1
|
Metabolic regulation and dysregulation of endothelial small conductance calcium activated potassium channels. Eur J Cell Biol 2022; 101:151208. [DOI: 10.1016/j.ejcb.2022.151208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
|
2
|
Wilson C, Zhang X, Lee MD, MacDonald M, Heathcote HR, Alorfi NMN, Buckley C, Dolan S, McCarron JG. Disrupted endothelial cell heterogeneity and network organization impair vascular function in prediabetic obesity. Metabolism 2020; 111:154340. [PMID: 32791171 PMCID: PMC7538703 DOI: 10.1016/j.metabol.2020.154340] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Obesity is a major risk factor for diabetes and cardiovascular diseases such as hypertension, heart failure, and stroke. Impaired endothelial function occurs in the earliest stages of obesity and underlies vascular alterations that give rise to cardiovascular disease. However, the mechanisms that link weight gain to endothelial dysfunction are ill-defined. Increasing evidence suggests that endothelial cells are not a population of uniform cells but are highly heterogeneous and are organized as a communicating multicellular network that controls vascular function. PURPOSE To investigate the hypothesis that disrupted endothelial heterogeneity and network-level organization contribute to impaired vascular reactivity in obesity. METHODS AND RESULTS To study obesity-related vascular function without complications associated with diabetes, a state of prediabetic obesity was induced in rats. Small artery diameter recordings confirmed nitric-oxide mediated vasodilator responses were dependent on increases in endothelial calcium levels and were impaired in obese animals. Single-photon imaging revealed a linear relationship between blood vessel relaxation and population-wide calcium responses. Obesity did not alter the slope of this relationship, but impaired calcium responses in the endothelial cell network. The network comprised structural and functional components. The structural architecture, a hexagonal lattice network of connected cells, was unchanged in obesity. The functional network contained sub-populations of clustered specialized agonist-sensing cells from which signals were communicated through the network. In obesity there were fewer but larger clusters of sensory cells and communication path lengths between clusters increased. Communication between neighboring cells was unaltered in obesity. Altered network organization resulted in impaired, population-level calcium signaling and deficient endothelial control of vascular tone. CONCLUSIONS The distribution of cells in the endothelial network is critical in determining overall vascular response. Altered cell heterogeneity and arrangement in obesity decreases endothelial function and provides a novel framework for understanding compromised endothelial function in cardiovascular disease.
Collapse
Affiliation(s)
- Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - Xun Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Matthew D Lee
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Margaret MacDonald
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Helen R Heathcote
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Nasser M N Alorfi
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Charlotte Buckley
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Sharron Dolan
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
3
|
Endothelium-Dependent Hyperpolarization (EDH) in Diabetes: Mechanistic Insights and Therapeutic Implications. Int J Mol Sci 2019; 20:ijms20153737. [PMID: 31370156 PMCID: PMC6695796 DOI: 10.3390/ijms20153737] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus is one of the major risk factors for cardiovascular disease and is an important health issue worldwide. Long-term diabetes causes endothelial dysfunction, which in turn leads to diabetic vascular complications. Endothelium-derived nitric oxide is a major vasodilator in large-size vessels, and the hyperpolarization of vascular smooth muscle cells mediated by the endothelium plays a central role in agonist-mediated and flow-mediated vasodilation in resistance-size vessels. Although the mechanisms underlying diabetic vascular complications are multifactorial and complex, impairment of endothelium-dependent hyperpolarization (EDH) of vascular smooth muscle cells would contribute at least partly to the initiation and progression of microvascular complications of diabetes. In this review, we present the current knowledge about the pathophysiology and underlying mechanisms of impaired EDH in diabetes in animals and humans. We also discuss potential therapeutic approaches aimed at the prevention and restoration of EDH in diabetes.
