1
|
Tafoya C, Ching B, Garcia E, Lee A, Acevedo M, Bass K, Chau E, Lin H, Mamora K, Reeves M, Vaca M, van Iderstein W, Velasco L, Williams V, Yonemoto G, Yonemoto T, Heller DM, Diaz A. Genome-wide screen overexpressing mycobacteriophage Amelie genes identifies multiple inhibitors of mycobacterial growth. G3 (BETHESDA, MD.) 2025; 15:jkae285. [PMID: 39657018 DOI: 10.1093/g3journal/jkae285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
The genome sequences of thousands of bacteriophages have been determined and functions for many of the encoded genes have been assigned based on homology to characterized sequences. However, functions have not been assigned to more than two-thirds of the identified phage genes as they have no recognizable sequence features. Recent genome-wide overexpression screens have begun to identify bacteriophage genes that encode proteins that reduce or inhibit bacterial growth. This study describes the construction of a plasmid-based overexpression library of 76 genes encoded by Cluster K1 mycobacteriophage Amelie, which is genetically similar to cluster K phages Waterfoul and Hammy recently described in similar screens and closely related to phages that infect clinically important mycobacteria. Twenty-six out of the 76 genes evaluated in our screen, encompassing 34% of the genome, reduced growth of the host Mycobacterium smegmatis to various degrees. More than one-third of these 26 toxic genes have no known function, and 10 of the 26 genes almost completely abolished host growth upon overexpression. Notably, while several of the toxic genes identified in Amelie shared homologs with other Cluster K phages recently screened, this study uncovered 7 previously unknown gene families that exhibit cytotoxic properties, thereby broadening the repertoire of known phage-encoded growth inhibitors. This work, carried out under the HHMI-supported SEA-GENES project (Science Education Alliance Gene-function Exploration by a Network of Emerging Scientists), underscores the importance of comprehensive overexpression screens in elucidating genome-wide patterns of phage gene function and novel interactions between phages and their hosts.
Collapse
Affiliation(s)
- Chelsea Tafoya
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Brandon Ching
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Elva Garcia
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Alyssa Lee
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Melissa Acevedo
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Kelsey Bass
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Elizabeth Chau
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Heidi Lin
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Kaitlyn Mamora
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Michael Reeves
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Madyllyne Vaca
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | | | - Luis Velasco
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Vivianna Williams
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Grant Yonemoto
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Tyler Yonemoto
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| | - Danielle M Heller
- Center for the Advancement of Science Leadership and Culture, Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Arturo Diaz
- Department of Biology, La Sierra University, Riverside, CA 92505, USA
| |
Collapse
|
2
|
Freeman KG, Lauer MJ, Jiang D, Roscher J, Sandler S, Mercado N, Fryberger R, Kovalski J, Lutz AR, Hughes LE, VanDemark AP, Hatfull GF. Characterization of mycobacteriophage Adephagia cytotoxic proteins. G3 (BETHESDA, MD.) 2024; 14:jkae166. [PMID: 39031590 PMCID: PMC11373665 DOI: 10.1093/g3journal/jkae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 04/29/2024] [Accepted: 07/15/2024] [Indexed: 07/22/2024]
Abstract
Mycobacterium phage Adephagia is a cluster K phage that infects Mycobacterium smegmatis and some strains of Mycobacterium pathogens. Adephagia has a siphoviral virion morphology and is temperate. Its genome is 59,646 bp long and codes for one tRNA gene and 94 predicted protein-coding genes; most genes not associated with virion structure and assembly are functionally ill-defined. Here, we determined the Adephagia gene expression patterns in lytic and lysogenic growth and used structural predictions to assign additional gene functions. We characterized 66 nonstructural genes for their toxic phenotypes when expressed in M. smegmatis, and we show that 25 of these (38%) are either toxic or strongly inhibit growth, resulting in either reduced viability or small colony sizes. Some of these genes are predicted to be involved in DNA metabolism or regulation, but others are of unknown function. We also characterize the HicAB-like toxin-antitoxin (TA) system encoded by Adephagia (gp91 and gp90, respectively) and show that the gp90 antitoxin is lysogenically expressed, abrogates gp91 toxicity, and is required for normal lytic and lysogenic growth.
Collapse
Affiliation(s)
- Krista G Freeman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Michael J Lauer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Danny Jiang
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jennifer Roscher
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Sterling Sandler
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Nicholas Mercado
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Robert Fryberger
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Julia Kovalski
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Abigail R Lutz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Lee E Hughes
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Andrew P VanDemark
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
3
|
Heller DM, Sivanathan V, Asai DJ, Hatfull GF. SEA-PHAGES and SEA-GENES: Advancing Virology and Science Education. Annu Rev Virol 2024; 11:1-20. [PMID: 38684129 DOI: 10.1146/annurev-virology-113023-110757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Research opportunities for undergraduate students are strongly advantageous, but implementation at a large scale presents numerous challenges. The enormous diversity of the bacteriophage population and a supportive programmatic structure provide opportunities to engage early-career undergraduates in phage discovery, genomics, and genetics. The Science Education Alliance (SEA) is an inclusive Research-Education Community (iREC) providing centralized programmatic support for students and faculty without prior experience in virology at institutions from community colleges to research-active universities to participate in two course-based projects, SEA-PHAGES (SEA Phage Hunters Advancing Genomic and Evolutionary Science) and SEA-GENES (SEA Gene-function Exploration by a Network of Emerging Scientists). Since 2008, the SEA has supported more than 50,000 undergraduate researchers who have isolated more than 23,000 bacteriophages of which more than 4,500 are fully sequenced and annotated. Students have functionally characterized hundreds of phage genes, and the phage collection has fueled the therapeutic use of phages for treatment of Mycobacterium infections. Participation in the SEA promotes student persistence in science education, and its inclusivity promotes a more equitable scientific community.
Collapse
Affiliation(s)
- Danielle M Heller
- Center for the Advancement of Science Leadership and Culture, Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Viknesh Sivanathan
- Center for the Advancement of Science Leadership and Culture, Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - David J Asai
- Center for the Advancement of Science Leadership and Culture, Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
| |
Collapse
|
4
|
Chong Qui E, Habtehyimer F, Germroth A, Grant J, Kosanovic L, Singh I, Hancock SP. Mycobacteriophage Alexphander Gene 94 Encodes an Essential dsDNA-Binding Protein during Lytic Infection. Int J Mol Sci 2024; 25:7466. [PMID: 39000573 PMCID: PMC11242194 DOI: 10.3390/ijms25137466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Mycobacteriophages are viruses that specifically infect bacterial species within the genera Mycobacterium and Mycolicibacterium. Over 2400 mycobacteriophages have been isolated on the host Mycolicibacterium smegmatis and sequenced. This wealth of genomic data indicates that mycobacteriophage genomes are diverse, mosaic, and contain numerous (35-60%) genes for which there is no predicted function based on sequence similarity to characterized orthologs, many of which are essential to lytic growth. To fully understand the molecular aspects of mycobacteriophage-host interactions, it is paramount to investigate the function of these genes and gene products. Here we show that the temperate mycobacteriophage, Alexphander, makes stable lysogens with a frequency of 2.8%. Alexphander gene 94 is essential for lytic infection and encodes a protein predicted to contain a C-terminal MerR family helix-turn-helix DNA-binding motif (HTH) and an N-terminal DinB/YfiT motif, a putative metal-binding motif found in stress-inducible gene products. Full-length and C-terminal gp94 constructs form high-order nucleoprotein complexes on 100-500 base pair double-stranded DNA fragments and full-length phage genomic DNA with little sequence discrimination for the DNA fragments tested. Maximum gene 94 mRNA levels are observed late in the lytic growth cycle, and gene 94 is transcribed in a message with neighboring genes 92 through 96. We hypothesize that gp94 is an essential DNA-binding protein for Alexphander during lytic growth. We proposed that gp94 forms multiprotein complexes on DNA through cooperative interactions involving its HTH DNA-binding motif at sites throughout the phage chromosome, facilitating essential DNA transactions required for lytic propagation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stephen P. Hancock
- Department of Chemistry, Towson University, Towson, MD 21252, USA; (E.C.Q.); (F.H.); (A.G.); (J.G.); (L.K.); (I.S.)
