1
|
Zhang ZS, Liu YY, He SS, Bao DQ, Wang HC, Zhang J, Peng XY, Zang JT, Zhu Y, Wu Y, Li QH, Li T, Liu LM. Pericytes protect rats and mice from sepsis-induced injuries by maintaining vascular reactivity and barrier function: implication of miRNAs and microvesicles. Mil Med Res 2023; 10:13. [PMID: 36907884 PMCID: PMC10010010 DOI: 10.1186/s40779-023-00442-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 01/31/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Vascular hyporeactivity and leakage are key pathophysiologic features that produce multi-organ damage upon sepsis. We hypothesized that pericytes, a group of pluripotent cells that maintain vascular integrity and tension, are protective against sepsis via regulating vascular reactivity and permeability. METHODS We conducted a series of in vivo experiments using wild-type (WT), platelet-derived growth factor receptor beta (PDGFR-β)-Cre + mT/mG transgenic mice and Tie2-Cre + Cx43flox/flox mice to examine the relative contribution of pericytes in sepsis, either induced by cecal ligation and puncture (CLP) or lipopolysaccharide (LPS) challenge. In a separate set of experiments with Sprague-Dawley (SD) rats, pericytes were depleted using CP-673451, a selective PDGFR-β inhibitor, at a dosage of 40 mg/(kg·d) for 7 consecutive days. Cultured pericytes, vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs) were used for mechanistic investigations. The effects of pericytes and pericyte-derived microvesicles (PCMVs) and candidate miRNAs on vascular reactivity and barrier function were also examined. RESULTS CLP and LPS induced severe injury/loss of pericytes, vascular hyporeactivity and leakage (P < 0.05). Transplantation with exogenous pericytes protected vascular reactivity and barrier function via microvessel colonization (P < 0.05). Cx43 knockout in either pericytes or VECs reduced pericyte colonization in microvessels (P < 0.05). Additionally, PCMVs transferred miR-145 and miR-132 to VSMCs and VECs, respectively, exerting a protective effect on vascular reactivity and barrier function after sepsis (P < 0.05). miR-145 primarily improved the contractile response of VSMCs by activating the sphingosine kinase 2 (Sphk2)/sphingosine-1-phosphate receptor (S1PR)1/phosphorylation of myosin light chain 20 pathway, whereas miR-132 effectively improved the barrier function of VECs by activating the Sphk2/S1PR2/zonula occludens-1 and vascular endothelial-cadherin pathways. CONCLUSIONS Pericytes are protective against sepsis through regulating vascular reactivity and barrier function. Possible mechanisms include both direct colonization of microvasculature and secretion of PCMVs.
Collapse
Affiliation(s)
- Zi-Sen Zhang
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Yi-Yan Liu
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Shuang-Shuang He
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Dai-Qin Bao
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Hong-Chen Wang
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Jie Zhang
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Xiao-Yong Peng
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Jia-Tao Zang
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Yu Zhu
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Yue Wu
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Qing-Hui Li
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Tao Li
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Liang-Ming Liu
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042 China
| |
Collapse
|
2
|
Alvino VV, Mohammed KAK, Gu Y, Madeddu P. Approaches for the isolation and long-term expansion of pericytes from human and animal tissues. Front Cardiovasc Med 2023; 9:1095141. [PMID: 36704463 PMCID: PMC9873410 DOI: 10.3389/fcvm.2022.1095141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Pericytes surround capillaries in every organ of the human body. They are also present around the vasa vasorum, the small blood vessels that supply the walls of larger arteries and veins. The clinical interest in pericytes is rapidly growing, with the recognition of their crucial roles in controlling vascular function and possible therapeutic applications in regenerative medicine. Nonetheless, discrepancies in methods used to define, isolate, and expand pericytes are common and may affect reproducibility. Separating pure pericyte preparations from the continuum of perivascular mesenchymal cells is challenging. Moreover, variations in functional behavior and antigenic phenotype in response to environmental stimuli make it difficult to formulate an unequivocal definition of bona fide pericytes. Very few attempts were made to develop pericytes as a clinical-grade product. Therefore, this review is devoted to appraising current methodologies' pros and cons and proposing standardization and harmonization improvements. We highlight the importance of developing upgraded protocols to create therapeutic pericyte products according to the regulatory guidelines for clinical manufacturing. Finally, we describe how integrating RNA-seq techniques with single-cell spatial analysis, and functional assays may help realize the full potential of pericytes in health, disease, and tissue repair.
