1
|
Cao W, Huang C, Zhou X, Zhou S, Deng Y. Engineering two-component systems for advanced biosensing: From architecture to applications in biotechnology. Biotechnol Adv 2024; 75:108404. [PMID: 39002783 DOI: 10.1016/j.biotechadv.2024.108404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/05/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
Two-component systems (TCSs) are prevalent signaling pathways in bacteria. These systems mediate phosphotransfer between histidine kinase and a response regulator, facilitating responses to diverse physical, chemical, and biological stimuli. Advancements in synthetic and structural biology have repurposed TCSs for applications in monitoring heavy metals, disease-associated biomarkers, and the production of bioproducts. However, the utility of many TCS biosensors is hindered by undesired performance due to the lack of effective engineering methods. Here, we briefly discuss the architectures and regulatory mechanisms of TCSs. We also summarize the recent advancements in TCS engineering by experimental or computational-based methods to fine-tune the biosensor functional parameters, such as response curve and specificity. Engineered TCSs have great potential in the medical, environmental, and biorefinery fields, demonstrating a crucial role in a wide area of biotechnology.
Collapse
Affiliation(s)
- Wenyan Cao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Chao Huang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xuan Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Shenghu Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Yu Deng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Woolley CA, Sutton JM, Wand ME. Mutations in SilS and CusS/OmpC represent different routes to achieve high level silver ion tolerance in Klebsiella pneumoniae. BMC Microbiol 2022; 22:113. [PMID: 35468722 PMCID: PMC9036812 DOI: 10.1186/s12866-022-02532-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 04/13/2022] [Indexed: 11/28/2022] Open
Abstract
Background Silver ions have potent broad-spectrum antimicrobial activity and are widely incorporated into a variety of products to limit bacterial growth. In Enterobacteriaceae, decreased silver susceptibility has been mapped to two homologous operons; the chromosomally located cus operon and the plasmid based sil operon. Here we characterised the mechanisms and clinical impact of induced silver tolerance in Klebsiella pneumoniae. Results In K. pneumoniae carriage of the sil operon alone does not give elevated silver tolerance. However, when exposed to increasing concentrations of silver nitrate (AgNO3), K. pneumoniae strains which contain the sil operon, will preferentially mutate SilS, resulting in overexpression of the genes encoding the RND efflux pump silCBA. Those strains which do not carry the sil operon also adapt upon exposure to increasing silver concentrations through mutations in another two-component regulator CusS. Secondary mutations leading to disruption of the outer membrane porin OmpC were also detected. Both routes result in a high level of silver tolerance with MIC’s of >512 mg/L. When exposed to a high concentration of AgNO3 (400 mg/L), only strains that contained the sil operon were able to survive, again through mutations in SilS. The AgNO3 adapted strains were also resistant to killing by challenge with several clinical and commercial silver containing dressings. Conclusions This study shows that K. pneumoniae has two possible pathways for development of increased silver tolerance but that the sil operon is preferentially mutated. This operon is essential when K. pneumoniae is exposed to high concentrations of silver. The potential clinical impact on wound management is shown by the increased survivability of these adapted strains when exposed to several silver impregnated dressings. This would make infections with these strains more difficult to treat and further limits our therapeutic options. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02532-y.
Collapse
Affiliation(s)
- Charlotte A Woolley
- Technology Development Group, UKHSA, Research and Evaluation, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - J Mark Sutton
- Technology Development Group, UKHSA, Research and Evaluation, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Matthew E Wand
- Technology Development Group, UKHSA, Research and Evaluation, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK.
| |
Collapse
|
3
|
Imelio JA, Trajtenberg F, Buschiazzo A. Allostery and protein plasticity: the keystones for bacterial signaling and regulation. Biophys Rev 2022; 13:943-953. [PMID: 35059019 DOI: 10.1007/s12551-021-00892-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/31/2021] [Indexed: 11/25/2022] Open
Abstract
Bacteria sense intracellular and environmental signals using an array of proteins as antennas. The information is transmitted from such sensory modules to other protein domains that act as output effectors. Sensor and effector can be part of the same polypeptide or instead be separate diffusible proteins that interact specifically. The output effector modules regulate physiologic responses, allowing the cells to adapt to the varying conditions. These biological machineries are known as signal transduction systems (STSs). Despite the captivating architectural diversity exhibited by STS proteins, a universal feature is their allosteric regulation: signal binding at one site modifies the activity at a physically distant site. Allostery requires protein plasticity, precisely encoded within their 3D structures, and implicating programmed molecular motions. This review summarizes how STS proteins connect stimuli to specific responses by exploiting allostery and protein plasticity. Illustrative examples spanning a wide variety of protein folds will focus on one- and two-component systems (TCSs). The former encompass the entire transmission route within a single polypeptide, whereas TCSs have evolved as separate diffusible proteins that interact specifically, sometimes including additional intermediary proteins in the pathway. Irrespective of their structural diversity, STS proteins are able to modulate their own molecular motions, which can be relatively slow, rigid-body movements, all the way to fast fluctuations in the form of macromolecular flexibility, thus spanning a continuous protein dynamics spectrum. In sum, STSs rely on allostery to steer information transmission, going from simple two-state switching to rich multi-state conformational order/disorder transitions.