| |
Collapse
|
5
|
Amaya I, Edwards K, Wise BM, Bhattacharyya A, Pablo CHD, Mushrush E, Coats AN, Dao S, Dittmar G, Gore T, Jarva TM, Kenkebashvili G, Rathan-Kumar S, Reyes GM, Watts GL, Watts VK, Dubrow D, Lewis G, Stone BH, Xue B, Cresawn SG, Mavrodi D, Sivanathan V, Heller D. A genome-wide overexpression screen reveals Mycobacterium smegmatis growth inhibitors encoded by mycobacteriophage Hammy. G3 (BETHESDA, MD.) 2023; 13:jkad240. [PMID: 37934806 PMCID: PMC10700055 DOI: 10.1093/g3journal/jkad240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023]
Abstract
During infection, bacteriophages produce diverse gene products to overcome bacterial antiphage defenses, to outcompete other phages, and to take over cellular processes. Even in the best-studied model phages, the roles of most phage-encoded gene products are unknown, and the phage population represents a largely untapped reservoir of novel gene functions. Considering the sheer size of this population, experimental screening methods are needed to sort through the enormous collection of available sequences and identify gene products that can modulate bacterial behavior for downstream functional characterization. Here, we describe the construction of a plasmid-based overexpression library of 94 genes encoded by Hammy, a Cluster K mycobacteriophage closely related to those infecting clinically important mycobacteria. The arrayed library was systematically screened in a plate-based cytotoxicity assay, identifying a diverse set of 24 gene products (representing ∼25% of the Hammy genome) capable of inhibiting growth of the host bacterium Mycobacterium smegmatis. Half of these are related to growth inhibitors previously identified in related phage Waterfoul, supporting their functional conservation; the other genes represent novel additions to the list of known antimycobacterial growth inhibitors. This work, conducted as part of the HHMI-supported Science Education Alliance Gene-function Exploration by a Network of Emerging Scientists (SEA-GENES) project, highlights the value of parallel, comprehensive overexpression screens in exploring genome-wide patterns of phage gene function and novel interactions between phages and their hosts.
Collapse
Affiliation(s)
- Isabel Amaya
- Center for the Advancement of Science Leadership and Culture, Howard Hughes Medical Institute, Chevy Chase, MD 20185, USA
| | - Kaylia Edwards
- Center for the Advancement of Science Leadership and Culture, Howard Hughes Medical Institute, Chevy Chase, MD 20185, USA
| | - Bethany M Wise
- Center for the Advancement of Science Leadership and Culture, Howard Hughes Medical Institute, Chevy Chase, MD 20185, USA
| | - Ankita Bhattacharyya
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Clint H D Pablo
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Ember Mushrush
- Department of Biology, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Amber N Coats
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Sara Dao
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Grace Dittmar
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Taylor Gore
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Taiya M Jarva
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Giorgi Kenkebashvili
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Sudiksha Rathan-Kumar
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Gabriella M Reyes
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Garrett L Watts
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Victoria Kalene Watts
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Deena Dubrow
- Department of Biology, James Madison University, Harrisonburg, VA 22807, USA
| | - Gabrielle Lewis
- Department of Biology, James Madison University, Harrisonburg, VA 22807, USA
| | - Benjamin H Stone
- Department of Biology, James Madison University, Harrisonburg, VA 22807, USA
| | - Bingjie Xue
- Department of Biology, James Madison University, Harrisonburg, VA 22807, USA
| | - Steven G Cresawn
- Department of Biology, James Madison University, Harrisonburg, VA 22807, USA
| | - Dmitri Mavrodi
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Viknesh Sivanathan
- Center for the Advancement of Science Leadership and Culture, Howard Hughes Medical Institute, Chevy Chase, MD 20185, USA
| | - Danielle Heller
- Center for the Advancement of Science Leadership and Culture, Howard Hughes Medical Institute, Chevy Chase, MD 20185, USA
| |
Collapse
|
6
|
Piya D, Nolan N, Moore ML, Ramirez Hernandez LA, Cress BF, Young R, Arkin AP, Mutalik VK. Systematic and scalable genome-wide essentiality mapping to identify nonessential genes in phages. PLoS Biol 2023; 21:e3002416. [PMID: 38048319 PMCID: PMC10695390 DOI: 10.1371/journal.pbio.3002416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/02/2023] [Indexed: 12/06/2023] Open
Abstract
Phages are one of the key ecological drivers of microbial community dynamics, function, and evolution. Despite their importance in bacterial ecology and evolutionary processes, phage genes are poorly characterized, hampering their usage in a variety of biotechnological applications. Methods to characterize such genes, even those critical to the phage life cycle, are labor intensive and are generally phage specific. Here, we develop a systematic gene essentiality mapping method scalable to new phage-host combinations that facilitate the identification of nonessential genes. As a proof of concept, we use an arrayed genome-wide CRISPR interference (CRISPRi) assay to map gene essentiality landscape in the canonical coliphages λ and P1. Results from a single panel of CRISPRi probes largely recapitulate the essential gene roster determined from decades of genetic analysis for lambda and provide new insights into essential and nonessential loci in P1. We present evidence of how CRISPRi polarity can lead to false positive gene essentiality assignments and recommend caution towards interpreting CRISPRi data on gene essentiality when applied to less studied phages. Finally, we show that we can engineer phages by inserting DNA barcodes into newly identified inessential regions, which will empower processes of identification, quantification, and tracking of phages in diverse applications.
Collapse
Affiliation(s)
- Denish Piya
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, California, United States of America
| | - Nicholas Nolan
- Department of Bioengineering, University of California-Berkeley, Berkeley, California, United States of America
| | - Madeline L. Moore
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Luis A. Ramirez Hernandez
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Brady F. Cress
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, California, United States of America
| | - Ry Young
- Department of Biochemistry and Biophysics, Center for Phage Technology, Texas A&M University, College Station, Texas, United States of America
| | - Adam P. Arkin
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, California, United States of America
- Department of Bioengineering, University of California-Berkeley, Berkeley, California, United States of America
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Vivek K. Mutalik
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, California, United States of America
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| |
Collapse
|
7
|
Niblock DJ, Winkler AR, Curtin CE, Kokinda JF, Danker WA, Llorente Fernandez I, Smith AR, Ali A, Cruz GG, Givvines LC, Lee-Soety JY. Isolating and characterizing cluster AB Mycobacteriophage NoShow, which encodes lysis proteins shared with cluster H2 phages. Microbiol Resour Announc 2023; 12:e0064923. [PMID: 37747255 PMCID: PMC10586156 DOI: 10.1128/mra.00649-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/09/2023] [Indexed: 09/26/2023] Open
Abstract
We present here Mycobacteriophage NoShow, isolated from a soil sample collected on the Maguire Campus of Saint Joseph's University in Merion Station, Pennsylvania. Even though NoShow's 52,825 bp genome is most similar to phages in cluster AB, its lysA and lysB genes are most similar to phages in cluster H2.