Collapse
Affiliation(s)
| | - Khaled Abdelsattar Kassem Mohammed
- Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
- Department of Cardiothoracic Surgery, Faculty of Medicine, Assiut University, Asyut, Egypt
| | - Yue Gu
- Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Paolo Madeddu
- Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
3
|
He S, Zhang Z, Peng X, Wu Y, Zhu Y, Wang L, Zhou H, Li T, Liu L. The protective effect of pericytes on vascular permeability after hemorrhagic shock and their relationship with Cx43. Front Physiol 2022; 13:948541. [PMID: 36262250 PMCID: PMC9576106 DOI: 10.3389/fphys.2022.948541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular hyperpermeability is a complication of hemorrhagic shock. Pericytes (PCs) are a group of mural cells surrounded by microvessels that are located on the basolateral side of the endothelium. Previous studies have shown that damage to PCs contributes to the occurrence of many diseases such as diabetic retinopathy and myocardial infarction. Whether PCs can protect the vascular barrier function following hemorrhagic shock and the underlying mechanisms are unknown. A hemorrhagic shock rat model, Cx43 vascular endothelial cell (VEC)-specific knockdown mice, and VECs were used to investigate the role of PCs in vascular barrier function and their relationship with Cx43. The results showed that following hemorrhagic shock, the number of PCs in the microvessels was significantly decreased and was negatively associated with an increase in pulmonary and mesenteric vascular permeability. Exogenous infusion of PCs (106 cells per rat) colonized the microvessels and improved pulmonary and mesenteric vascular barrier function. Upregulation of Cx43 in PCs significantly increased the number of PCs colonizing the pulmonary vessels. In contrast, downregulation of Cx43 expression in PCs or knockout of Cx43 in VECs (Cx43 KO mice) significantly reduced PC colonization in pulmonary vessels in vivo and reduced direct contact formation between PCs and VECs in vitro. It has been suggested that PCs have an important protective effect on vascular barrier function in pulmonary and peripheral vessels following hemorrhagic shock. Cx43 plays an important role in the colonization of exogenous PCs in the microvessels. This finding provides a potential new shock treatment measure.
Collapse
Affiliation(s)
- Shuangshuang He
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department, Army Medical Center, Army Medical University, Chongqing, China
- Department of Pharmacy, Army Medical Center, Army Medical University, Chongqing, China
| | - Zisen Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department, Army Medical Center, Army Medical University, Chongqing, China
| | - Xiaoyong Peng
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department, Army Medical Center, Army Medical University, Chongqing, China
| | - Yue Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department, Army Medical Center, Army Medical University, Chongqing, China
| | - Yu Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department, Army Medical Center, Army Medical University, Chongqing, China
| | - Li Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department, Army Medical Center, Army Medical University, Chongqing, China
| | - Henan Zhou
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department, Army Medical Center, Army Medical University, Chongqing, China
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department, Army Medical Center, Army Medical University, Chongqing, China
- *Correspondence: Tao Li, ; Liangming Liu,
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department, Army Medical Center, Army Medical University, Chongqing, China
- *Correspondence: Tao Li, ; Liangming Liu,
| |
Collapse
|
4
|
Zhou H, Zheng D, Wang H, Wu Y, Peng X, Li Q, Li T, Liu L. The protective effects of pericyte-derived microvesicles on vascular endothelial functions via CTGF delivery in sepsis. Cell Commun Signal 2021; 19:115. [PMID: 34784912 PMCID: PMC8594111 DOI: 10.1186/s12964-021-00795-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/16/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND It is well known that sepsis is a prevalent severe disease caused by infection and the treatment strategies are limited. Recently pericyte-derived microvesicles (PMVs) were confirmed to be therapeutic in many diseases, whether PMVs can protect vascular endothelial cell (VEC) injury is unknown. METHODS Pericytes were extracted from the retina of newly weaned rats, and PMVs were collected after starvation and characterized by flow-cytometry and transmission electron microscopy. First, the effect of PMVs on pulmonary vascular function in septic rats was measured via intravenous administration with HE staining, immunofluorescence, and Elisa analysis. Then, PMVs were co-incubated with VECs in the presence of lipopolysaccharide (LPS), and observed the protective effect of PMVs on VECs. Next, the proteomic analysis and further Gene Ontology (GO) enrichment analysis were performed to analyze the therapeutic mechanism of PMVs, and the angiogenesis-related protein CTGF was highly expressed in PMVs. Finally, by CTGF upregulation and downregulation in PMV, the role of PMV-carried CTGF was investigated. RESULTS PMVs restored the proliferation and angiogenesis ability of pulmonary VECs, and alleviated pulmonary vascular leakage in septic rats and LPS-stimulated VECs. Further study showed that PMVs delivered CTGF to VECs, and subsequently activated ERK1/2, and increased the phosphorylation of STAT3, thereby improving the function of VECs. The further study found CD44 mediated the absorption and internalization of PMVs to VECs, the anti-CD44 antibody inhibited the protective effect of PMVs. CONCLUSIONS PMVs may delivery CTGF to VECs, and promote the proliferation and angiogenesis ability by activating the CTGF-ERK1/2-STAT3 axis, thereby protecting pulmonary vascular function in sepsis. The therapeutic effect of PMVs was highly related to CD44-mediated absorption. Video Abstract.