Collapse
Affiliation(s)
- J A Imelio
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - F Trajtenberg
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - A Buschiazzo
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Department of Microbiology, Institut Pasteur, Paris, France
| |
Collapse
|
4
|
Gushchin I, Aleksenko VA, Orekhov P, Goncharov IM, Nazarenko VV, Semenov O, Remeeva A, Gordeliy V. Nitrate- and Nitrite-Sensing Histidine Kinases: Function, Structure, and Natural Diversity. Int J Mol Sci 2021; 22:5933. [PMID: 34072989 PMCID: PMC8199190 DOI: 10.3390/ijms22115933] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/18/2022] Open
Abstract
Under anaerobic conditions, bacteria may utilize nitrates and nitrites as electron acceptors. Sensitivity to nitrous compounds is achieved via several mechanisms, some of which rely on sensor histidine kinases (HKs). The best studied nitrate- and nitrite-sensing HKs (NSHKs) are NarQ and NarX from Escherichia coli. Here, we review the function of NSHKs, analyze their natural diversity, and describe the available structural information. In particular, we show that around 6000 different NSHK sequences forming several distinct clusters may now be found in genomic databases, comprising mostly the genes from Beta- and Gammaproteobacteria as well as from Bacteroidetes and Chloroflexi, including those from anaerobic ammonia oxidation (annamox) communities. We show that the architecture of NSHKs is mostly conserved, although proteins from Bacteroidetes lack the HAMP and GAF-like domains yet sometimes have PAS. We reconcile the variation of NSHK sequences with atomistic models and pinpoint the structural elements important for signal transduction from the sensor domain to the catalytic module over the transmembrane and cytoplasmic regions spanning more than 200 Å.
Collapse
Affiliation(s)
- Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Vladimir A. Aleksenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Philipp Orekhov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ivan M. Goncharov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Vera V. Nazarenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Oleg Semenov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
| | - Valentin Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (V.A.A.); (P.O.); (I.M.G.); (V.V.N.); (O.S.); (A.R.)
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
| |
Collapse
|
5
|
Phosphatase-defective DevS sensor kinase mutants permit constitutive expression of DevR-regulated dormancy genes in Mycobacterium tuberculosis. Biochem J 2020; 477:1669-1682. [PMID: 32309848 DOI: 10.1042/bcj20200113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 11/17/2022]
Abstract
The DevR-DevS/DosR-DosS two-component system of Mycobacterium tuberculosis, that comprises of DevS sensor kinase and DevR response regulator, is essential for bacterial adaptation to hypoxia by inducing dormancy regulon expression. The dominant phosphatase activity of DevS under aerobic conditions enables tight negative control, whereas its kinase function activates DevR under hypoxia to induce the dormancy regulon. A net balance in these opposing kinase and phosphatase activities of DevS calibrates the response output of DevR. To gain mechanistic insights into the kinase-phosphatase balance of DevS, we generated alanine substitution mutants of five residues located in DHp α1 helix of DevS, namely Phe-403, Gly-406, Leu-407, Gly-411 and His-415. For the first time, we have identified kinase positive phosphatase negative (K+P-) mutants in DevS by a single-site mutation in either Gly-406 or Leu-407. M. tuberculosis Gly-406A and Leu-407A mutant strains constitutively expressed the DevR regulon under aerobic conditions despite the presence of negative signal, oxygen. These mutant proteins exhibited ∼2-fold interaction defect with DevR. We conclude that Gly-406 and Leu-407 residues are individually essential for the phosphatase function of DevS. Our study provides new insights into the negative control mechanism of DevS by demonstrating the importance of an optimal interaction between DevR and DevS, and local changes associated with individual residues, Gly-406 and Leu-407, which mimic ligand-free DevS. These K+P- mutant strains are expected to facilitate the rapid aerobic screening of DevR antagonists in M. tuberculosis, thereby eliminating the requirement for hypoxic culture conditions.