Collapse
Affiliation(s)
- Danielle J. Niblock
- Department of Biology, Saint Joseph’s University, Philadelphia, Pennsylvania, USA
| | - Anne R. Winkler
- Department of Biology, Saint Joseph’s University, Philadelphia, Pennsylvania, USA
| | - Caroline E. Curtin
- Department of Biology, Saint Joseph’s University, Philadelphia, Pennsylvania, USA
| | - Jacqui F. Kokinda
- Department of Biology, Saint Joseph’s University, Philadelphia, Pennsylvania, USA
| | - Walter A. Danker
- Department of Biology, Saint Joseph’s University, Philadelphia, Pennsylvania, USA
| | | | - Ava R. Smith
- Department of Biology, Saint Joseph’s University, Philadelphia, Pennsylvania, USA
| | - Asad Ali
- Department of Biology, Saint Joseph’s University, Philadelphia, Pennsylvania, USA
| | - Gabrielle G. Cruz
- Department of Biology, Saint Joseph’s University, Philadelphia, Pennsylvania, USA
| | - Leya C. Givvines
- Department of Biology, Saint Joseph’s University, Philadelphia, Pennsylvania, USA
| | - Julia Y. Lee-Soety
- Department of Biology, Saint Joseph’s University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Lehman SM, Kongari R, Glass AM, Koert M, Ray MD, Plaut RD, Stibitz S. Phage K gp102 Drives Temperature-Sensitive Antibacterial Activity on USA300 MRSA. Viruses 2022; 15:17. [PMID: 36680060 PMCID: PMC9861931 DOI: 10.3390/v15010017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
There is widespread interest in using obligately lytic bacteriophages ("phages") to treat human bacterial infections. Among Staphylococcus aureus infections, the USA300 lineage is a frequent cause of invasive disease. We observed that phage K, a model S. aureus myophage, exhibits temperature-sensitive growth on USA300 strains, with the wild-type phage providing poorer growth suppression in broth and forming smaller and fainter plaques at 37 °C vs. 30 °C. We isolated 65 mutants of phage K that had improved plaquing characteristics at 37 °C when compared to the parental phage. In all 65 mutants, this phenotype was attributable to loss-of-function (LoF) mutations in gp102, which encodes a protein of unknown function that has homologs only among the Herelleviridae (SPO1-like myophages infecting gram-positive bacteria). Additional experiments with representative mutants consistently showed that the temperature-sensitive plaque phenotype was specific to USA300 MRSA strains and that Gp102 disruption was correlated with improved suppression of bacterial growth in broth and improved antibacterial activity in a mouse model of upper respiratory tract infection. The same genotype and in vitro phenotypes could be replicated in close relatives of phage K. Gp102 disruption did not have a detectable effect on adsorption but did delay cell culture lysis relative to wild-type under permissive infection conditions, suggesting that gp102 conservation might be maintained by selective pressure for more rapid replication. Expression of gp102 on a plasmid was toxic to both an MSSA and a USA300 MRSA strain. Molecular modeling predicts a protein with two helix-turn-helix domains that displays some similarity to DNA-binding proteins such as transcription factors. While its function remains unclear, gp102 is a conserved gene that is important to the infection process of Kayvirus phages, and it appears that the manner in which USA300 strains defend against them at 37 °C can be overcome by gp102 LoF mutations.
Collapse
|
9
|
Pollenz RS, Bland J, Pope WH. Bioinformatic characterization of endolysins and holin-like membrane proteins in the lysis cassette of phages that infect Gordonia rubripertincta. PLoS One 2022; 17:e0276603. [PMID: 36395171 PMCID: PMC9671378 DOI: 10.1371/journal.pone.0276603] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022] Open
Abstract
Holins are bacteriophage-encoded transmembrane proteins that function to control the timing of bacterial lysis event, assist with the destabilization of the membrane proton motive force and in some models, generate large "pores" in the cell membrane to allow the exit of the phage-encoded endolysin so they can access the peptidoglycan components of the cell wall. The lysis mechanism has been rigorously evaluated through biochemical and genetic studies in very few phages, and the results indicate that phages utilize endolysins, holins and accessory proteins to the outer membrane to achieve cell lysis through several distinct operational models. This observation suggests the possibility that phages may evolve novel variations of how the lysis proteins functionally interact in an effort to improve fitness or evade host defenses. To begin to address this hypothesis, the current study utilized a comprehensive bioinformatic approach to systematically identify the proteins encoded by the genes within the lysis cassettes in 16 genetically diverse phages that infect the Gram-positive Gordonia rubripertincta NRLL B-16540 strain. The results show that there is a high level of diversity of the various lysis genes and 16 different genome organizations of the putative lysis cassette, many which have never been described. Thirty-four different genes encoding holin-like proteins were identified as well as a potential holin-major capsid fusion protein. The holin-like proteins contained between 1-4 transmembrane helices, were not shared to a high degree amongst the different phages and are present in the lysis cassette in a wide range of combinations of up to 4 genes in which none are duplicated. Detailed evaluation of the transmembrane domains and predicted membrane topologies of the holin-like proteins show that many have novel structures that have not been previously characterized. These results provide compelling support that there are novel operational lysis models yet to be discovered.
Collapse
Affiliation(s)
- Richard S. Pollenz
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida, United States of America
| | - Jackson Bland
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida, United States of America
| | - Welkin H. Pope
- Science Department, Chatham University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
10
|
Isaev A, Andriianov A, Znobishcheva E, Zorin E, Morozova N, Severinov K. Editing of Phage Genomes—Recombineering-assisted SpCas9 Modification of Model Coliphages T7, T5, and T3. Mol Biol 2022. [DOI: 10.1134/s0026893322060073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Bacteriophages—viruses that infect bacterial cells—are the most abundant biological entities on Earth. The use of phages in fundamental research and industry requires tools for precise manipulation of their genomes. Yet, compared to bacterial genome engineering, modification of phage genomes is challenging because of the lack of selective markers and thus requires laborious screenings of recombinant/mutated phage variants. The development of the CRISPR-Cas technologies allowed to solve this issue by the implementation of negative selection that eliminates the parental phage genomes. In this manuscript, we summarize current methods of phage genome engineering and their coupling with CRISPR-Cas technologies. We also provide examples of our successful application of these methods for introduction of specific insertions, deletions, and point mutations in the genomes of model Escherichia coli lytic phages T7, T5, and T3.
Collapse
|
11
|
Heller D, Amaya I, Mohamed A, Ali I, Mavrodi D, Deighan P, Sivanathan V. Systematic overexpression of genes encoded by mycobacteriophage Waterfoul reveals novel inhibitors of mycobacterial growth. G3 (BETHESDA, MD.) 2022; 12:jkac140. [PMID: 35727726 PMCID: PMC9339283 DOI: 10.1093/g3journal/jkac140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/14/2022] [Indexed: 01/21/2023]
Abstract
Bacteriophages represent an enormous reservoir of novel genes, many of which are unrelated to existing entries in public databases and cannot be assigned a predicted function. Characterization of these genes can provide important insights into the intricacies of phage-host interactions and may offer new strategies to manipulate bacterial growth and behavior. Overexpression is a useful tool in the study of gene-mediated effects, and we describe here the construction of a plasmid-based overexpression library of a complete set of genes for Waterfoul, a mycobacteriophage closely related to those infecting clinically important strains of Mycobacterium tuberculosis and/or Mycobacterium abscessus. The arrayed Waterfoul gene library was systematically screened in a plate-based cytotoxicity assay, identifying a diverse set of 32 Waterfoul gene products capable of inhibiting the growth of the host Mycobacterium smegmatis and providing a first look at the frequency and distribution of cytotoxic products encoded within a single mycobacteriophage genome. Several of these Waterfoul gene products were observed to confer potent anti-mycobacterial effects, making them interesting candidates for follow-up mechanistic studies.
Collapse
Affiliation(s)
- Danielle Heller
- Department of Science Education, Howard Hughes Medical Institute, Chevy Chase, MD 20185, USA
| | - Isabel Amaya
- Department of Science Education, Howard Hughes Medical Institute, Chevy Chase, MD 20185, USA
| | - Aleem Mohamed
- Department of Biology, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Ilzat Ali
- Department of Biology, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Dmitri Mavrodi
- Center for Molecular & Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Padraig Deighan
- Department of Biology, Emmanuel College, Boston, MA 02115, USA
| | - Viknesh Sivanathan
- Department of Science Education, Howard Hughes Medical Institute, Chevy Chase, MD 20185, USA
| |
Collapse
|
12
|
Hosseiniporgham S, Sechi LA. A Review on Mycobacteriophages: From Classification to Applications. Pathogens 2022; 11:777. [PMID: 35890022 PMCID: PMC9317374 DOI: 10.3390/pathogens11070777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Mycobacterial infections are a group of life-threatening conditions triggered by fast- or slow-growing mycobacteria. Some mycobacteria, such as Mycobacterium tuberculosis, promote the deaths of millions of lives throughout the world annually. The control of mycobacterial infections is influenced by the challenges faced in the diagnosis of these bacteria and the capability of these pathogens to develop resistance against common antibiotics. Detection of mycobacterial infections is always demanding due to the intracellular nature of these pathogens that, along with the lipid-enriched structure of the cell wall, complicates the access to the internal contents of mycobacterial cells. Moreover, recent studies depicted that more than 20% of M. tuberculosis (Mtb) infections are multi-drug resistant (MDR), and only 50% of positive MDR-Mtb cases are responsive to standard treatments. Similarly, the susceptibility of nontuberculosis mycobacteria (NTM) to first-line tuberculosis antibiotics has also declined in recent years. Exploiting mycobacteriophages as viruses that infect mycobacteria has significantly accelerated the diagnosis and treatment of mycobacterial infections. This is because mycobacteriophages, regardless of their cycle type (temperate/lytic), can tackle barriers in the mycobacterial cell wall and make the infected bacteria replicate phage DNA along with their DNA. Although the infectivity of the majority of discovered mycobacteriophages has been evaluated in non-pathogenic M. smegmatis, more research is still ongoing to find mycobacteriophages specific to pathogenic mycobacteria, such as phage DS6A, which has been shown to be able to infect members of the M. tuberculosis complex. Accordingly, this review aimed to introduce some potential mycobacteriophages in the research, specifically those that are infective to the three troublesome mycobacteria, M. tuberculosis, M. avium subsp. paratuberculosis (MAP), and M. abscessus, highlighting their theranostic applications in medicine.