Collapse
Affiliation(s)
- Henan Zhou
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Army Medical Center of PLA, Daping Hospital, Army Medical University, No.10th Daping Changjiang Road, Chongqing, 400038 China
| | - Danyang Zheng
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Army Medical Center of PLA, Daping Hospital, Army Medical University, No.10th Daping Changjiang Road, Chongqing, 400038 China
- Intensive Care Unit, General Hospital of Central Theater Command, Wuhan, 430064 China
| | - Hongchen Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Army Medical Center of PLA, Daping Hospital, Army Medical University, No.10th Daping Changjiang Road, Chongqing, 400038 China
| | - Yue Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Army Medical Center of PLA, Daping Hospital, Army Medical University, No.10th Daping Changjiang Road, Chongqing, 400038 China
| | - Xiaoyong Peng
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Army Medical Center of PLA, Daping Hospital, Army Medical University, No.10th Daping Changjiang Road, Chongqing, 400038 China
| | - Qinghui Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Army Medical Center of PLA, Daping Hospital, Army Medical University, No.10th Daping Changjiang Road, Chongqing, 400038 China
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Army Medical Center of PLA, Daping Hospital, Army Medical University, No.10th Daping Changjiang Road, Chongqing, 400038 China
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Army Medical Center of PLA, Daping Hospital, Army Medical University, No.10th Daping Changjiang Road, Chongqing, 400038 China
| |
Collapse
|
5
|
Pericytes of Indirect Contact Coculture Decrease Integrity of Inner Blood-Retina Barrier Model In Vitro by Upgrading MMP-2/9 Activity. DISEASE MARKERS 2021; 2021:7124835. [PMID: 34630739 PMCID: PMC8494570 DOI: 10.1155/2021/7124835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/28/2021] [Indexed: 12/11/2022]
Abstract
Inner blood-retina barrier (iBRB) is primarily formed of retinal microvascular endothelial cells (ECs) with tight junctions, which are surrounded and supported by retinal microvascular pericytes (RMPs) and basement membrane. Pericytes are believed to be critically involved in the physiology and pathology of iBRB. However, the underlying mechanism remains to be fully elucidated. We developed a novel in vitro iBRB model which was composed of primary cultures of rat retinal ECs and RMPs based on Transwell system. We tested the involvement of pericytes in the migration and invasion of ECs, examined the expression and activity of matrix metalloproteinase- (MMP-) 2/MMP-9 in the culture, evaluated the TEER and permeability of iBRB, and assessed the expression of ZO-1, occludin, claudin-5, and VE-cadherin of endothelial junctions. We found that RMPs with indirect contact of ECs can increase the expression of MMP-2 and upgrade the activity of MMP-2/9 in the coculture, which subsequently decreased TJ protein abundance of ZO-1 and occludin in ECs, promoted the migration of ECs, and finally reduced the integrity of iBRB. Taken together, our data show that RMP relative location with ECs is involved in the integrity of iBRB via MMP-2/9 and has important implications for treating diabetic retinopathy and other retinal disorders involving iBRB dysfunction.
