1
|
Pleiotropic and Potentially Beneficial Effects of Reactive Oxygen Species on the Intracellular Signaling Pathways in Endothelial Cells. Antioxidants (Basel) 2021; 10:antiox10060904. [PMID: 34205032 PMCID: PMC8229098 DOI: 10.3390/antiox10060904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 02/06/2023] Open
Abstract
Endothelial cells (ECs) are exposed to molecular dioxygen and its derivative reactive oxygen species (ROS). ROS are now well established as important signaling messengers. Excessive production of ROS, however, results in oxidative stress, a significant contributor to the development of numerous diseases. Here, we analyze the experimental data and theoretical concepts concerning positive pro-survival effects of ROS on signaling pathways in endothelial cells (ECs). Our analysis of the available experimental data suggests possible positive roles of ROS in induction of pro-survival pathways, downstream of the Gi-protein-coupled receptors, which mimics insulin signaling and prevention or improvement of the endothelial dysfunction. It is, however, doubtful, whether ROS can contribute to the stabilization of the endothelial barrier.
Collapse
|
2
|
Abstract
The skeleton is highly vascularized due to the various roles blood vessels play in the homeostasis of bone and marrow. For example, blood vessels provide nutrients, remove metabolic by-products, deliver systemic hormones, and circulate precursor cells to bone and marrow. In addition to these roles, bone blood vessels participate in a variety of other functions. This article provides an overview of the afferent, exchange and efferent vessels in bone and marrow and presents the morphological layout of these blood vessels regarding blood flow dynamics. In addition, this article discusses how bone blood vessels participate in bone development, maintenance, and repair. Further, mechanical loading-induced bone adaptation is presented regarding interstitial fluid flow and pressure, as regulated by the vascular system. The role of the sympathetic nervous system is discussed in relation to blood vessels and bone. Finally, vascular participation in bone accrual with intermittent parathyroid hormone administration, a medication prescribed to combat age-related bone loss, is described and age- and disease-related impairments in blood vessels are discussed in relation to bone and marrow dysfunction. © 2020 American Physiological Society. Compr Physiol 10:1009-1046, 2020.
Collapse
Affiliation(s)
- Rhonda D Prisby
- Bone Vascular and Microcirculation Laboratory, Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
3
|
Ugurel E, Piskin S, Aksu AC, Eser A, Yalcin O. From Experiments to Simulation: Shear-Induced Responses of Red Blood Cells to Different Oxygen Saturation Levels. Front Physiol 2020; 10:1559. [PMID: 32038272 PMCID: PMC6987081 DOI: 10.3389/fphys.2019.01559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/11/2019] [Indexed: 11/13/2022] Open
Abstract
Red blood cells (RBC) carry and deliver oxygen (O2) to peripheral tissues through different microcirculatory regions where they are exposed to various levels of shear stress (SS). O2 affinity of hemoglobin (Hb) decreases as the blood enters the microcirculation. This phenomenon determines Hb interactions with RBC membrane proteins that can further regulate the structure of cytoskeleton and affect the mechanical properties of cells. The goal of this study is to evaluate shear-induced RBC deformability and simulate RBC dynamics in blood flow under oxygenated and deoxygenated conditions. Venous blood samples from healthy donors were oxygenated with ambient air or deoxygenated with 100% nitrogen gas for 10 min and immediately applied into an ektacytometer (LORRCA). RBC deformability was measured before and after the application of continuous 5 Pa SS for 300 s by LORRCA and recorded as elongation index (EI) values. A computational model was generated for the simulation of blood flow in a real carotid artery section. EI distribution throughout the artery and its relationships with velocity, pressure, wall SS and viscosity were determined by computational tools. RBC deformability significantly increased in deoxygenation compared to oxygenated state both before and after 5 Pa SS implementation (p < 0.0001). However, EI values after continuous SS were not significant at higher SS levels (>5.15 Pa) in deoxygenated condition. Simulation results revealed that the velocity gradient dominates the generation of SS and the shear thinning effect of blood has a minor effect on it. Distribution of EI was calculated during oxygenation/deoxygenation which is 5-10 times higher around the vessel wall compared to the center of the lumen for sections of the pulsatile flow profile. The extent of RBC deformability increases as RBCs approach to the vessel wall in a real 3D artery model and this increment is higher for deoxygenated condition compared to the oxygenated state. Hypoxia significantly increases shear-induced RBC deformability. RBCs could regulate their own mechanical properties in blood flow by increasing their deformability in hypoxic conditions. Computational tools can be applied for defining hypoxia-mediated RBC deformability changes to monitor blood flow in hypoxic tissues.