Collapse
Affiliation(s)
| | - Leonardo A. Sechi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Microbiology and Virology, Azienda Ospedaliera Universitaria (AOU) Sassari, 07100 Sassari, Italy
| |
Collapse
|
13
|
Abstract
Mycobacteriophages-bacteriophages infecting Mycobacterium hosts-contribute substantially to our understanding of viral diversity and evolution, provide resources for advancing Mycobacterium genetics, are the basis of high-impact science education programs, and show considerable therapeutic potential. Over 10,000 individual mycobacteriophages have been isolated by high school and undergraduate students using the model organism Mycobacterium smegmatis mc2155 and 2,100 have been completely sequenced, giving a high-resolution view of the phages that infect a single common host strain. The phage genomes are revealed to be highly diverse and architecturally mosaic and are replete with genes of unknown function. Mycobacteriophages have provided many widely used tools for Mycobacterium genetics including integration-proficient vectors and recombineering systems, as well as systems for efficient delivery of reporter genes, transposons, and allelic exchange substrates. The genomic insights and engineering tools have facilitated exploration of phages for treatment of Mycobacterium infections, although their full therapeutic potential has yet to be realized.
Collapse
Affiliation(s)
- Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States of America
| |
Collapse
|
14
|
Mutalik VK, Arkin AP. A Phage Foundry Framework to Systematically Develop Viral Countermeasures to Combat Antibiotic-Resistant Bacterial Pathogens. iScience 2022; 25:104121. [PMID: 35402883 PMCID: PMC8983348 DOI: 10.1016/j.isci.2022.104121] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
At its current rate, the rise of antimicrobial-resistant (AMR) infections is predicted to paralyze our industries and healthcare facilities while becoming the leading global cause of loss of human life. With limited new antibiotics on the horizon, we need to invest in alternative solutions. Bacteriophages (phages)-viruses targeting bacteria-offer a powerful alternative approach to tackle bacterial infections. Despite recent advances in using phages to treat recalcitrant AMR infections, the field lacks systematic development of phage therapies scalable to different applications. We propose a Phage Foundry framework to establish metrics for phage characterization and to fill the knowledge and technological gaps in phage therapeutics. Coordinated investment in AMR surveillance, sampling, characterization, and data sharing procedures will enable rational exploitation of phages for treatments. A fully realized Phage Foundry will enhance the sharing of knowledge, technology, and viral reagents in an equitable manner and will accelerate the biobased economy.
Collapse
Affiliation(s)
- Vivek K. Mutalik
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Adam P. Arkin
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| |
Collapse
|
15
|
Evaluation of Genome Sequences of the Bacteriophages JeTaime and Luna22. Microbiol Resour Announc 2021; 10:e0074621. [PMID: 34617782 PMCID: PMC8496362 DOI: 10.1128/mra.00746-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mycobacteriophages JeTaime (E cluster) and Luna22 (Q cluster) were isolated from soil in Providence, Rhode Island, and Charleston, South Carolina, respectively, using a Mycobacterium smegmatis mc2 155 host. The genome of JeTaime is 75,099 bp (142 predicted genes), and that of Luna22 is 53,730 bp (87 predicted genes). Both phages exhibit Siphoviridae morphology.
Collapse
|
16
|
Abstract
Actinobacteriophages are viruses that infect bacterial hosts in the phylum Actinobacteria. More than 17,000 actinobacteriophages have been described and over 3,000 complete genome sequences reported, resulting from large-scale, high-impact, integrated research-education initiatives such as the Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Sciences (SEA-PHAGES) program. Their genomic diversity is enormous; actinobacteriophages comprise many architecturally mosaic genomes with distinct DNA sequences. Their genome diversity is driven by the highly dynamic interactions between phages and their hosts, and prophages can confer a variety of systems that defend against attack by genetically distinct phages; phages can neutralize these defense systems by coding for counter-defense proteins. These phages not only provide insights into diverse and dynamic phage populations but also have provided numerous tools for mycobacterial genetics. A case study using a three-phage cocktail to treat a patient with a drug-resistant Mycobacterium abscessus suggests that phages may have considerable potential for the therapeutic treatment of mycobacterial infections.
Collapse
Affiliation(s)
- Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA;
| |
Collapse
|
17
|
Hashemi Shahraki A, Mirsaeidi M. Phage Therapy for Mycobacterium Abscessus and Strategies to Improve Outcomes. Microorganisms 2021; 9:microorganisms9030596. [PMID: 33799414 PMCID: PMC7999966 DOI: 10.3390/microorganisms9030596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022] Open
Abstract
Members of Mycobacterium abscessus complex are known for causing severe, chronic infections. Members of M. abscessus are a new "antibiotic nightmare" as one of the most resistant organisms to chemotherapeutic agents. Treatment of these infections is challenging due to the either intrinsic or acquired resistance of the M. abscessus complex to the available antibiotics. Recently, successful phage therapy with a cocktail of three phages (one natural lytic phage and two engineered phages) every 12 h for at least 32 weeks has been reported against a severe case of the disseminated M. abscessus subsp. massiliense infection, which underlines the high value of phages against drug-resistant superbugs. This report also highlighted the limitations of phage therapy, such as the absence of lytic phages with a broad host-range against all strains and subspecies of the M. abscessus complex and also the risk of phage resistant bacteria over treatment. Cutting-edge genomic technologies have facilitated the development of engineered phages for therapeutic purposes by introducing new desirable properties, changing host-range and arming the phages with additional killing genes. Here, we review the available literature and suggest new potential solutions based on the progress in phage engineering that can help to overcome the present limitations of M. abscessus treatment.
Collapse
|
18
|
Abdelrahman F, Easwaran M, Daramola OI, Ragab S, Lynch S, Oduselu TJ, Khan FM, Ayobami A, Adnan F, Torrents E, Sanmukh S, El-Shibiny A. Phage-Encoded Endolysins. Antibiotics (Basel) 2021; 10:124. [PMID: 33525684 PMCID: PMC7912344 DOI: 10.3390/antibiotics10020124] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/16/2021] [Accepted: 01/26/2021] [Indexed: 12/17/2022] Open
Abstract
Due to the global emergence of antibiotic resistance, there has been an increase in research surrounding endolysins as an alternative therapeutic. Endolysins are phage-encoded enzymes, utilized by mature phage virions to hydrolyze the cell wall from within. There is significant evidence that proves the ability of endolysins to degrade the peptidoglycan externally without the assistance of phage. Thus, their incorporation in therapeutic strategies has opened new options for therapeutic application against bacterial infections in the human and veterinary sectors, as well as within the agricultural and biotechnology sectors. While endolysins show promising results within the laboratory, it is important to document their resistance, safety, and immunogenicity for in-vivo application. This review aims to provide new insights into the synergy between endolysins and antibiotics, as well as the formulation of endolysins. Thus, it provides crucial information for clinical trials involving endolysins.