Collapse
|
6
|
Hørlyck S, Cai C, Helms HCC, Lauritzen M, Brodin B. ATP induces contraction of cultured brain capillary pericytes via activation of P2Y-type purinergic receptors. Am J Physiol Heart Circ Physiol 2020; 320:H699-H712. [PMID: 33306443 DOI: 10.1152/ajpheart.00560.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Brain capillary pericytes have been suggested to play a role in the regulation of cerebral blood flow under physiological and pathophysiological conditions. ATP has been shown to cause constriction of capillaries under ischemic conditions and suggested to be involved in the "no-reflow" phenomenon. To investigate the effects of extracellular ATP on pericyte cell contraction, we studied purinergic receptor activation of cultured bovine brain capillary pericytes. We measured intracellular Ca2+ concentration ([Ca2+]i) responses to purinergic agonists with the fluorescent indicators fura-2 and Cal-520 and estimated contraction of pericytes as relative change in cell area, using real-time confocal imaging. Addition of ATP caused an increase in cytosolic calcium and contraction of the brain capillary pericytes, both reversible and inhibited by the purinergic receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS). Furthermore, we demonstrated that ATP-induced contraction could be eliminated by intracellular calcium chelation with BAPTA, indicating that the contraction was mediated via purinergic P2-type receptor-mediated [Ca2+]i signaling. ATP stimulation induced inositol triphosphate signaling, consistent with the notion of P2Y receptor activation. Receptor profiling studies demonstrated the presence of P2Y1 and P2Y2 receptors, using ATP, UTP, ADP, and the subtype specific agonists MRS2365 (P2Y1) and 2-thio-UTP (P2Y2). Addition of specific P2X agonists only caused an [Ca2+]i increase at high concentrations, attributed to activation of inositol triphosphate signaling. Our results suggest that contraction of brain capillary pericytes in vitro by activation of P2Y-type purinergic receptors is caused by intracellular calcium release. This adds more mechanistic understanding of the role of pericytes in vessel constriction and points toward P2Y receptors as potential therapeutic targets.NEW & NOTEWORTHY The study concerns brain capillary pericytes, which have been suggested to play a role in the regulation of cerebral blood flow. We show that extracellular ATP causes contraction of primary brain pericytes by stimulation of purinergic receptors and subsequent release of intracellular Ca2+ concentration ([Ca2+]i). The contraction is mainly mediated through activation of P2Y-receptor subtypes, including P2Y1 and P2Y2. These findings add more mechanistic understanding of the role of pericytes in regulation of capillary blood flow. ATP was earlier suggested to be involved in capillary constriction in brain pathologies, and our study gives a detailed account of a part of this important mechanism.
Collapse
Affiliation(s)
- Sofie Hørlyck
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Changsi Cai
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Martin Lauritzen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark
| | - Birger Brodin
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Zhang SS, Hu JQ, Liu XH, Chen LX, Chen H, Guo XH, Huang QB. Role of Moesin Phosphorylation in Retinal Pericyte Migration and Detachment Induced by Advanced Glycation Endproducts. Front Endocrinol (Lausanne) 2020; 11:603450. [PMID: 33312163 PMCID: PMC7708375 DOI: 10.3389/fendo.2020.603450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/19/2020] [Indexed: 01/22/2023] Open
Abstract
Proliferative diabetic retinopathy (PDR) involves persistent, uncontrolled formation of premature blood vessels with reduced number of pericytes. Our previous work showed that advanced glycation endproducts (AGEs) induced angiogenesis in human umbilical vein endothelial cells, mouse retina, and aortic ring, which was associated with moesin phosphorylation. Here we investigated whether moesin phosphorylation may contribute to pericyte detachment and the development of PDR. Primary retinal microvascular pericytes (RMPs) were isolated, purified from weanling rats, and identified by cellular markers α-SMA, PDGFR-β, NG2, and desmin using immunofluorescence microscopy. Effects of AGE-BSA on proliferation and migration of RMPs were examined using CCK-8, wound healing, and transwell assays. Effects on moesin phosphorylation were examined using western blotting. The RMP response to AGE-BSA was also examined when cells expressed the non-phosphorylatable Thr558Ala mutant or phospho-mimicking Thr558Asp mutant of moesin or were treated with ROCK inhibitor Y27632. Colocalization and interaction between CD44, phospho-moesin, and F-actin were observed. Experiments with cultured primary RMPs showed that AGE-BSA inhibited the proliferation, enhanced the migration, and increased moesin phosphorylation in a dose- and time-dependent manner. AGE-BSA also triggered the rearrangement of F-actin and promoted the interaction of CD44 with phospho-moesin in RMPs. These effects were abrogated in cells expressing the non-phosphorylatable moesin mutant and the application of ROCK inhibitor Y27632 attenuated AGE-induced alteration in cultured RMPs by abolishing the phosphorylation of moesin. However, those AGE-induced pathological process occurred in RMPs expressed the phospho-mimicking moesin without AGE-BSA treatment. It is concluded that AGEs could activate ROCK to mediate moesin phosphorylation at Thr558, and resulting phospho-moesin interacts with CD44 to form CD44 cluster, which might stimulate the migration of RMPs and subsequent RMP detachment in microvessel. This pathway may provide new drug targets against immature neovessel formation in PDR.