Collapse
|
6
|
Gushchin I, Orekhov P, Melnikov I, Polovinkin V, Yuzhakova A, Gordeliy V. Sensor Histidine Kinase NarQ Activates via Helical Rotation, Diagonal Scissoring, and Eventually Piston-Like Shifts. Int J Mol Sci 2020; 21:E3110. [PMID: 32354084 PMCID: PMC7247690 DOI: 10.3390/ijms21093110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022] Open
Abstract
Membrane-embedded sensor histidine kinases (HKs) and chemoreceptors are used ubiquitously by bacteria and archaea to percept the environment, and are often crucial for their survival and pathogenicity. The proteins can transmit the signal from the sensor domain to the catalytic kinase domain reliably over the span of several hundreds of angstroms, and regulate the activity of the cognate response regulator proteins, with which they form two-component signaling systems (TCSs). Several mechanisms of transmembrane signal transduction in TCS receptors have been proposed, dubbed (swinging) piston, helical rotation, and diagonal scissoring. Yet, despite decades of studies, there is no consensus on whether these mechanisms are common for all TCS receptors. Here, we extend our previous work on Escherichia coli nitrate/nitrite sensor kinase NarQ. We determined a crystallographic structure of the sensor-TM-HAMP fragment of the R50S mutant, which, unexpectedly, was found in a ligand-bound-like conformation, despite an inability to bind nitrate. Subsequently, we reanalyzed the structures of the ligand-free and ligand-bound NarQ and NarX sensor domains, and conducted extensive molecular dynamics simulations of ligand-free and ligand-bound wild type and mutated NarQ. Based on the data, we show that binding of nitrate to NarQ causes, first and foremost, helical rotation and diagonal scissoring of the α-helices at the core of the sensor domain. These conformational changes are accompanied by a subtle piston-like motion, which is amplified by a switch in the secondary structure of the linker between the sensor and TM domains. We conclude that helical rotation, diagonal scissoring, and piston are simply different degrees of freedom in coiled-coil proteins and are not mutually exclusive in NarQ, and likely in other nitrate sensors and TCS proteins as well.
Collapse
Affiliation(s)
- Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Philipp Orekhov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Institute of Personalized Medicine, Sechenov University, 119146 Moscow, Russia
| | - Igor Melnikov
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Vitaly Polovinkin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
| | - Anastasia Yuzhakova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Valentin Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
| |
Collapse
|
7
|
Ji S, Luo L, Li C, Liu M, Liu Y, Jiang L. Rational modulation of the enzymatic intermediates for tuning the phosphatase activity of histidine kinase HK853. Biochem Biophys Res Commun 2020; 523:733-738. [PMID: 31948765 DOI: 10.1016/j.bbrc.2020.01.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/02/2020] [Indexed: 11/24/2022]
Abstract
Histidine kinase (HK) of two-component signal transduction system (TCS) is a potential drug target for treating bacterial infections, and most HKs are bifunctional. We have previously identified the HXXXT motif of HK in HisKA subfamily to perform the phosphatase activity, but the specific working mechanism of the threonine is not well understood. In this paper, we use the phosphate group analog BeF3- to capture the enzymatic intermediates between HK853 and RR468 from Thermotoga maritima during dephosphorylation, and demonstrate that the T264 site is essential for populating capable near attack conformers (NAC) between enzyme and substrate to facilitate catalysis. Importantly, mutations at this site can modulate the phosphatase activity of HK. Our results help to understand the TCS signal transduction mechanisms and provide a reference for drug design.
Collapse
Affiliation(s)
- Shixia Ji
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Liang Luo
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yixiang Liu
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Ling Jiang
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
8
|
Kowallis KA, Duvall SW, Zhao W, Childers WS. Manipulation of Bacterial Signaling Using Engineered Histidine Kinases. Methods Mol Biol 2020; 2077:141-163. [PMID: 31707657 DOI: 10.1007/978-1-4939-9884-5_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two-component systems allow bacteria to respond to changes in environmental or cytosolic conditions through autophosphorylation of a histidine kinase (HK) and subsequent transfer of the phosphate group to its downstream cognate response regulator (RR). The RR then elicits a cellular response, commonly through regulation of transcription. Engineering two-component system signaling networks provides a strategy to study bacterial signaling mechanisms related to bacterial cell survival, symbiosis, and virulence, and to develop sensory devices in synthetic biology. Here we focus on the principles for engineering the HK to identify unknown signal inputs, test signal transmission mechanisms, design small molecule sensors, and rewire two-component signaling networks.