Collapse
Affiliation(s)
- Fatma Abdelrahman
- Center for Microbiology and Phage Therapy, Biomedical Sciences, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Maheswaran Easwaran
- Department of Biomedical Engineering, Sethu Institute of Technology, Tamil Nadu 626115, India
| | - Oluwasegun I Daramola
- Department of Biomedical Laboratory Science, College of Medicine, University of Ibadan, Ibadan 200284, Nigeria
| | - Samar Ragab
- Center for Microbiology and Phage Therapy, Biomedical Sciences, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Stephanie Lynch
- School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia
| | - Tolulope J Oduselu
- Department of Biomedical Laboratory Science, College of Medicine, University of Ibadan, Ibadan 200284, Nigeria
| | - Fazal Mehmood Khan
- Center for Biosafety Mega-Science, Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- International College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Akomolafe Ayobami
- Department of Biomedical Laboratory Science, College of Medicine, University of Ibadan, Ibadan 200284, Nigeria
| | - Fazal Adnan
- Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 24090, Pakistan
| | - Eduard Torrents
- Bacterial Infections: Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Swapnil Sanmukh
- Bacterial Infections: Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Biomedical Sciences, Zewail City of Science and Technology, Giza 12578, Egypt
| |
Collapse
|
19
|
Payaslian F, Gradaschi V, Piuri M. Genetic manipulation of phages for therapy using BRED. Curr Opin Biotechnol 2020; 68:8-14. [PMID: 33039679 DOI: 10.1016/j.copbio.2020.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023]
Abstract
The alarming increase in antibiotic resistance has placed the focus on phages as an alternative antimicrobial therapy. Recently, the first patient treatment using engineered phages to combat a mycobacterial infection was successfully performed; genetic modifications were made using Bacteriophage Recombineering of Electroporated DNA (BRED). BRED is a simple technique that allows genetic manipulation of phages. The phage DNA and a recombination substrate, with short homology to the target, are co-electroporated into recombineering proficient bacteria promoting high levels of recombination. After electroporation, cells are recovered and plated in an infectious centre assay. Individual plaques are then screened by PCR to identify the mutant phage. The main characteristics of this technique, the advantages of engineered versus wild type phages for therapeutic purposes and the future perspective of BRED for doing such modifications, are reviewed here.
Collapse
Affiliation(s)
- Florencia Payaslian
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Victoria Gradaschi
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Mariana Piuri
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| |
Collapse
|
20
|
Ko CC, Hatfull GF. Identification of mycobacteriophage toxic genes reveals new features of mycobacterial physiology and morphology. Sci Rep 2020; 10:14670. [PMID: 32887931 PMCID: PMC7474061 DOI: 10.1038/s41598-020-71588-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/07/2020] [Indexed: 01/01/2023] Open
Abstract
Double-stranded DNA tailed bacteriophages typically code for 50-200 genes, of which 15-35 are involved in virion structure and assembly, DNA packaging, lysis, and DNA metabolism. However, vast numbers of other phage genes are small, are not required for lytic growth, and are of unknown function. The 1,885 sequenced mycobacteriophages encompass over 200,000 genes in 7,300 distinct protein 'phamilies', 77% of which are of unknown function. Gene toxicity provides potential insights into function, and here we screened 193 unrelated genes encoded by 13 different mycobacteriophages for their ability to impair the growth of Mycobacterium smegmatis. We identified 45 (23%) mycobacteriophage genes that are toxic when expressed. The impacts on M. smegmatis growth range from mild to severe, but many cause irreversible loss of viability. Expression of most of the severely toxic genes confers altered cellular morphologies, including filamentation, polar bulging, curving, and, surprisingly, loss of viability of one daughter cell at division, suggesting specific impairments of mycobacterial growth. Co-immunoprecipitation and mass spectrometry show that toxicity is frequently associated with interaction with host proteins and alteration or inactivation of their function. Mycobacteriophages thus present a massive reservoir of genes for identifying mycobacterial essential functions, identifying potential drug targets and for exploring mycobacteriophage physiology.
Collapse
Affiliation(s)
- Ching-Chung Ko
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
21
|
Complete Genome Sequences of Mycobacteriophages OKaNui and DroogsArmy. Microbiol Resour Announc 2020; 9:9/33/e00791-20. [PMID: 32817159 PMCID: PMC7427197 DOI: 10.1128/mra.00791-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Mycobacteriophages OKaNui and DroogsArmy were isolated from soil using the bacterial host Mycobacterium smegmatis mc2155, which belongs to the phylum Actinobacteria. OKaNui was discovered in east Mississippi and DroogsArmy in west Alabama in the United States. The genomes of OKaNui and DroogsArmy were 51,424 bp and 53,254 bp long, respectively. Mycobacteriophages OKaNui and DroogsArmy were isolated from soil using the bacterial host Mycobacterium smegmatis mc2155, which belongs to the phylum Actinobacteria. OKaNui was discovered in east Mississippi and DroogsArmy in west Alabama in the United States. The genomes of OKaNui and DroogsArmy were 51,424 bp and 53,254 bp long, respectively.
Collapse
|
22
|
Suarez CA, Franceschelli JJ, Tasselli SE, Morbidoni HR. Weirdo19ES is a novel singleton mycobacteriophage that selects for glycolipid deficient phage-resistant M. smegmatis mutants. PLoS One 2020; 15:e0231881. [PMID: 32357186 PMCID: PMC7194413 DOI: 10.1371/journal.pone.0231881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/02/2020] [Indexed: 11/23/2022] Open
Abstract
The sequencing and bioinformatics analysis of bacteriophages infecting mycobacteria has yielded a large amount of information on their evolution, including that on their environmental propagation on other genera such as Gordonia, closely related to Mycobacterium. However, little is known on mycobacteriophages cell biology such as the nature of their receptor(s) or their replication cycle. As part of our on-going screening for novel mycobacteriophages, we herein report the isolation and genome bioinformatics analysis of Weirdo19ES, a singleton Siphoviridae temperate mycobacteriophage with a 70.19% GC content. Nucleotide and protein sequence comparison to actinobacteriophage databases revealed that Weirdo19ES shows low homology to Gordonia phage Ruthy and mycobacteriophages falling in clusters Q and G and to singleton DS6A.Weirdo19ES also displays uncommon features such as a very short Lysin A gene (with only one enzymatic domain) and two putative HNH endonucleases. Mycobacterium smegmatis mutants resistant to Weirdo19ES are cross- resistant to I3. In agreement with that phenotype, analysis of cell envelope of those mutants showed that Weirdo19ES shares receptors with the transducing mycobacteriophage I3.This singleton mycobacteriophage adds up to the uncommonness of local mycobacteriophages previously isolated by our group and helps understanding the nature of mycobacteriophage receptors.
Collapse
Affiliation(s)
- Cristian Alejandro Suarez
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Jorgelina Judith Franceschelli
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Sabrina Emilse Tasselli
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Héctor Ricardo Morbidoni
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
- * E-mail:
| |
Collapse
|
23
|
Boon M, De Zitter E, De Smet J, Wagemans J, Voet M, Pennemann FL, Schalck T, Kuznedelov K, Severinov K, Van Meervelt L, De Maeyer M, Lavigne R. 'Drc', a structurally novel ssDNA-binding transcription regulator of N4-related bacterial viruses. Nucleic Acids Res 2020; 48:445-459. [PMID: 31724707 PMCID: PMC7145618 DOI: 10.1093/nar/gkz1048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022] Open
Abstract
Bacterial viruses encode a vast number of ORFan genes that lack similarity to any other known proteins. Here, we present a 2.20 Å crystal structure of N4-related Pseudomonas virus LUZ7 ORFan gp14, and elucidate its function. We demonstrate that gp14, termed here as Drc (ssDNA-binding RNA Polymerase Cofactor), preferentially binds single-stranded DNA, yet contains a structural fold distinct from other ssDNA-binding proteins (SSBs). By comparison with other SSB folds and creation of truncation and amino acid substitution mutants, we provide the first evidence for the binding mechanism of this unique fold. From a biological perspective, Drc interacts with the phage-encoded RNA Polymerase complex (RNAPII), implying a functional role as an SSB required for the transition from early to middle gene transcription during phage infection. Similar to the coliphage N4 gp2 protein, Drc likely binds locally unwound middle promoters and recruits the phage RNA polymerase. However, unlike gp2, Drc does not seem to need an additional cofactor for promoter melting. A comparison among N4-related phage genera highlights the evolutionary diversity of SSB proteins in an otherwise conserved transcription regulation mechanism.