Collapse
Affiliation(s)
- Shuang-Shuang Zhang
- Guangdong Provincial Key Lab of Shock and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jia-Qing Hu
- Guangdong Provincial Key Lab of Shock and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao-Hui Liu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Li-Xian Chen
- Guangdong Provincial Key Lab of Shock and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hong Chen
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-Hua Guo
- Guangdong Provincial Key Lab of Shock and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qiao-Bing Huang
- Guangdong Provincial Key Lab of Shock and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Trauma Care Center, Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Qiao-Bing Huang,
| |
Collapse
|
8
|
Schmitt BM, Laschke MW, Rössler OG, Huang W, Scheller A, Menger MD, Ampofo E. Nerve/glial antigen (NG) 2 is a crucial regulator of intercellular adhesion molecule (ICAM)-1 expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:57-66. [PMID: 28964848 DOI: 10.1016/j.bbamcr.2017.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/01/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022]
Abstract
The proteoglycan nerve/glial antigen (NG) 2 is expressed on multiple cell types and mediates cell proliferation and migration. However, little is known about its function in gene regulation. In this study, we demonstrate that in pericytes and glioblastoma cells intercellular adhesion molecule (ICAM)-1, an essential protein for leukocyte adhesion and transmigration, underlies a NG2-dependent expression. As shown by flow cytometry, Western blot analysis and quantitative real-time polymerase chain reaction (qRT-PCR), silencing of NG2 in human placenta-derived pericytes increased the expression of ICAM-1. Pathway analyses revealed that this is mediated by extracellular-regulated-kinases (ERK) 1/2 signaling. Moreover, leukocyte adhesion to NG2 siRNA-treated pericytes was significantly enhanced when compared to scrambled (scr) siRNA-treated control cells. In vivo, we detected increased ICAM-1 protein levels in the retina of mice lacking NG2 expression. To exclude that this novel mechanism is pericyte-specific, we additionally analyzed the expression of ICAM-1 in dependency of NG2 in two glioblastoma cell lines. We found that A1207 and M059K cells exhibit an inverse expression pattern of NG2 and ICAM-1. Finally, downregulation of NG2 in A1207 cells significantly increased ICAM-1 expression. Taken together, these findings indicate that NG2 may represent a promising target for the modulation of ICAM-1-mediated immune responses.
Collapse
Affiliation(s)
- Beate M Schmitt
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Oliver G Rössler
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg/Saar, Germany
| | - Wenhui Huang
- Department of Molecular Physiology, CIPMM (Center for Integrative Physiology and Molecular Medicine), Saarland University, 66421 Homburg/Saar, Germany
| | - Anja Scheller
- Department of Molecular Physiology, CIPMM (Center for Integrative Physiology and Molecular Medicine), Saarland University, 66421 Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany.