Collapse
|
4
|
Hakim MA, Buchholz JN, Behringer EJ. Electrical dynamics of isolated cerebral and skeletal muscle endothelial tubes: Differential roles of G-protein-coupled receptors and K + channels. Pharmacol Res Perspect 2018; 6:e00391. [PMID: 29636977 PMCID: PMC5889193 DOI: 10.1002/prp2.391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/12/2018] [Indexed: 12/13/2022] Open
Abstract
Electrical dynamics of freshly isolated cerebral endothelium have not been determined independently of perivascular nerves and smooth muscle. We tested the hypothesis that endothelium of cerebral and skeletal muscle arteries differentially utilizes purinergic and muscarinic signaling pathways to activate endothelium‐derived hyperpolarization. Changes in membrane potential (Vm) were recorded in intact endothelial tubes freshly isolated from posterior cerebral and superior epigastric arteries of male and female C57BL/6 mice (age: 3‐8 months). Vm was measured in response to activation of purinergic (P2Y) and muscarinic (M3) receptors in addition to small‐ and intermediate‐conductance Ca2+‐activated K+ (SKCa/IKCa) and inward rectifying K+ (KIR) channels using ATP (100 μmol·L−1), acetylcholine (ACh; 10 μmol·L−1), NS309 (0.01‐10 μmol·L−1), and 15 mmol·L−1 KCl, respectively. Intercellular coupling was demonstrated via transfer of propidium iodide dye and electrical current (±0.5‐3 nA) through gap junctions. With similarities observed across gender, peak hyperpolarization to ATP and ACh in skeletal muscle endothelial tubes was ~twofold and ~sevenfold higher, respectively, vs cerebral endothelial tubes, whereas responses to NS309 were similar (from resting Vm ~−30 mV to maximum ~−80 mV). Hyperpolarization (~8 mV) occurred during 15 mmol·L−1 KCl treatment in cerebral but not skeletal muscle endothelial tubes. Despite weaker hyperpolarization during endothelial GPCR stimulation in cerebral vs skeletal muscle endothelium, the capability for robust SKCa/IKCa activity is preserved across brain and skeletal muscle. As vascular reactivity decreases with aging and cardiovascular disease, endothelial K+ channel activity may be calibrated to restore blood flow to respective organs regardless of gender.
Collapse
Affiliation(s)
- Md A Hakim
- Basic Sciences Loma Linda University Loma Linda CA USA
| | | | | |
Collapse
|
5
|
Behringer EJ. Calcium and electrical signaling in arterial endothelial tubes: New insights into cellular physiology and cardiovascular function. Microcirculation 2018; 24. [PMID: 27801542 DOI: 10.1111/micc.12328] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/25/2016] [Indexed: 12/23/2022]
Abstract
The integral role of the endothelium during the coordination of blood flow throughout vascular resistance networks has been recognized for several decades now. Early examination of the distinct anatomy and physiology of the endothelium as a signaling conduit along the vascular wall has prompted development and application of an intact endothelial "tube" study model isolated from rodent skeletal muscle resistance arteries. Vasodilatory signals such as increased endothelial cell (EC) Ca2+ ([Ca2+ ]i ) and hyperpolarization take place in single ECs while shared between electrically coupled ECs through gap junctions up to distances of millimeters (≥2 mm). The small- and intermediate-conductance Ca2+ activated K+ (SKCa /IKCa or KCa 2.3/KCa 3.1) channels function at the interface of Ca2+ signaling and hyperpolarization; a bidirectional relationship whereby increases in [Ca2+ ]i activate SKCa /IKCa channels to produce hyperpolarization and vice versa. Further, the spatial domain of hyperpolarization among electrically coupled ECs can be finely tuned via incremental modulation of SKCa /IKCa channels to balance the strength of local and conducted electrical signals underlying vasomotor activity. Multifunctional properties of the voltage-insensitive SKCa /IKCa channels of resistance artery endothelium may be employed for therapy during the aging process and development of vascular disease.
Collapse
Affiliation(s)
- Erik J Behringer
- Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
6
|
Behringer EJ, Segal SS. Impact of Aging on Calcium Signaling and Membrane Potential in Endothelium of Resistance Arteries: A Role for Mitochondria. J Gerontol A Biol Sci Med Sci 2017; 72:1627-1637. [PMID: 28510636 DOI: 10.1093/gerona/glx079] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/21/2017] [Indexed: 12/20/2022] Open
Abstract
Impaired blood flow to peripheral tissues during advanced age is associated with endothelial dysfunction and diminished bioavailability of nitric oxide (NO). However, it is unknown whether aging impacts coupling between intracellular calcium ([Ca2+]i) signaling and small- and intermediate K+ channel (SKCa/IKCa) activity during endothelium-derived hyperpolarization (EDH), a signaling pathway integral to dilation of the resistance vasculature. To address the potential impact of aging on EDH, Fura-2 photometry and intracellular recording were applied to evaluate [Ca2+]i and membrane potential of intact endothelial tubes (width, 60 µm; length, 1-3 mm) freshly isolated from superior epigastric arteries of young (4-6 mo) and old (24-26 mo) male C57BL/6 mice. In response to acetylcholine, intracellular release of Ca2+ from the endoplasmic reticulum (ER) was enhanced with aging. Further, treatment with the mitochondrial uncoupler FCCP evoked a significant increase of [Ca2+]i with membrane hyperpolarization in an SKCa/IKCa-dependent manner in the endothelium of old but not young mice. We conclude that the ability of resistance artery endothelium to release Ca2+ from intracellular stores (ie, ER and mitochondria) and hyperpolarize Vm via SKCa/IKCa activation is augmented as compensation for reduced NO bioavailability during advanced age.