Collapse
Affiliation(s)
- Maarten Boon
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven 3001, Belgium
| | - Elke De Zitter
- Department of Chemistry, Biomolecular Architecture, KU Leuven, Leuven 3001, Belgium
| | - Jeroen De Smet
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven 3001, Belgium
| | - Jeroen Wagemans
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven 3001, Belgium
| | - Marleen Voet
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven 3001, Belgium
| | - Friederike L Pennemann
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven 3001, Belgium
| | - Thomas Schalck
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven 3001, Belgium
| | | | | | - Luc Van Meervelt
- Department of Chemistry, Biomolecular Architecture, KU Leuven, Leuven 3001, Belgium
| | - Marc De Maeyer
- Department of Chemistry, Laboratory of Biomolecular Modelling and Design, KU Leuven, Leuven 3001, Belgium
| | - Rob Lavigne
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven 3001, Belgium
| |
Collapse
|
24
|
Shanks RA, Hazel AN, Jones WH, Segura-Totten M. Genome Sequence of Mycobacterium Phage LilHazelnut. Microbiol Resour Announc 2019; 8:e00431-19. [PMID: 31072888 PMCID: PMC6509537 DOI: 10.1128/mra.00431-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/18/2019] [Indexed: 11/26/2022] Open
Abstract
Here, we describe LilHazelnut, a novel mycobacteriophage that infects Mycobacterium smegmatis mc2155. LilHazelnut is a cluster Q phage that shares 99% nucleotide identity with phage Giles, is 53,746 bp in length, and has a G+C content of 67.5%. LilHazelnut is a temperate Siphoviridae virus, as is typical of cluster Q family members.
Collapse
Affiliation(s)
- Ryan A Shanks
- Department of Biology, University of North Georgia, Dahlonega, Georgia, USA
| | - Ashley N Hazel
- Department of Biology, University of North Georgia, Dahlonega, Georgia, USA
| | - William H Jones
- Department of Biology, University of North Georgia, Dahlonega, Georgia, USA
| | | |
Collapse
|
25
|
Abstract
Mycobacteriophages are viruses that infect mycobacterial hosts. A large number of mycobacteriophages have been isolated and genomically characterized, providing insights into viral diversity and evolution, as well as fueling development of tools for mycobacterial genetics. Mycobacteriophages have intimate relationships with their hosts and provide insights into the genetics and physiology of the mycobacteria and tools for potential clinical applications such as drug development, diagnosis, vaccines, and potentially therapy.
Collapse
|
26
|
Abstract
The study of bacteriophages (phages) and prophages has provided key insights into almost every cellular process as well as led to the discovery of unexpected new mechanisms and the development of valuable tools. This is exemplified for RNA-based regulation. For instance, the characterization and exploitation of the antiphage CRISPR (clustered regularly interspaced short palindromic repeat) systems is revolutionizing molecular biology. Phage-encoded proteins such as the RNA-binding MS2 protein, which is broadly used to isolate tagged RNAs, also have been developed as valuable tools. Hfq, the RNA chaperone protein central to the function of many base-pairing small RNAs (sRNAs), was first characterized as a bacterial host factor required for Qβ phage replication. The ongoing studies of RNAs are continuing to reveal regulatory connections between infecting phages, prophages, and bacteria and to provide novel insights. There are bacterial and prophage sRNAs that regulate prophage genes, which impact bacterial virulence as well as bacterial cell killing. Conversely, phage- and prophage-encoded sRNAs modulate the expression of bacterial genes modifying metabolism. An interesting subcategory of the prophage-encoded sRNAs are sponge RNAs that inhibit the activities of bacterial-encoded sRNAs. Phages also affect posttranscriptional regulation in bacteria through proteins that inhibit or alter the activities of key bacterial proteins involved in posttranscriptional regulation. However, what is most exciting about phage and prophage research, given the millions of phage-encoded genes that have not yet been characterized, is the vast potential for discovering new RNA regulators and novel mechanisms and for gaining insight into the evolution of regulatory RNAs.
Collapse
|
27
|
Dedrick RM, Guerrero Bustamante CA, Garlena RA, Pinches RS, Cornely K, Hatfull GF. Mycobacteriophage ZoeJ: A broad host-range close relative of mycobacteriophage TM4. Tuberculosis (Edinb) 2019; 115:14-23. [PMID: 30948168 DOI: 10.1016/j.tube.2019.01.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/09/2019] [Accepted: 01/13/2019] [Indexed: 10/27/2022]
Abstract
A collection of over 1600 sequenced bacteriophages isolated on a single host strain, Mycobacterium smegmatis mc2155, can be grouped into over two dozen types that have little or no nucleotide sequence similarity to each other. One group, Cluster K, can be divided into several subclusters, and the well-characterized and much exploited phage TM4 lies in Subcluster K2. Many of the Cluster K phages have broad host ranges and infect both fast- and slow-growing mycobacterial strains. Here we describe phage ZoeJ, a new Subcluster K2 member, which infects a broad spectrum of mycobacterial hosts including M. smegmatis, Mycobacterium tuberculosis, and Mycobacterium avium. ZoeJ has extensive sequence similarity to TM4, and comparative analysis reveals the precise deletion conferring the lytic phenotype of TM4. The ZoeJ immunity repressor was identified as gene 45, which is prophage-expressed, is required for lysogeny, and is sufficient to confer superinfection immunity to ZoeJ. ZoeJ gp45 also confers immunity to Subcluster K2 phage Milly, and Subcluster K1 phages Adephagia and CrimD, but surprisingly not to TM4. RNAseq analysis reveals the temporal pattern of early and late gene expressions in ZoeJ lytic growth and suggests a role for the ESAS motifs for gene regulation.
Collapse
Affiliation(s)
- Rebekah M Dedrick
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Rebecca A Garlena
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - R Seth Pinches
- Department of Chemistry and Biochemistry, Providence College, Providence, RI 02918, USA
| | - Kathleen Cornely
- Department of Chemistry and Biochemistry, Providence College, Providence, RI 02918, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
28
|
Marinelli LJ, Piuri M, Hatfull GF. Genetic Manipulation of Lytic Bacteriophages with BRED: Bacteriophage Recombineering of Electroporated DNA. Methods Mol Biol 2019; 1898:69-80. [PMID: 30570724 DOI: 10.1007/978-1-4939-8940-9_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We describe a recombineering-based method for the genetic manipulation of lytically replicating bacteriophages, focusing on mycobacteriophages. The approach utilizes recombineering-proficient strains of Mycobacterium smegmatis and employs a cotransformation strategy with purified phage genomic DNA and a mutagenic substrate, which selects for only those cells that are competent to take up DNA. The cotransformation method, combined with the high rates of recombination obtained in M. smegmatis recombineering strains, allows for the efficient and rapid generation of bacteriophage mutants.
Collapse
Affiliation(s)
- Laura J Marinelli
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Mariana Piuri
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Buenos Aires, Argentina
- Laboratorio "Bacteriófagos y Aplicaciones Biotecnológicas", Departamento de Química Biológica, FCEyN, UBA, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina
| | - Graham F Hatfull
- Department of Biological Sciences and Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
29
|
Howard-Varona C, Hargreaves KR, Solonenko NE, Markillie LM, White RA, Brewer HM, Ansong C, Orr G, Adkins JN, Sullivan MB. Multiple mechanisms drive phage infection efficiency in nearly identical hosts. THE ISME JOURNAL 2018; 12:1605-1618. [PMID: 29568113 PMCID: PMC5955906 DOI: 10.1038/s41396-018-0099-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 01/08/2018] [Accepted: 02/20/2018] [Indexed: 12/15/2022]
Abstract
Phage-host interactions are critical to ecology, evolution, and biotechnology. Central to those is infection efficiency, which remains poorly understood, particularly in nature. Here we apply genome-wide transcriptomics and proteomics to investigate infection efficiency in nature's own experiment: two nearly identical (genetically and physiologically) Bacteroidetes bacterial strains (host18 and host38) that are genetically intractable, but environmentally important, where phage infection efficiency varies. On host18, specialist phage phi18:3 infects efficiently, whereas generalist phi38:1 infects inefficiently. On host38, only phi38:1 infects, and efficiently. Overall, phi18:3 globally repressed host18's transcriptome and proteome, expressed genes that likely evaded host restriction/modification (R/M) defenses and controlled its metabolism, and synchronized phage transcription with translation. In contrast, phi38:1 failed to repress host18's transcriptome and proteome, did not evade host R/M defenses or express genes for metabolism control, did not synchronize transcripts with proteins and its protein abundances were likely targeted by host proteases. However, on host38, phi38:1 globally repressed host transcriptome and proteome, synchronized phage transcription with translation, and infected host38 efficiently. Together these findings reveal multiple infection inefficiencies. While this contrasts the single mechanisms often revealed in laboratory mutant studies, it likely better reflects the phage-host interaction dynamics that occur in nature.