| |
Collapse
|
9
|
Vitacolonna M, Belharazem D, Hohenberger P, Roessner ED. In-vivo quantification of the revascularization of a human acellular dermis seeded with EPCs and MSCs in co-culture with fibroblasts and pericytes in the dorsal chamber model in pre-irradiated tissue. Cell Tissue Bank 2016; 18:27-43. [PMID: 28004288 DOI: 10.1007/s10561-016-9606-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/08/2016] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Transplantation of a cell-seeded graft may improve wound healing after radiotherapy. However, the survival of the seeded cells depends on a rapid vascularization of the graft. Co-culturing of adult stem cells may be a promising strategy to accelerate the vessel formation inside the graft. Thus, we compared the in vivo angiogenic potency of mesenchymal stem cells (MSC) and endothelial progenitor cells (EPC) using dorsal skinfold chambers and intravital microscopy. MATERIALS AND METHODS Cells were isolated from rat bone marrow and adipose tissue and characterized by immunostaining and flow cytometry. Forty-eight rats received a dorsal skinfold chamber and were divided into 2 main groups, irradiated and non-irradiated. Each of these 2 groups were further subdivided into 4 groups: unseeded matrices, matrices + fibroblasts + pericytes, matrices + fibroblasts + pericytes + MSCs and matrices + fibroblasts + pericytes + EPCs. Vessel densities were quantified semi-automatically using FIJI. RESULTS Fibroblasts + pericytes - seeded matrices showed a significantly higher vascular density in all groups with an exception of non-irradiated rats at day 12 compared to unseeded matrices. Co-seeding of MSCs increased vessel densities in both, irradiated and non-irradiated groups. Co-seeding with EPCs did not result in an increase of vascularization in none of the groups. DISCUSSION We demonstrated that the pre-radiation treatment led to a significant decreased vascularization of the implanted grafts. The augmentation of the matrices with fibroblasts and pericytes in co-culture increased the vascularization compared to the non-seeded matrices. A further significant enhancement of vessel ingrowth into the matrices could be achieved by the co-seeding with MSCs in both, irradiated and non-irradiated groups.
Collapse
Affiliation(s)
- M Vitacolonna
- Division of Surgical Oncology and Thoracic Surgery, Department of Surgery, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - D Belharazem
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - P Hohenberger
- Division of Surgical Oncology and Thoracic Surgery, Department of Surgery, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - E D Roessner
- Division of Surgical Oncology and Thoracic Surgery, Department of Surgery, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
10
|
Bauer PM, Zalis MC, Abdshill H, Deierborg T, Johansson F, Englund-Johansson U. Inflamed In Vitro Retina: Cytotoxic Neuroinflammation and Galectin-3 Expression. PLoS One 2016; 11:e0161723. [PMID: 27612287 PMCID: PMC5017668 DOI: 10.1371/journal.pone.0161723] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/10/2016] [Indexed: 12/20/2022] Open
Abstract
Background Disease progression in retinal neurodegeneration is strongly correlated to immune cell activation, which may have either a neuroprotective or neurotoxic effect. Increased knowledge about the immune response profile and retinal neurodegeneration may lead to candidate targets for treatments. Therefore, we have used the explanted retina as a model to explore the immune response and expression of the immune modulator galectin-3 (Gal-3), induced by the cultivation per se and after additional immune stimulation with lipopolysaccharide (LPS), and how this correlates with retinal neurotoxicity. Methods Post-natal mouse retinas were cultured in a defined medium. One group was stimulated with LPS (100 ng/ml, 24 h). Retinal architecture, apoptotic cell death, and micro- and macroglial activity were studied at the time of cultivation (0 days in vitro (DIV)) and at 3, 4 and 7 DIV using morphological staining, biochemical- and immunohistochemical techniques. Results Our results show that sustained activation of macro- and microglia, characterized by no detectable cytokine release and limited expression of Gal-3, is not further inducing apoptosis additional to the axotomy-induced apoptosis in innermost nuclear layer. An elevated immune response was detected after LPS stimulation, as demonstrated primarily by release of immune mediators (i.e. interleukin 2 (IL-2), IL-6, KC/GRO (also known as CLCX1) and tumour necrosis factor-α (TNF-α)), increased numbers of microglia displaying morphologies of late activation stages as well as Gal-3 expression. This was accompanied with increased apoptosis in the two additional nuclear layers, and damage to retinal gross architecture. Conclusion We demonstrate that an immune response characterized by sustained and increased release of cytokines, along with an increase in Gal-3 expression, is accompanied by significant increased neurotoxicity in the explanted retina. Further investigations using the current setting may lead to increased understanding on the mechanisms involved in neuronal loss in retinal neurodegenerations.