Collapse
Affiliation(s)
- Elif Ugurel
- Department of Physiology, School of Medicine, Koç University, Istanbul, Turkey.,Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Senol Piskin
- Department of Mechanical Engineering, Istinye University, Istanbul, Turkey.,Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Ali Cenk Aksu
- Department of Physiology, School of Medicine, Koç University, Istanbul, Turkey.,Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Aysenur Eser
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey.,Graduate School of Biomedical Sciences and Engineering, Koç University, Istanbul, Turkey
| | - Ozlem Yalcin
- Department of Physiology, School of Medicine, Koç University, Istanbul, Turkey.,Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| |
Collapse
|
4
|
Hemorheology, microcirculation and macrocirculation. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2020. [DOI: 10.1016/j.repce.2020.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
5
|
|
6
|
Mancuso JE, Jayaraman A, Ristenpart WD. Centrifugation-induced release of ATP from red blood cells. PLoS One 2018; 13:e0203270. [PMID: 30183749 PMCID: PMC6124747 DOI: 10.1371/journal.pone.0203270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 08/17/2018] [Indexed: 11/19/2022] Open
Abstract
Centrifugation is the primary preparation step for isolating red blood cells (RBCs) from whole blood, including for use in studies focused on transduction of adenosine triphosphate (ATP), an important vasodilatory signaling molecule. Despite the wide use of centrifugation, little work has focused on how the centrifugation itself affects release of ATP from RBCs prior to subsequent experimentation. Here we report that both the centrifugation force and duration have a pronounced impact on the concentration of ATP present in the packed RBCs following centrifugation. Multiple subsequent centrifugations yield extracellular ATP concentrations comparable to the amount released during the initial centrifugation, suggesting this effect is cumulative. Pairwise measurements of hemoglobin and ATP suggest the presence of ATP is primarily due to an increase in centrifugation-induced hemolysis. These results indicate that common centrifugation parameters, within the ranges explored here, can release ATP in quantities comparable to the low end of the range of values measured in typical ATP transduction experiments, potentially complicating experimental interpretation of those results.
Collapse
Affiliation(s)
- Jordan E. Mancuso
- Department of Chemical Engineering, University of California Davis, Davis, California, United States of America
| | - Anjana Jayaraman
- Department of Chemical Engineering, University of California Davis, Davis, California, United States of America
| | - William D. Ristenpart
- Department of Chemical Engineering, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
7
|
Barvitenko N, Lawen A, Aslam M, Pantaleo A, Saldanha C, Skverchinskaya E, Regolini M, Tuszynski JA. Integration of intracellular signaling: Biological analogues of wires, processors and memories organized by a centrosome 3D reference system. Biosystems 2018; 173:191-206. [PMID: 30142359 DOI: 10.1016/j.biosystems.2018.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/03/2018] [Accepted: 08/20/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Myriads of signaling pathways in a single cell function to achieve the highest spatio-temporal integration. Data are accumulating on the role of electromechanical soliton-like waves in signal transduction processes. Theoretical studies strongly suggest feasibility of both classical and quantum computing involving microtubules. AIM A theoretical study of the role of the complex composed of the plasma membrane and the microtubule-based cytoskeleton as a system that transmits, stores and processes information. METHODS Theoretical analysis presented here refers to (i) the Penrose-Hameroff theory of consciousness (Orchestrated Objective Reduction; Orch OR), (ii) the description of the centrosome as a reference system for construction of the 3D map of the cell proposed by Regolini, (iii) the Heimburg-Jackson model of the nerve pulse propagation along axons' lipid bilayer as soliton-like electro-mechanical waves. RESULTS AND CONCLUSION The ideas presented in this paper provide a qualitative model for the decision-making processes in a living cell undergoing a differentiation process. OUTLOOK This paper paves the way for the real-time live-cell observation of information processing by microtubule-based cytoskeleton and cell fate decision making.