Collapse
Affiliation(s)
| | | | | | - Lye Meng Markillie
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory (PNNL), Richland, WA, USA
| | | | - Heather M Brewer
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory (PNNL), Richland, WA, USA
| | | | - Galya Orr
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory (PNNL), Richland, WA, USA
| | | | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, USA.
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
30
|
Ko CC, Hatfull GF. Mycobacteriophage Fruitloop gp52 inactivates Wag31 (DivIVA) to prevent heterotypic superinfection. Mol Microbiol 2018; 108:443-460. [PMID: 29488662 DOI: 10.1111/mmi.13946] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2018] [Indexed: 01/04/2023]
Abstract
Bacteriophages engage in complex dynamic interactions with their bacterial hosts and with each other. Bacteria have numerous mechanisms to resist phage infection, and phages must co-evolve by overcoming bacterial resistance or by choosing an alternative host. Phages also compete with each other, both during lysogeny by prophage-mediated defense against viral attack and by superinfection exclusion during lytic replication. Phages are enormously diverse genetically and are replete with small genes of unknown function, many of which are not required for lytic growth, but which may modulate these bacteria-phage and phage-phage dynamics. Using cellular toxicity of phage gene overexpression as an assay, we identified the 93-residue protein gp52 encoded by Cluster F mycobacteriophage Fruitloop. The toxicity of Fruitloop gp52 overexpression results from interaction with and inactivation of Wag31 (DivIVA), an essential Mycobacterium smegmatis protein organizing cell wall biosynthesis at the growing cellular poles. Fruitloop gene 52 is expressed early in lytic growth and is not required for normal Fruitloop lytic replication but interferes with Subcluster B2 phages such as Hedgerow and Rosebush. We conclude that Hedgerow and Rosebush are Wag31-dependent phages and that Fruitloop gp52 confers heterotypic superinfection exclusion by inactivating Wag31.
Collapse
Affiliation(s)
- Ching-Chung Ko
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|
31
|
Virus-host protein-protein interactions of mycobacteriophage Giles. Sci Rep 2017; 7:16514. [PMID: 29184079 PMCID: PMC5705681 DOI: 10.1038/s41598-017-16303-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/31/2017] [Indexed: 01/21/2023] Open
Abstract
Mycobacteriophage are viruses that infect mycobacteria. More than 1,400 mycobacteriophage genomes have been sequenced, coding for over one hundred thousand proteins of unknown functions. Here we investigate mycobacteriophage Giles-host protein-protein interactions (PPIs) using yeast two-hybrid screening (Y2H). A total of 25 reproducible PPIs were found for a selected set of 10 Giles proteins, including a putative virion assembly protein (gp17), the phage integrase (gp29), the endolysin (gp31), the phage repressor (gp47), and six proteins of unknown function (gp34, gp35, gp54, gp56, gp64, and gp65). We note that overexpression of the proteins is toxic to M. smegmatis, although whether this toxicity and the associated changes in cellular morphology are related to the putative interactions revealed in the Y2H screen is unclear.
Collapse
|
32
|
Small and Smaller-sRNAs and MicroRNAs in the Regulation of Toxin Gene Expression in Prokaryotic Cells: A Mini-Review. Toxins (Basel) 2017; 9:toxins9060181. [PMID: 28556797 PMCID: PMC5488031 DOI: 10.3390/toxins9060181] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/09/2017] [Accepted: 05/26/2017] [Indexed: 12/14/2022] Open
Abstract
Non-coding small RNAs (sRNAs) have been identified in the wide range of bacteria (also pathogenic species) and found to play an important role in the regulation of many processes, including toxin gene expression. The best characterized prokaryotic sRNAs regulate gene expression by base pairing with mRNA targets and fall into two broad classes: cis-encoded sRNAs (also called antisense RNA) and trans-acting sRNAs. Molecules from the second class are frequently considered as the most related to eukaryotic microRNAs. Interestingly, typical microRNA-size RNA molecules have also been reported in prokaryotic cells, although they have received little attention up to now. In this work we have collected information about all three types of small prokaryotic RNAs in the context of the regulation of toxin gene expression.
Collapse
|
33
|
Chevallereau A, Blasdel BG, De Smet J, Monot M, Zimmermann M, Kogadeeva M, Sauer U, Jorth P, Whiteley M, Debarbieux L, Lavigne R. Next-Generation "-omics" Approaches Reveal a Massive Alteration of Host RNA Metabolism during Bacteriophage Infection of Pseudomonas aeruginosa. PLoS Genet 2016; 12:e1006134. [PMID: 27380413 PMCID: PMC4933390 DOI: 10.1371/journal.pgen.1006134] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/31/2016] [Indexed: 01/08/2023] Open
Abstract
As interest in the therapeutic and biotechnological potentials of bacteriophages has grown, so has value in understanding their basic biology. However, detailed knowledge of infection cycles has been limited to a small number of model bacteriophages, mostly infecting Escherichia coli. We present here the first analysis coupling data obtained from global next-generation approaches, RNA-Sequencing and metabolomics, to characterize interactions between the virulent bacteriophage PAK_P3 and its host Pseudomonas aeruginosa. We detected a dramatic global depletion of bacterial transcripts coupled with their replacement by viral RNAs over the course of infection, eventually leading to drastic changes in pyrimidine metabolism. This process relies on host machinery hijacking as suggested by the strong up-regulation of one bacterial operon involved in RNA processing. Moreover, we found that RNA-based regulation plays a central role in PAK_P3 lifecycle as antisense transcripts are produced mainly during the early stage of infection and viral small non coding RNAs are massively expressed at the end of infection. This work highlights the prominent role of RNA metabolism in the infection strategy of a bacteriophage belonging to a new characterized sub-family of viruses with promising therapeutic potential.
Collapse
Affiliation(s)
- Anne Chevallereau
- Institut Pasteur, Molecular Biology of the Gene in Extremophiles Unit, Department of Microbiology, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Bob G. Blasdel
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Jeroen De Smet
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Marc Monot
- Institut Pasteur, Laboratoire Pathogenèse des bactéries anaérobies, Département de Microbiologie, Paris, France
| | - Michael Zimmermann
- Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Maria Kogadeeva
- Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Peter Jorth
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Infectious Disease, University of Texas, Austin, Texas, United States of America
| | - Marvin Whiteley
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Infectious Disease, University of Texas, Austin, Texas, United States of America
| | - Laurent Debarbieux
- Institut Pasteur, Molecular Biology of the Gene in Extremophiles Unit, Department of Microbiology, Paris, France
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| |
Collapse
|
34
|
Dedrick RM, Mavrich TN, Ng WL, Cervantes Reyes JC, Olm MR, Rush RE, Jacobs-Sera D, Russell DA, Hatfull GF. Function, expression, specificity, diversity and incompatibility of actinobacteriophage parABS systems. Mol Microbiol 2016; 101:625-44. [PMID: 27146086 DOI: 10.1111/mmi.13414] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2016] [Indexed: 11/27/2022]
Abstract
More than 180 individual phages infecting hosts in the phylum Actinobacteria have been sequenced and grouped into Cluster A because of their similar overall nucleotide sequences and genome architectures. These Cluster A phages are either temperate or derivatives of temperate parents, and most have an integration cassette near the centre of the genome containing an integrase gene and attP. However, about 20% of the phages lack an integration cassette, which is replaced by a 1.4 kbp segment with predicted partitioning functions, including plasmid-like parA and parB genes. Phage RedRock forms stable lysogens in Mycobacterium smegmatis in which the prophage replicates at 2.4 copies/chromosome and the partitioning system confers prophage maintenance. The parAB genes are expressed upon RedRock infection of M. smegmatis, but are downregulated once lysogeny is established by binding of RedRock ParB to parS-L, one of two centromere-like sites flanking the parAB genes. The RedRock parS-L and parS-R sites are composed of eight directly repeated copies of an 8 bp motif that is recognized by ParB. The actinobacteriophage parABS cassettes span considerable sequence diversity and specificity, providing a suite of tools for use in mycobacterial genetics.