Collapse
Affiliation(s)
| | - Samuel W Duvall
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wei Zhao
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - W Seth Childers
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA. .,Chevron Science Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Trajtenberg F, Buschiazzo A. Protein Dynamics in Phosphoryl-Transfer Signaling Mediated by Two-Component Systems. Methods Mol Biol 2020; 2077:1-18. [PMID: 31707648 DOI: 10.1007/978-1-4939-9884-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ability to perceive the environment, an essential attribute in living organisms, is linked to the evolution of signaling proteins that recognize specific signals and execute predetermined responses. Such proteins constitute concerted systems that can be as simple as a unique protein, able to recognize a ligand and exert a phenotypic change, or extremely complex pathways engaging dozens of different proteins which act in coordination with feedback loops and signal modulation. To understand how cells sense their surroundings and mount specific adaptive responses, we need to decipher the molecular workings of signal recognition, internalization, transfer, and conversion into chemical changes inside the cell. Protein allostery and dynamics play a central role. Here, we review recent progress on the study of two-component systems, important signaling machineries of prokaryotes and lower eukaryotes. Such systems implicate a sensory histidine kinase and a separate response regulator protein. Both components exploit protein flexibility to effect specific conformational rearrangements, modulating protein-protein interactions, and ultimately transmitting information accurately. Recent work has revealed how histidine kinases switch between discrete functional states according to the presence or absence of the signal, shifting key amino acid positions that define their catalytic activity. In concert with the cognate response regulator's allosteric changes, the phosphoryl-transfer flow during the signaling process is exquisitely fine-tuned for proper specificity, efficiency and directionality.
Collapse
Affiliation(s)
- Felipe Trajtenberg
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Alejandro Buschiazzo
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay.
- Département de Microbiologie, Institut Pasteur, Paris, France.
| |
Collapse
|
10
|
Buschiazzo A, Trajtenberg F. Two-Component Sensing and Regulation: How Do Histidine Kinases Talk with Response Regulators at the Molecular Level? Annu Rev Microbiol 2019; 73:507-528. [PMID: 31226026 DOI: 10.1146/annurev-micro-091018-054627] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Perceiving environmental and internal information and reacting in adaptive ways are essential attributes of living organisms. Two-component systems are relevant protein machineries from prokaryotes and lower eukaryotes that enable cells to sense and process signals. Implicating sensory histidine kinases and response regulator proteins, both components take advantage of protein phosphorylation and flexibility to switch conformations in a signal-dependent way. Dozens of two-component systems act simultaneously in any given cell, challenging our understanding about the means that ensure proper connectivity. This review dives into the molecular level, attempting to summarize an emerging picture of how histidine kinases and cognate response regulators achieve required efficiency, specificity, and directionality of signaling pathways, properties that rely on protein:protein interactions. α helices that carry information through long distances, the fine combination of loose and specific kinase/regulator interactions, and malleable reaction centers built when the two components meet emerge as relevant universal principles.
Collapse
Affiliation(s)
- Alejandro Buschiazzo
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; , .,Integrative Microbiology of Zoonotic Agents, Department of Microbiology, Institut Pasteur, Paris 75015, France
| | - Felipe Trajtenberg
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; ,
| |
Collapse
|
11
|
Acquired Nisin Resistance in Staphylococcus aureus Involves Constitutive Activation of an Intrinsic Peptide Antibiotic Detoxification Module. mSphere 2018; 3:3/6/e00633-18. [PMID: 30541781 PMCID: PMC6291627 DOI: 10.1128/mspheredirect.00633-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
NIS and related bacteriocins are of interest as candidates for the treatment of human infections caused by Gram-positive pathogens such as Staphylococcus aureus. An important liability of NIS in this regard is the ease with which S. aureus acquires resistance. Here we establish that this organism naturally possesses the cellular machinery to detoxify NIS but that the ABC transporter responsible (VraDE) is not ordinarily produced to a degree sufficient to yield substantial resistance. Acquired NIS resistance mutations prompt activation of the regulatory circuit controlling expression of vraDE, thereby unmasking an intrinsic resistance determinant. Our results provide new insights into the complex mechanism by which expression of vraDE is regulated and suggest that a potential route to overcoming the resistance liability of NIS could involve chemical modification of the molecule to prevent its recognition by the VraDE transporter. Resistance to the lantibiotic nisin (NIS) arises readily in Staphylococcus aureus as a consequence of mutations in the nsaS gene, which encodes the sensor kinase of the NsaRS two-component