDM, Moreira ADS, Daniel-Ribeiro CT, Martins YC. Vascular dysfunction as a target for adjuvant therapy in cerebral malaria. Mem Inst Oswaldo Cruz 2015; 109:577-88. [PMID: 25185000 PMCID: PMC4156451 DOI: 10.1590/0074-0276140061] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/02/2014] [Indexed: 12/27/2022] Open
Abstract
Cerebral malaria (CM) is a life-threatening complication of Plasmodium
falciparum malaria that continues to be a major global health problem.
Brain vascular dysfunction is a main factor underlying the pathogenesis of CM and can
be a target for the development of adjuvant therapies for the disease. Vascular
occlusion by parasitised red blood cells and vasoconstriction/vascular dysfunction
results in impaired cerebral blood flow, ischaemia, hypoxia, acidosis and death. In
this review, we discuss the mechanisms of vascular dysfunction in CM and the roles of
low nitric oxide bioavailability, high levels of endothelin-1 and dysfunction of the
angiopoietin-Tie2 axis. We also discuss the usefulness and relevance of the murine
experimental model of CM by Plasmodium berghei ANKA to identify
mechanisms of disease and to screen potential therapeutic interventions.
Collapse
Affiliation(s)
| | - Aline da Silva Moreira
- Laboratório de Pesquisas em Malária, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | | | - Yuri Chaves Martins
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
4
|
Evaluation of cerebrovascular impedance and wave reflection in mouse by ultrasound. J Cereb Blood Flow Metab 2015; 35:521-6. [PMID: 25515209 PMCID: PMC4348395 DOI: 10.1038/jcbfm.2014.229] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/14/2014] [Accepted: 11/25/2014] [Indexed: 11/13/2022]
Abstract
Genetic and surgical mouse models are commonly used to study cerebrovascular disease, but their size makes invasive hemodynamic testing technically challenging. The purpose of this study was to demonstrate a noninvasive measurement of cerebrovascular impedance and wave reflection in mice using high-frequency ultrasound in the left common carotid artery (LCCA), and to examine whether microvascular changes associated with hypercapnia could be detected with such an approach. Ten mice (C57BL/6J) were studied using a high-frequency ultrasound system (40 MHz). Lumen area and blood flow waveforms were obtained from the LCCA and used to calculate pulse-wave velocity, input impedance, and reflection amplitude and transit time under both normocapnic and hypercapnic (5% CO2) ventilation. With hypercapnia, vascular resistance was observed to decrease by 87%±12%. Although the modulus of input impedance was unchanged with hypercapnia, a phase decrease indicative of increased total arterial compliance was observed at low harmonics together with an increased reflection coefficient in both the time (0.57±0.08 versus 0.68±0.08, P=0.04) and frequency domains (0.62±0.08 versus 0.73±0.06, P=0.02). Interestingly, the majority of LCCA blood flow was found to pass into the internal carotid artery (range=76% to 90%, N=3), suggesting that hemodynamic measurements in this vessel are a good metric for intracerebral reactivity in mouse.
Collapse
|
5
|
Pai S, Qin J, Cavanagh L, Mitchell A, El-Assaad F, Jain R, Combes V, Hunt NH, Grau GER, Weninger W. Real-time imaging reveals the dynamics of leukocyte behaviour during experimental cerebral malaria pathogenesis. PLoS Pathog 2014; 10:e1004236. [PMID: 25033406 PMCID: PMC4102563 DOI: 10.1371/journal.ppat.1004236] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 05/23/2014] [Indexed: 02/02/2023] Open
Abstract
During experimental cerebral malaria (ECM) mice develop a lethal neuropathological syndrome associated with microcirculatory dysfunction and intravascular leukocyte sequestration. The precise spatio-temporal context in which the intravascular immune response unfolds is incompletely understood. We developed a 2-photon intravital microscopy (2P-IVM)-based brain-imaging model to monitor the real-time behaviour of leukocytes directly within the brain vasculature during ECM. Ly6Chi monocytes, but not neutrophils, started to accumulate in the blood vessels of Plasmodium berghei ANKA (PbA)-infected MacGreen mice, in which myeloid cells express GFP, one to two days prior to the onset of the neurological signs (NS). A decrease in the rolling speed of monocytes, a measure of endothelial cell activation, was associated with progressive worsening of clinical symptoms. Adoptive transfer experiments with defined immune cell subsets in recombinase activating gene (RAG)-1-deficient mice showed that these changes were mediated by Plasmodium-specific CD8+ T lymphocytes. A critical number of CD8+ T effectors was required to induce disease and monocyte adherence to the vasculature. Depletion of monocytes at the onset of disease symptoms resulted in decreased lymphocyte accumulation, suggesting reciprocal effects of monocytes and T cells on their recruitment within the brain. Together, our studies define the real-time kinetics of leukocyte behaviour in the central nervous system during ECM, and reveal a significant role for Plasmodium-specific CD8+ T lymphocytes in regulating vascular pathology in this disease. Cerebral malaria (CM) is a severe complication of Plasmodium falciparum infection that takes a significant toll on human life. Blockage of the brain blood vessels contributes to the clinical signs of CM, however we know little about the precise pathological events that lead to this disease. To this end, studies in Plasmodium-infected mice, that also develop a similar fatal disease, have proven useful. These studies have revealed an important role for leukocytes not so much in protecting but rather promoting pathology in the brain. To better understand leukocyte behaviour during experimental CM, we established a brain-imaging model that allows us to ‘peek’ into the brain of living mice and watch immunological events as they unfold. We found that worsening of disease was accompanied by an accumulation of monocytes in the blood vessels. Monocyte accumulation was regulated by activated CD8+ T cells but only when present in critical numbers. Monocyte depletion resulted in reduced T cell trafficking to the brain, but this did not result in improved disease outcome. Our studies reveal the orchestration of leukocyte accumulation in real time during CM, and demonstrate that CD8+ T cells play a crucial role in promoting clinical signs in this disease.
Collapse
Affiliation(s)
- Saparna Pai
- Immune Imaging Laboratory, The Centenary Institute, Newtown, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- * E-mail: (SP); (WW)
| | - Jim Qin
- Immune Imaging Laboratory, The Centenary Institute, Newtown, Sydney, New South Wales, Australia
| | - Lois Cavanagh
- Immune Imaging Laboratory, The Centenary Institute, Newtown, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Andrew Mitchell
- Immune Imaging Laboratory, The Centenary Institute, Newtown, Sydney, New South Wales, Australia
| | - Fatima El-Assaad
- Vascular Immunology Unit, Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, Sydney, New South Wales, Australia
| | - Rohit Jain
- Immune Imaging Laboratory, The Centenary Institute, Newtown, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Valery Combes
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Vascular Immunology Unit, Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, Sydney, New South Wales, Australia
| | - Nicholas H. Hunt
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Molecular Immunopathology Unit, Discipline of Pathology, Sydney Medical School and Bosch Institute, University of Sydney, Camperdown, Sydney, New South Wales, Australia
| | - Georges E. R. Grau
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Vascular Immunology Unit, Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, Sydney, New South Wales, Australia
| | - Wolfgang Weninger
- Immune Imaging Laboratory, The Centenary Institute, Newtown, Sydney, New South Wales, Australia
- Discipline of Dermatology, University of Sydney, Sydney, New South Wales, Australia
- Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, Sydney, New South Wales, Australia
- * E-mail: (SP); (WW)
| |
Collapse
|