Collapse
Affiliation(s)
- Patrik Maximilian Bauer
- Dept. of Biology, Sec. Functional Zoology, Lund University, Lund, Sweden
- Dept. Clinical Sciences in Lund, Div. Ophthalmology, Lund University, Lund, Sweden
| | - Marina Castro Zalis
- Dept. Clinical Sciences in Lund, Div. Ophthalmology, Lund University, Lund, Sweden
| | - Hodan Abdshill
- Dept. Clinical Sciences in Lund, Div. Ophthalmology, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Dept. Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Fredrik Johansson
- Dept. of Biology, Sec. Functional Zoology, Lund University, Lund, Sweden
| | | |
Collapse
|
11
|
Liu Z, Li Q, Cui G, Zhu G, Tang W, Zhao H, Zhang JH, Chen Y, Feng H. Blood-filled cerebrospinal fluid-enhanced pericyte microvasculature contraction in rat retina: A novel in vitro study of subarachnoid hemorrhage. Exp Ther Med 2016; 12:2411-2416. [PMID: 27698742 PMCID: PMC5038855 DOI: 10.3892/etm.2016.3644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/10/2016] [Indexed: 12/14/2022] Open
Abstract
Previously, it was widely accepted that the delayed ischemic injury and poor clinical outcome following subarachnoid hemorrhage (SAH) was caused by cerebral vasospasm. This classical theory was challenged by a clazosentan clinical trial, which failed to improve patient outcome, despite reversing angiographic vasospasm. One possible explanation for the results of this trial is the changes in microcirculation following SAH, particularly in pericytes, which are the primary cell type controlling microcirculation in the brain parenchyma. However, as a result of technical limitations and the lack of suitable models, there was no direct evidence of microvessel dysfunction following SAH. In the present study, whole-mount retinal microvasculature has been introduced to study microcirculation in the brain following experimental SAH in vitro. Artificial blood-filled cerebrospinal fluid (BSCF) was applied to the retinal microvasculature to test the hypothesis that the presence of subarachnoid blood affects the contractile properties of the pericytes containing cerebral microcirculation during the early phase of SAH. It was observed that BCSF induced retina microvessel contraction and that this contraction could be resolved by BCSF wash-out. Furthermore, BCSF application accelerated pericyte-populated collagen gel contraction and increased the expression of α-smooth muscle actin. In addition, BCSF induced an influx of calcium in cultured retinal pericytes. In conclusion, the present study demonstrates increased contractility of retinal microvessels and pericytes in the presence of BCSF in vitro. These findings suggest that pericyte contraction and microvascular dysfunction is induced following SAH, which could lead to greater susceptibility to SAH-induced ischemia.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Qiang Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Gaoyu Cui
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Gang Zhu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Weihua Tang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Hengli Zhao
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - John H Zhang
- Department of Anesthesiology, Neurosurgery and Physiology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
12
|
Ahl M, Avdic U, Skoug C, Ali I, Chugh D, Johansson UE, Ekdahl CT. Immune response in the eye following epileptic seizures. J Neuroinflammation 2016; 13:155. [PMID: 27346214 PMCID: PMC4922060 DOI: 10.1186/s12974-016-0618-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 06/08/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Epileptic seizures are associated with an immune response in the brain. However, it is not known whether it can extend to remote areas of the brain, such as the eyes. Hence, we investigated whether epileptic seizures induce inflammation in the retina. METHODS Adult rats underwent electrically induced temporal status epilepticus, and the eyes were studied 6 h, 1, and 7 weeks later with biochemical and immunohistochemical analyses. An additional group of animals received CX3CR1 antibody intracerebroventricularly for 6 weeks after status epilepticus. RESULTS Biochemical analyses and immunohistochemistry revealed no increased cell death and unaltered expression of several immune-related cytokines and chemokines as well as no microglial activation, 6 h post-status epilepticus compared to non-stimulated controls. At 1 week, again, retinal cytoarchitecture appeared normal and there was no cell death or micro- or macroglial reaction, apart from a small decrease in interleukin-10. However, at 7 weeks, even if the cytoarchitecture remained normal and no ongoing cell death was detected, the numbers of microglia were increased ipsi- and contralateral to the epileptic focus. The microglia remained within the synaptic layers but often in clusters and with more processes extending into the outer nuclear layer. Morphological analyses revealed a decrease in surveying and an increase in activated microglia. In addition, increased levels of the chemokine KC/GRO and cytokine interleukin-1β were found. Furthermore, macroglial activation was noted in the inner retina. No alterations in numbers of phagocytic cells, infiltrating macrophages, or vascular pericytes were observed. Post-synaptic density-95 cluster intensity was reduced in the outer nuclear layer, reflecting seizure-induced synaptic changes without disrupted cytoarchitecture in areas with increased microglial activation. The retinal gliosis was decreased by a CX3CR1 immune modulation known to reduce gliosis within epileptic foci, suggesting a common immunological reaction. CONCLUSIONS Our results are the first evidence that epileptic seizures induce an immune response in the retina. It has a potential to become a novel non-invasive tool for detecting brain inflammation through the eyes.