regulatory system. Here we present a series of studies to establish how these mutational changes result in reduced NIS susceptibility. Comparative transcriptomic analysis revealed upregulation of the NsaRS regulon in a NIS-resistant mutant of S. aureus versus its otherwise-isogenic progenitor, indicating that NIS resistance mutations prompt gain-of-function in NsaS. Two putative ABC transporters (BraDE and VraDE) encoded within the NsaRS regulon that have been reported to provide a degree of intrinsic protection against NIS were shown to be responsible for acquired NIS resistance; as is the case for intrinsic NIS resistance, NIS detoxification was ultimately mediated by VraDE, with BraDE participating in the signaling cascade underlying VraDE expression. Our study revealed new features of this signal transduction pathway, including that BraDE (but not VraDE) physically interacts with NsaRS. Furthermore, while BraDE has been shown to sense stimuli and signal to NsaS in a process that is contingent upon ATP hydrolysis, we established that this protein complex is also essential for onward transduction of the signal from NsaS through energy-independent means. NIS resistance in S. aureus therefore joins the small number of documented examples in which acquired antimicrobial resistance results from the unmasking of an intrinsic detoxification mechanism through gain-of-function mutation in a regulatory circuit. IMPORTANCE NIS and related bacteriocins are of interest as candidates for the treatment of human infections caused by Gram-positive pathogens such as Staphylococcus aureus. An important liability of NIS in this regard is the ease with which S. aureus acquires resistance. Here we establish that this organism naturally possesses the cellular machinery to detoxify NIS but that the ABC transporter responsible (VraDE) is not ordinarily produced to a degree sufficient to yield substantial resistance. Acquired NIS resistance mutations prompt activation of the regulatory circuit controlling expression of vraDE, thereby unmasking an intrinsic resistance determinant. Our results provide new insights into the complex mechanism by which expression of vraDE is regulated and suggest that a potential route to overcoming the resistance liability of NIS could involve chemical modification of the molecule to prevent its recognition by the VraDE transporter.
Collapse
|
12
|
Bourret RB, Silversmith RE. Measuring the Activities of Two-Component Regulatory System Phosphatases. Methods Enzymol 2018; 607:321-351. [PMID: 30149864 DOI: 10.1016/bs.mie.2018.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two-component regulatory systems (TCSs) are used for signal transduction by organisms from all three phylogenetic domains of the living world. TCSs use transient protein phosphorylation and dephosphorylation reactions to convert stimuli into appropriate responses to changing environmental conditions. Phosphoryl groups flow from ATP to sensor kinases (which detect stimuli) to response regulators (which implement responses) to inorganic phosphate (Pi). The phosphorylation state of response regulators controls their output activity. The rate at which phosphoryl groups are removed from response regulators correlates with the timescale of the corresponding biological function. Dephosphorylation reactions are fastest in chemotaxis TCS and slower in other TCS. Response regulators catalyze their own dephosphorylation, but at least five types of phosphatases are known to enhance dephosphorylation of response regulators. In each case, the phosphatases are believed to stimulate the intrinsic autodephosphorylation reaction. We discuss in depth the properties of TCS (particularly the differences between chemotaxis and nonchemotaxis TCS) relevant to designing in vitro assays for TCS phosphatases. We describe detailed assay methods for chemotaxis TCS phosphatases using loss of 32P, change in intrinsic fluorescence as a result of dephosphorylation, or release of Pi. The phosphatase activities of nonchemotaxis TCS phosphatases are less well characterized. We consider how the properties of nonchemotaxis TCS affect assay design and suggest suitable modifications for phosphatases from nonchemotaxis TCS, with an emphasis on the Pi release method.
Collapse
Affiliation(s)
- Robert B Bourret
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC, United States.
| | - Ruth E Silversmith
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
13
|
Abstract
RcsB, a response regulator of the FixJ/NarL family, is at the center of a complex network of regulatory inputs and outputs. Cell surface stress is sensed by an outer membrane lipoprotein, RcsF, which regulates interactions of the inner membrane protein IgaA, lifting negative regulation of a phosphorelay. In vivo evidence supports a pathway in which histidine kinase RcsC transfers phosphate to phosphotransfer protein RcsD, resulting in phosphorylation of RcsB. RcsB acts either alone or in combination with RcsA to positively regulate capsule synthesis and synthesis of small RNA (sRNA) RprA as well as other genes, and to negatively regulate motility. RcsB in combination with other FixJ/NarL auxiliary proteins regulates yet other functions, independent of RcsB phosphorylation. Proper expression of Rcs and its targets is critical for success of Escherichia coli commensal strains, for proper development of biofilm, and for virulence in some pathogens. New understanding of how the Rcs phosphorelay works provides insight into the flexibility of the two-component system paradigm.