Collapse
Affiliation(s)
| | - Alfons Lawen
- Monash University, School of Biomedical Sciences, Department of Biochemistry and Molecular Biology, VIC, 3800, Australia
| | - Muhammad Aslam
- Medical Clininc I, Cardiology/Angiology, University Hospital, Justus-Liebig-University, Giessen, Germany
| | - Antonella Pantaleo
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Carlota Saldanha
- Instituto de Medicina Molecular, Instituto de Bioquimica, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | | - Marco Regolini
- Department of Bioengineering and Mathematical Modeling, AudioLogic, Milan, Italy
| | - Jack A Tuszynski
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada; Department of Physics, University of Alberta, Edmonton, Alberta, Canada; Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, IT-10128, Torino, Italy.
| |
Collapse
|
8
|
Almohanna AM, Wray S. Hypoxic conditioning in blood vessels and smooth muscle tissues: effects on function, mechanisms, and unknowns. Am J Physiol Heart Circ Physiol 2018; 315:H756-H770. [PMID: 29702009 DOI: 10.1152/ajpheart.00725.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hypoxic preconditioning, the protective effect of brief, intermittent hypoxic or ischemic episodes on subsequent more severe hypoxic episodes, has been known for 30 yr from studies on cardiac muscle. The concept of hypoxic preconditioning has expanded; excitingly, organs beyond the heart, including the brain, liver, and kidney, also benefit. Preconditioning of vascular and visceral smooth muscles has received less attention despite their obvious importance to health. In addition, there has been no attempt to synthesize the literature in this field. Therefore, in addition to overviewing the current understanding of hypoxic conditioning, in the present review, we consider the role of blood vessels in conditioning and explore evidence for conditioning in other smooth muscles. Where possible, we have distinguished effects on myocytes from other cell types in the visceral organs. We found evidence of a pivotal role for blood vessels in conditioning and for conditioning in other smooth muscle, including the bladder, vascular myocytes, and gastrointestinal tract, and a novel response in the uterus of a hypoxic-induced force increase, which helps maintain contractions during labor. To date, however, there are insufficient data to provide a comprehensive or unifying mechanism for smooth muscles or visceral organs and the effects of conditioning on their function. This also means that no firm conclusions can be drawn as to how differences between smooth muscles in metabolic and contractile activity may contribute to conditioning. Therefore, we have suggested what may be general mechanisms of conditioning occurring in all smooth muscles and tabulated tissue-specific mechanistic findings and suggested ideas for further progress.