Collapse
Affiliation(s)
- Matilda Ahl
- Inflammation and Stem Cell Therapy Group, Division of Clinical Neurophysiology, Lund University, BMC A11, Sölvegatan 17, SE-221 84, Lund, Sweden.,Lund Epilepsy Center, Lund University, SE-221 85, Lund, Sweden
| | - Una Avdic
- Inflammation and Stem Cell Therapy Group, Division of Clinical Neurophysiology, Lund University, BMC A11, Sölvegatan 17, SE-221 84, Lund, Sweden.,Lund Epilepsy Center, Lund University, SE-221 85, Lund, Sweden
| | - Cecilia Skoug
- Division of Ophthalmology, Department of Clinical Sciences, Lund University, SE-221 85, Lund, Sweden
| | - Idrish Ali
- Inflammation and Stem Cell Therapy Group, Division of Clinical Neurophysiology, Lund University, BMC A11, Sölvegatan 17, SE-221 84, Lund, Sweden.,Lund Epilepsy Center, Lund University, SE-221 85, Lund, Sweden
| | - Deepti Chugh
- Inflammation and Stem Cell Therapy Group, Division of Clinical Neurophysiology, Lund University, BMC A11, Sölvegatan 17, SE-221 84, Lund, Sweden.,Lund Epilepsy Center, Lund University, SE-221 85, Lund, Sweden
| | - Ulrica Englund Johansson
- Division of Ophthalmology, Department of Clinical Sciences, Lund University, SE-221 85, Lund, Sweden
| | - Christine T Ekdahl
- Inflammation and Stem Cell Therapy Group, Division of Clinical Neurophysiology, Lund University, BMC A11, Sölvegatan 17, SE-221 84, Lund, Sweden. .,Lund Epilepsy Center, Lund University, SE-221 85, Lund, Sweden.
| |
Collapse
|
13
|
Apelin Protects Primary Rat Retinal Pericytes from Chemical Hypoxia-Induced Apoptosis. J Ophthalmol 2015; 2015:186946. [PMID: 26491547 PMCID: PMC4600528 DOI: 10.1155/2015/186946] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/24/2015] [Accepted: 02/10/2015] [Indexed: 12/31/2022] Open
Abstract
Pericytes are a population of cells that participate in normal vessel architecture and regulate permeability. Apelin, as the endogenous ligand of G protein-coupled receptor APJ, participates in a number of physiological and pathological processes. To date, the effect of apelin on pericyte is not clear. Our study aimed to investigate the potential protection mechanisms of apelin, with regard to primary rat retinal pericytes under hypoxia. Immunofluorescence staining revealed that pericytes colocalized with APJ in the fibrovascular membranes dissected from proliferative diabetic retinopathy patients. In the in vitro studies, we first demonstrated that the expression of apelin/APJ was upregulated in pericytes under hypoxia, and apelin increased pericytes proliferation and migration. Moreover, knockdown of apelin in pericyte was achieved via lentivirus-mediated RNA interference. After the inhibition of apelin, pericytes proliferation was inhibited significantly in hypoxia culture condition. Furthermore, exogenous recombinant apelin effectively prevented hypoxia-induced apoptosis through downregulating active-caspase 3 expression and increasing the ratio of B cell lymphoma-2 (Bcl-2)/Bcl-2 associated X protein (Bax) in pericytes. These results suggest that apelin suppressed hypoxia-induced pericytes injury, which indicated that apelin could be a potential therapeutic target for retinal angiogenic diseases.
Collapse
|
14
|
Abstract
Chronic rejection of transplanted organs remains the main obstacle in the long-term success of organ transplantation. Thus, there is a persistent quest for development of antichronic rejection therapies and identification of novel molecular and cellular targets. One of the potential targets is the pericytes, the mural cells of microvessels, which regulate microvascular permeability, development, and maturation by controlling endothelial cell functions and regulating tissue fibrosis and inflammatory response. In this review, we discuss the potential of targeting pericytes in the development of microvasular dysfunction and the molecular pathways involved in regulation of pericyte activities for antichronic rejection intervention.
Collapse
|