Collapse
Affiliation(s)
- Erin Wall
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA; emails: , ,
| | - Nadim Majdalani
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA; emails: , ,
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA; emails: , ,
| |
Collapse
|
14
|
Landry BP, Palanki R, Dyulgyarov N, Hartsough LA, Tabor JJ. Phosphatase activity tunes two-component system sensor detection threshold. Nat Commun 2018; 9:1433. [PMID: 29650958 PMCID: PMC5897336 DOI: 10.1038/s41467-018-03929-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/22/2018] [Indexed: 12/22/2022] Open
Abstract
Two-component systems (TCSs) are the largest family of multi-step signal transduction pathways in biology, and a major source of sensors for biotechnology. However, the input concentrations to which biosensors respond are often mismatched with application requirements. Here, we utilize a mathematical model to show that TCS detection thresholds increase with the phosphatase activity of the sensor histidine kinase. We experimentally validate this result in engineered Bacillus subtilis nitrate and E. coli aspartate TCS sensors by tuning their detection threshold up to two orders of magnitude. We go on to apply our TCS tuning method to recently described tetrathionate and thiosulfate sensors by mutating a widely conserved residue previously shown to impact phosphatase activity. Finally, we apply TCS tuning to engineer B. subtilis to sense and report a wide range of fertilizer concentrations in soil. This work will enable the engineering of tailor-made biosensors for diverse synthetic biology applications. Two-component systems are a major family of signal transduction pathways and a rich source of sensors for biotechnology. Here, the authors develop a general method for rationally tuning two-component system input detection thresholds via specific point mutations in sensor histidine kinase proteins.
Collapse
Affiliation(s)
- Brian P Landry
- Department of Bioengineering, Rice University, 6100 Main St., Houston, 77005, TX, USA
| | - Rohan Palanki
- Department of Bioengineering, Rice University, 6100 Main St., Houston, 77005, TX, USA
| | - Nikola Dyulgyarov
- Department of Bioengineering, Rice University, 6100 Main St., Houston, 77005, TX, USA
| | - Lucas A Hartsough
- Department of Bioengineering, Rice University, 6100 Main St., Houston, 77005, TX, USA
| | - Jeffrey J Tabor
- Department of Bioengineering, Rice University, 6100 Main St., Houston, 77005, TX, USA. .,Department of Biosciences, Rice University, 6100 Main St., Houston, 77005, TX, USA.
| |
Collapse
|
15
|
Cai Y, Su M, Ahmad A, Hu X, Sang J, Kong L, Chen X, Wang C, Shuai J, Han A. Conformational dynamics of the essential sensor histidine kinase WalK. Acta Crystallogr D Struct Biol 2017; 73:793-803. [PMID: 28994408 PMCID: PMC5633905 DOI: 10.1107/s2059798317013043] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/12/2017] [Indexed: 12/26/2022] Open
Abstract
Two-component systems (TCSs) are key elements in bacterial signal transduction in response to environmental stresses. TCSs generally consist of sensor histidine kinases (SKs) and their cognate response regulators (RRs). Many SKs exhibit autokinase, phosphoryltransferase and phosphatase activities, which regulate RR activity through a phosphorylation and dephosphorylation cycle. However, how SKs perform different enzymatic activities is poorly understood. Here, several crystal structures of the minimal catalytic region of WalK, an essential SK from Lactobacillus plantarum that shares 60% sequence identity with its homologue VicK from Streptococcus mutans, are presented. WalK adopts an asymmetrical closed structure in the presence of ATP or ADP, in which one of the CA domains is positioned close to the DHp domain, thus leading both the β- and γ-phosphates of ATP/ADP to form hydrogen bonds to the ℇ- but not the δ-nitrogen of the phosphorylatable histidine in the DHp domain. In addition, the DHp domain in the ATP/ADP-bound state has a 25.7° asymmetrical helical bending coordinated with the repositioning of the CA domain; these processes are mutually exclusive and alternate in response to helicity changes that are possibly regulated by upstream signals. In the absence of ATP or ADP, however, WalK adopts a completely symmetric open structure with its DHp domain centred between two outward-reaching CA domains. In summary, these structures of WalK reveal the intrinsic dynamic properties of an SK structure as a molecular basis for multifunctionality.