Collapse
Affiliation(s)
- Asmaa M Almohanna
- Department of Molecular and Cellular Physiology, Institute of Translational Medicine University of Liverpool , Liverpool , United Kingdom.,Princess Nourah bint Abdulrahman University , Riyadh , Saudi Arabia
| | - Susan Wray
- Department of Molecular and Cellular Physiology, Institute of Translational Medicine University of Liverpool , Liverpool , United Kingdom
| |
Collapse
|
9
|
Prisby RD. Mechanical, hormonal and metabolic influences on blood vessels, blood flow and bone. J Endocrinol 2017; 235:R77-R100. [PMID: 28814440 PMCID: PMC5611884 DOI: 10.1530/joe-16-0666] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/16/2017] [Indexed: 12/25/2022]
Abstract
Bone tissue is highly vascularized due to the various roles bone blood vessels play in bone and bone marrow function. For example, the vascular system is critical for bone development, maintenance and repair and provides O2, nutrients, waste elimination, systemic hormones and precursor cells for bone remodeling. Further, bone blood vessels serve as egress and ingress routes for blood and immune cells to and from the bone marrow. It is becoming increasingly clear that the vascular and skeletal systems are intimately linked in metabolic regulation and physiological and pathological processes. This review examines how agents such as mechanical loading, parathyroid hormone, estrogen, vitamin D and calcitonin, all considered anabolic for bone, have tremendous impacts on the bone vasculature. In fact, these agents influence bone blood vessels prior to influencing bone. Further, data reveal strong associations between vasodilator capacity of bone blood vessels and trabecular bone volume, and poor associations between estrogen status and uterine mass and trabecular bone volume. Additionally, this review highlights the importance of the bone microcirculation, particularly the vascular endothelium and NO-mediated signaling, in the regulation of bone blood flow, bone interstitial fluid flow and pressure and the paracrine signaling of bone cells. Finally, the vascular endothelium as a mediator of bone health and disease is considered.
Collapse
Affiliation(s)
- Rhonda D Prisby
- Department of KinesiologyUniversity of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
10
|
Lima C, Pinto S, Napoleão P, Pronto-Laborinho AC, Barros MA, Freitas T, de Carvalho M, Saldanha C. Identification of erythrocyte biomarkers in amyotrophic lateral sclerosis. Clin Hemorheol Microcirc 2017; 63:423-437. [PMID: 27258202 DOI: 10.3233/ch-162066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease of the motor system. It has been hypothesised that red blood cells (RBCs) may be involved in the disease process by the release of damaging molecules. OBJECTIVE The aim of this ex vivo study is to compare RBCs biochemical and hemorheological parameters between ALS patients and healthy donors to identify novel biomarkers of the ALS disease. METHODS We included 82 ALS patients and 40 gender age-matched healthy donors. We performed quantification of erythrocyte aggregation and deformability, nitric oxide (NO) efflux from RBCs, acetylcholinesterase (AChE) enzyme activity and intraerythrocytic concentration of nitrite, nitrate and S-nitrosogluthatione (GSNO). RESULTS Erythrocyte deformability and AChE activity were increased in patients with ALS in comparison to healthy donors. NO efflux from RBCs and concentration of intraerythrocytic nitrite were lower in ALS patients. In patients, we found that for higher NO range of values the respiratory function is worse and that for higher AChE range of values the RBCs nitrite content increase. CONCLUSION The results of the present study indicate that NO efflux from RBCs and RBCs AChE should be further explored as potential biomarkers for ALS.
Collapse
Affiliation(s)
- Catarina Lima
- Instituto de Bioquímica, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Susana Pinto
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Patrícia Napoleão
- Instituto de Bioquímica, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Catarina Pronto-Laborinho
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Amparo Barros
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Teresa Freitas
- Instituto de Bioquímica, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Mamede de Carvalho
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Departamento de Neurociências. Hospital de Santa Maria-CHLN, Lisbon, Portugal
| | - Carlota Saldanha
- Instituto de Bioquímica, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
11
|
Silva-Herdade AS, Andolina G, Faggio C, Calado Â, Saldanha C. Erythrocyte deformability — A partner of the inflammatory response. Microvasc Res 2016; 107:34-8. [DOI: 10.1016/j.mvr.2016.04.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 01/18/2023]
|
12
|
Hamlin SK, Benedik PS. Basic concepts of hemorheology in microvascular hemodynamics. Crit Care Nurs Clin North Am 2016; 26:337-44. [PMID: 25169687 DOI: 10.1016/j.ccell.2014.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Blood rheology, or hemorheology, involves the flow and deformation behavior of blood and its formed elements (ie, erythrocytes, leukocytes, platelets). The adequacy of blood flow to meet metabolic demands through large circulatory vessels depends highly on vascular control mechanisms. However, the extent to which rheologic properties of blood contribute to vascular flow resistance, particularly in the microcirculation, is becoming more appreciated. Current evidence suggests that microvascular blood flow is determined by local vessel resistance and hemorheologic factors such as blood viscosity, erythrocyte deformability, and erythrocyte aggregation. Such knowledge will aid clinicians caring for patients with hemodynamic alterations.