Collapse
Affiliation(s)
- Erik J Behringer
- Department of Basic Sciences, Loma Linda University, California.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia
| | - Steven S Segal
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia.,Dalton Cardiovascular Research Center, Columbia, Missouri
| |
Collapse
|
7
|
|
8
|
Tajbakhsh S, Aliakbari K, Hussey DJ, Lower KM, Donato AJ, Sokoya EM. Differential Telomere Shortening in Blood versus Arteries in an Animal Model of Type 2 Diabetes. J Diabetes Res 2015; 2015:153829. [PMID: 26346823 PMCID: PMC4545169 DOI: 10.1155/2015/153829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/20/2015] [Accepted: 07/26/2015] [Indexed: 11/18/2022] Open
Abstract
Vascular dysfunction is an early feature of diabetic vascular disease, due to increased oxidative stress and reduced nitric oxide (NO) bioavailability. This can lead to endothelial cell senescence and clinical complications such as stroke. Cells can become senescent by shortened telomeres and oxidative stress is known to accelerate telomere attrition. Sirtuin 1 (SIRT1) has been linked to vascular health by upregulating endothelial nitric oxide synthase (eNOS), suppressing oxidative stress, and attenuating telomere shortening. Accelerated leukocyte telomere attrition appears to be a feature of clinical type 2 diabetes (T2D) and therefore the telomere system may be a potential therapeutic target in preventing vascular complications of T2D. However the effect of T2D on vascular telomere length is currently unknown. We hypothesized that T2D gives rise to shortened leukocyte and vascular telomeres alongside reduced vascular SIRT1 expression and increased oxidative stress. Accelerated telomere attrition was observed in circulating leukocytes, but not arteries, in T2D compared to control rats. T2D rats had blunted arterial SIRT1 and eNOS protein expression levels which were associated with reduced antioxidant defense capacity. Our findings suggest that hyperglycemia and a deficit in vascular SIRT1 per se are not sufficient to prematurely shorten vascular telomeres.
Collapse
Affiliation(s)
- Samira Tajbakhsh
- Discipline of Biotechnology, School of Medicine, Flinders University, Bedford Park, SA 5042, Australia
| | - Kamelya Aliakbari
- Discipline of Biotechnology, School of Medicine, Flinders University, Bedford Park, SA 5042, Australia
| | - Damian J. Hussey
- Discipline of Surgery, School of Medicine, Flinders University, Bedford Park, SA 5042, Australia
| | - Karen M. Lower
- Discipline of Haematology, School of Medicine, Flinders University, Bedford Park, SA 5042, Australia
| | - Anthony J. Donato
- Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Elke M. Sokoya
- Discipline of Human Physiology, School of Medicine, Flinders University, Bedford Park, SA 5042, Australia
- *Elke M. Sokoya:
| |
Collapse
|
9
|
Frisbee JC, Goodwill AG, Frisbee SJ, Butcher JT, Brock RW, Olfert IM, DeVallance ER, Chantler PD. Distinct temporal phases of microvascular rarefaction in skeletal muscle of obese Zucker rats. Am J Physiol Heart Circ Physiol 2014; 307:H1714-28. [PMID: 25305181 DOI: 10.1152/ajpheart.00605.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Evolution of metabolic syndrome is associated with a progressive reduction in skeletal muscle microvessel density, known as rarefaction. Although contributing to impairments to mass transport and exchange, the temporal development of rarefaction and the contributing mechanisms that lead to microvessel loss are both unclear and critical areas for investigation. Although previous work suggests that rarefaction severity in obese Zucker rats (OZR) is predicted by the chronic loss of vascular nitric oxide (NO) bioavailability, we have determined that this hides a biphasic development of rarefaction, with both early and late components. Although the total extent of rarefaction was well predicted by the loss in NO bioavailability, the early pulse of rarefaction developed before a loss of NO bioavailability and was associated with altered venular function (increased leukocyte adhesion/rolling), and early elevation in oxidant stress, TNF-α levels, and the vascular production of thromboxane A2 (TxA2). Chronic inhibition of TNF-α blunted the severity of rarefaction and also reduced vascular oxidant stress and TxA2 production. Chronic blockade of the actions of TxA2 also blunted rarefaction, but did not impact oxidant stress or inflammation, suggesting that TxA2 is a downstream outcome of elevated reactive oxygen species and inflammation. If chronic blockade of TxA2 is terminated, microvascular rarefaction in OZR skeletal muscle resumes, but at a reduced rate despite low NO bioavailability. These results suggest that therapeutic interventions against inflammation and TxA2 under conditions where metabolic syndrome severity is moderate or mild may prevent the development of a condition of accelerated microvessel loss with metabolic syndrome.
Collapse
Affiliation(s)
- Jefferson C Frisbee
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Adam G Goodwill
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Stephanie J Frisbee
- Department of Health Policy, Management and Leadership, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Joshua T Butcher
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Robert W Brock
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - I Mark Olfert
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, West Virginia; and Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Evan R DeVallance
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, West Virginia; and Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Paul D Chantler
- Division of Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, West Virginia; and Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| |
Collapse
|