Collapse
Affiliation(s)
- Yongfei Cai
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang’an, Xiamen 361102, People’s Republic of China
| | - Mingyang Su
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang’an, Xiamen 361102, People’s Republic of China
| | - Ashfaq Ahmad
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang’an, Xiamen 361102, People’s Republic of China
| | - Xiaojie Hu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang’an, Xiamen 361102, People’s Republic of China
| | - Jiayan Sang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang’an, Xiamen 361102, People’s Republic of China
| | - Lingyuan Kong
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang’an, Xiamen 361102, People’s Republic of China
| | - Xingqiang Chen
- Department of Physics, Xiamen University, Xiang’an, Xiamen 361102, People’s Republic of China
| | - Chen Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang’an, Xiamen 361102, People’s Republic of China
| | - Jianwei Shuai
- Department of Physics, Xiamen University, Xiang’an, Xiamen 361102, People’s Republic of China
| | - Aidong Han
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang’an, Xiamen 361102, People’s Republic of China
| |
Collapse
|
16
|
Elkrewi E, Randall CP, Ooi N, Cottell JL, O’Neill AJ. Cryptic silver resistance is prevalent and readily activated in certain Gram-negative pathogens. J Antimicrob Chemother 2017; 72:3043-3046. [DOI: 10.1093/jac/dkx258] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/30/2017] [Indexed: 11/13/2022] Open
|
17
|
Cross Talk Inhibition Nullified by a Receiver Domain Missense Substitution. J Bacteriol 2015; 197:3294-306. [PMID: 26260457 DOI: 10.1128/jb.00436-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/03/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In two-component signal transduction, a sensor protein transmitter module controls cognate receiver domain phosphorylation. Most receiver domain sequences contain a small residue (Gly or Ala) at position T + 1 just distal to the essential Thr or Ser residue that forms part of the active site. However, some members of the NarL receiver subfamily have a large hydrophobic residue at position T + 1. Our laboratory previously isolated a NarL mutant in which the T + 1 residue Val-88 was replaced with an orthodox small Ala. This NarL V88A mutant confers a striking phenotype in which high-level target operon expression is both signal (nitrate) and sensor (NarX and NarQ) independent. This suggests that the NarL V88A protein is phosphorylated by cross talk from noncognate sources. Although cross talk was enhanced in ackA null strains that accumulate acetyl phosphate, it persisted in pta ackA double null strains that cannot synthesize this compound and was observed also in narL(+) strains. This indicates that acetate metabolism has complex roles in mediating NarL cross talk. Contrariwise, cross talk was sharply diminished in an arcB barA double null strain, suggesting that the encoded sensors contribute substantially to NarL V88A cross talk. Separately, the V88A substitution altered the in vitro rates of NarL autodephosphorylation and transmitter-stimulated dephosphorylation and decreased affinity for the cognate sensor, NarX. Together, these experiments show that the residue at position T + 1 can strongly influence two distinct aspects of receiver domain function, the autodephosphorylation rate and cross talk inhibition. IMPORTANCE Many bacterial species contain a dozen or more discrete sensor-response regulator two-component systems that convert a specific input into a distinct output pattern. Cross talk, the unwanted transfer of signals between circuits, occurs when a response regulator is phosphorylated inappropriately from a noncognate source. Cross talk is inhibited in part by the high interaction specificity between cognate sensor-response regulator pairs. This study shows that a relatively subtle missense change from Val to Ala nullifies cross talk inhibition, enabling at least two noncognate sensors to enforce an inappropriate output independently of the relevant input.
Collapse
|
18
|
Huynh TN, Chen LL, Stewart V. Sensor-response regulator interactions in a cross-regulated signal transduction network. MICROBIOLOGY-SGM 2015; 161:1504-15. [PMID: 25873583 DOI: 10.1099/mic.0.000092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Two-component signal transduction involves phosphoryl transfer between a histidine kinase sensor and a response regulator effector. The nitrate-responsive two-component signal transduction systems in Escherichia coli represent a paradigm for a cross-regulation network, in which the paralogous sensor-response regulator pairs, NarX-NarL and NarQ-NarP, exhibit both cognate (e.g. NarX-NarL) and non-cognate (e.g. NarQ-NarL) interactions to control output. Here, we describe results from bacterial adenylate cyclase two-hybrid (BACTH) analysis to examine sensor dimerization as well as interaction between sensor-response regulator cognate and non-cognate pairs. Although results from BACTH analysis indicated that the NarX and NarQ sensors interact with each other, results from intragenic complementation tests demonstrate that they do not form functional heterodimers. Additionally, intragenic complementation shows that both NarX and NarQ undergo intermolecular autophosphorylation, deviating from the previously reported correlation between DHp (dimerization and histidyl phosphotransfer) domain loop handedness and autophosphorylation mode. Results from BACTH analysis revealed robust interactions for the NarX-NarL, NarQ-NarL and NarQ-NarP pairs but a much weaker interaction for the NarX-NarP pair. This demonstrates that asymmetrical cross-regulation results from differential binding affinities between different sensor-regulator pairs. Finally, results indicate that the NarL effector (DNA-binding) domain inhibits NarX-NarL interaction. Missense substitutions at receiver domain residue Ser-80 enhanced NarX-NarL interaction, apparently by destabilizing the NarL receiver-effector domain interface.