Collapse
Affiliation(s)
- Shannan K Hamlin
- Nursing Research and Evidence-Based Practice, Houston Methodist Hospital, 6565 Fannin, MGJ 11-017, Houston, TX 77030, USA.
| | - Penelope S Benedik
- UT Health School of Nursing, University of Texas Health Science Center at Houston, 6901 Bertner Street, Room 682, Houston, TX 77030, USA
| |
Collapse
|
13
|
Pretorius E, Kell DB. Diagnostic morphology: biophysical indicators for iron-driven inflammatory diseases. Integr Biol (Camb) 2014; 6:486-510. [PMID: 24714688 DOI: 10.1039/c4ib00025k] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Most non-communicable diseases involve inflammatory changes in one or more vascular systems, and there is considerable evidence that unliganded iron plays major roles in this. Most studies concentrate on biochemical changes, but there are important biophysical correlates. Here we summarize recent microscopy-based observations to the effect that iron can have major effects on erythrocyte morphology, on erythrocyte deformability and on both fibrinogen polymerization and the consequent structure of the fibrin clots formed, each of which contributes significantly and negatively to such diseases. We highlight in particular type 2 diabetes mellitus, ischemic thrombotic stroke, systemic lupus erythematosus, hereditary hemochromatosis and Alzheimer's disease, while recognizing that many other diseases have co-morbidities (and similar causes). Inflammatory biomarkers such as ferritin and fibrinogen are themselves inflammatory, creating a positive feedback that exacerbates disease progression. The biophysical correlates we describe may provide novel, inexpensive and useful biomarkers of the therapeutic benefits of successful treatments.
Collapse
Affiliation(s)
- Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag x323, Arcadia 0007, South Africa.
| | | |
Collapse
|
14
|
|
15
|
Hamlin SK, Parmley CL, Hanneman SK. Microcirculatory oxygen transport and utilization. Crit Care Nurs Clin North Am 2014; 26:311-24. [PMID: 25169685 DOI: 10.1016/j.ccell.2014.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cardiovascular system (macrocirculation) circulates blood throughout the body, but the microcirculation is responsible for modifying tissue perfusion and adapting it to metabolic demand. Hemodynamic assessment and monitoring of the critically ill patient is typically focused on global measures of oxygen transport and utilization, which do not evaluate the status of the microcirculation. Despite achievement and maintenance of global hemodynamic and oxygenation goals, patients may develop microcirculatory dysfunction with associated organ failure. A thorough understanding of the microcirculatory system under physiologic conditions will assist the clinician in early recognition of microcirculatory dysfunction in impending and actual disease states.
Collapse
Affiliation(s)
- Shannan K Hamlin
- Nursing Research and Evidence-Based Practice, Houston Methodist Hospital, MGJ 11-017, Houston, TX 77030, USA.
| | - C Lee Parmley
- Vanderbilt University Hospital, 1211 21st Avenue South, S3408 MCN, Nashville, TN 37212, USA; Department of Anesthesiology, Division of Critical Care, Vanderbilt University School of Medicine, 1211 21st Avenue South, S3408 MCN, Nashville, TN 37212, USA
| | - Sandra K Hanneman
- University of Texas Health Science Center at Houston School of Nursing, Center for Nursing Research, Room #594, 6901 Bertner Avenue, Houston, TX 77030, USA
| |
Collapse
|