Collapse
Affiliation(s)
- TuAnh Ngoc Huynh
- 1 Food Science Graduate Group, University of California, Davis, CA, 95616-8665, USA
| | - Li-Ling Chen
- 2 Department of Microbiology & Molecular Genetics, University of California, Davis, CA 95616-8665, USA
| | - Valley Stewart
- 2 Department of Microbiology & Molecular Genetics, University of California, Davis, CA 95616-8665, USA 1 Food Science Graduate Group, University of California, Davis, CA, 95616-8665, USA
| |
Collapse
|
19
|
Hentschel E, Mack C, Gätgens C, Bott M, Brocker M, Frunzke J. Phosphatase activity of the histidine kinases ensures pathway specificity of the ChrSA and HrrSA two-component systems in Corynebacterium glutamicum. Mol Microbiol 2014; 92:1326-42. [PMID: 24779520 DOI: 10.1111/mmi.12633] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2014] [Indexed: 11/29/2022]
Abstract
The majority of bacterial genomes encode a high number of two-component systems controlling gene expression in response to a variety of different stimuli. The Gram-positive soil bacterium Corynebacterium glutamicum contains two homologous two-component systems (TCS) involved in the haem-dependent regulation of gene expression. Whereas the HrrSA system is crucial for utilization of haem as an alternative iron source, ChrSA is required to cope with high toxic haem levels. In this study, we analysed the interaction of HrrSA and ChrSA in C. glutamicum. Growth of TCS mutant strains, in vitro phosphorylation assays and promoter assays of P(hrtBA) and P(hmuO) fused to eyfp revealed cross-talk between both systems. Our studies further indicated that both kinases exhibit a dual function as kinase and phosphatase. Mutation of the conserved glutamine residue in the putative phosphatase motif DxxxQ of HrrS and ChrS resulted in a significantly increased activity of their respective target promoters (P(hmuO) and P(hrtBA) respectively). Remarkably, phosphatase activity of both kinases was shown to be specific only for their cognate response regulators. Altogether our data suggest the phosphatase activity of HrrS and ChrS as key mechanism to ensure pathway specificity and insulation of these two homologous systems.
Collapse
Affiliation(s)
- Eva Hentschel
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Dhiman A, Bhatnagar S, Kulshreshtha P, Bhatnagar R. Functional characterization of WalRK: A two-component signal transduction system from Bacillus anthracis. FEBS Open Bio 2014; 4:65-76. [PMID: 24490131 PMCID: PMC3907690 DOI: 10.1016/j.fob.2013.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/24/2013] [Accepted: 12/24/2013] [Indexed: 12/20/2022] Open
Abstract
Two-component signal transduction systems (TCS), consisting of a sensor histidine protein kinase and its cognate response regulator, are an important mode of environmental sensing in bacteria. Additionally, they have been found to regulate virulence determinants in several pathogens. Bacillus anthracis, the causative agent of anthrax and a bioterrorism agent, harbours 41 pairs of TCS. However, their role in its pathogenicity has remained largely unexplored. Here, we show that WalRK of B. anthracis forms a functional TCS which exhibits some species-specific functions. Biochemical studies showed that domain variants of WalK, the histidine kinase, exhibit classical properties of autophosphorylation and phosphotransfer to its cognate response regulator WalR. Interestingly, these domain variants also show phosphatase activity towards phosphorylated WalR, thereby making WalK a bifunctional histidine kinase/phosphatase. An in silico regulon determination approach, using a consensus binding sequence from Bacillus subtilis, provided a list of 30 genes that could form a putative WalR regulon in B. anthracis. Further, electrophoretic mobility shift assay was used to show direct binding of purified WalR to the upstream regions of three putative regulon candidates, an S-layer protein EA1, a cell division ABC transporter FtsE and a sporulation histidine kinase KinB3. Our work lends insight into the species-specific functions and mode of action of B. anthracis WalRK. WalRK forms a functional TCS in B. anthracis, expressed throughout the growth phase. WalK variants exhibit autophosphorylation and phosphotransfer to WalR. WalKc variants also show phosphatase activity towards phosphorylated WalR. A potential WalR regulon in B. anthracis was predicted in silico. DNA binding ability was demonstrated for WalR.
Collapse
Affiliation(s)
- Alisha Dhiman
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi 110078, India
| | - Parul Kulshreshtha
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
- Corresponding author. Tel.: +91 1126704079/1126742040; fax: +91 1126742040.
| |
Collapse
|