Collapse
Affiliation(s)
- Rebekah M Dedrick
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Travis N Mavrich
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Wei L Ng
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | | | - Matthew R Olm
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Rachael E Rush
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Deborah Jacobs-Sera
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Daniel A Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|
35
|
Pohane AA, Jain V. Insights into the regulation of bacteriophage endolysin: multiple means to the same end. Microbiology (Reading) 2015; 161:2269-76. [DOI: 10.1099/mic.0.000190] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
36
|
Halleran A, Clamons S, Saha M. Transcriptomic Characterization of an Infection of Mycobacterium smegmatis by the Cluster A4 Mycobacteriophage Kampy. PLoS One 2015; 10:e0141100. [PMID: 26513661 PMCID: PMC4626039 DOI: 10.1371/journal.pone.0141100] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/04/2015] [Indexed: 01/29/2023] Open
Abstract
The mycobacteriophages, phages that infect the genus Mycobacterium, display profound genetic diversity and widespread geographical distribution, and possess significant medical and ecological importance. However, most of the majority of functions of mycobacteriophage proteins and the identity of most genetic regulatory elements remain unknown. We characterized the gene expression profile of Kampy, a cluster A4 mycobacteriophage, during infection of its host, Mycobacterium smegmatis, using RNA-Seq and mass spectrometry. We show that mycobacteriophage Kampy transcription occurs in roughly two phases, an early phase consisting of genes for metabolism, DNA synthesis, and gene regulation, and a late phase consisting of structural genes and lysis genes. Additionally, we identify the earliest genes transcribed during infection, along with several other possible regulatory units not obvious from inspection of Kampy's genomic structure. The transcriptional profile of Kampy appears similar to that of mycobacteriophage TM4 but unlike that of mycobacteriophage Giles, a result which further expands our understanding of the diversity of mycobacteriophage gene expression programs during infection.
Collapse
Affiliation(s)
- Andrew Halleran
- Department of Biology, College of William and Mary, Williamsburg, Virginia, United States of America
| | - Samuel Clamons
- Department of Biology, College of William and Mary, Williamsburg, Virginia, United States of America
| | - Margaret Saha
- Department of Biology, College of William and Mary, Williamsburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
37
|
Villanueva VM, Oldfield LM, Hatfull GF. An Unusual Phage Repressor Encoded by Mycobacteriophage BPs. PLoS One 2015; 10:e0137187. [PMID: 26332854 PMCID: PMC4557955 DOI: 10.1371/journal.pone.0137187] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/14/2015] [Indexed: 01/05/2023] Open
Abstract
Temperate bacteriophages express transcription repressors that maintain lysogeny by down-regulating lytic promoters and confer superinfection immunity. Repressor regulation is critical to the outcome of infection—lysogenic or lytic growth—as well as prophage induction into lytic replication. Mycobacteriophage BPs and its relatives use an unusual integration-dependent immunity system in which the phage attachment site (attP) is located within the repressor gene (33) such that site-specific integration leads to synthesis of a prophage-encoded product (gp33103) that is 33 residues shorter at its C-terminus than the virally-encoded protein (gp33136). However, the shorter form of the repressor (gp33103) is stable and active in repression of the early lytic promoter PR, whereas the longer virally-encoded form (gp33136) is inactive due to targeted degradation via a C-terminal ssrA-like tag. We show here that both forms of the repressor bind similarly to the 33–34 intergenic regulatory region, and that BPs gp33103 is a tetramer in solution. The BPs gp33103 repressor binds to five regulatory regions spanning the BPs genome, and regulates four promoters including the early lytic promoter, PR. BPs gp33103 has a complex pattern of DNA recognition in which a full operator binding site contains two half sites separated by a variable spacer, and BPs gp33103 induces a DNA bend at the full operator site but not a half site. The operator site structure is unusual in that one half site corresponds to a 12 bp palindrome identified previously, but the other half site is a highly variable variant of the palindrome.
Collapse
Affiliation(s)
- Valerie M. Villanueva
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, United States of America
| | - Lauren M. Oldfield
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, United States of America
| | - Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, United States of America
- * E-mail:
| |
Collapse
|
38
|
Petrova ZO, Broussard GW, Hatfull GF. Mycobacteriophage-repressor-mediated immunity as a selectable genetic marker: Adephagia and BPs repressor selection. MICROBIOLOGY-SGM 2015; 161:1539-1551. [PMID: 26066798 DOI: 10.1099/mic.0.000120] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycobacteriophages provide an abundance of systems for use in mycobacterial genetics, including manipulation of Mycobacterium tuberculosis. Because of the dearth of antibiotic resistance cassettes and biosafety concerns in constructing recombinant virulent M. tuberculosis strains, we developed the use of mycobacteriophage-encoded repressor genes that can be selected in the presence of lytic versions of their cognate phages. The phage Adephagia repressor gene (43) was identified through its ability to confer immunity to Adephagia superinfection, together with the mapping of mutations in gene 43 that confer a clear-phage phenotype. Plasmid transformants containing either Adephagia 43 or the previously identified BPs repressor 33 can be readily selected following electroporation using engineered lytic derivatives of Adephagia and BPs, respectively. Selection is as efficient as antibiotic selection, can be used with either single-copy integration vectors or with extrachromosomal vectors, and works similarly in both Mycobacterium smegmatis and M. tuberculosis.
Collapse
Affiliation(s)
- Zaritza O Petrova
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Gregory W Broussard
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
39
|
Abstract
Bacteriophages are the most abundant biological entities in the biosphere, and this dynamic and old population is, not surprisingly, highly diverse genetically. Relative to bacterial genomics, phage genomics has advanced slowly, and a higher-resolution picture of the phagosphere is only just emerging. This view reveals substantial diversity even among phages known to infect a common host strain, but the relationships are complex, with mosaic genomic architectures generated by illegitimate recombination over a long period of evolutionary history.
Collapse
|
40
|
The Protein Interactome of Mycobacteriophage Giles Predicts Functions for Unknown Proteins. J Bacteriol 2015; 197:2508-16. [PMID: 25986902 DOI: 10.1128/jb.00164-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/09/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Mycobacteriophages are viruses that infect mycobacterial hosts and are prevalent in the environment. Nearly 700 mycobacteriophage genomes have been completely sequenced, revealing considerable diversity and genetic novelty. Here, we have determined the protein complement of mycobacteriophage Giles by mass spectrometry and mapped its genome-wide protein interactome to help elucidate the roles of its 77 predicted proteins, 50% of which have no known function. About 22,000 individual yeast two-hybrid (Y2H) tests with four different Y2H vectors, followed by filtering and retest screens, resulted in 324 reproducible protein-protein interactions, including 171 (136 nonredundant) high-confidence interactions. The complete set of high-confidence interactions among Giles proteins reveals new mechanistic details and predicts functions for unknown proteins. The Giles interactome is the first for any mycobacteriophage and one of just five known phage interactomes so far. Our results will help in understanding mycobacteriophage biology and aid in development of new genetic and therapeutic tools to understand Mycobacterium tuberculosis. IMPORTANCE Mycobacterium tuberculosis causes over 9 million new cases of tuberculosis each year. Mycobacteriophages, viruses of mycobacterial hosts, hold considerable potential to understand phage diversity, evolution, and mycobacterial biology, aiding in the development of therapeutic tools to control mycobacterial infections. The mycobacteriophage Giles protein-protein interaction network allows us to predict functions for unknown proteins and shed light on major biological processes in phage biology. For example, Giles gp76, a protein of unknown function, is found to associate with phage packaging and maturation. The functions of mycobacteriophage-derived proteins may suggest novel therapeutic approaches for tuberculosis. Our ORFeome clone set of Giles proteins and the interactome data will be useful resources for phage interactomics.
Collapse
|
41
|
Abstract
Mycobacteriophages--viruses of mycobacterial hosts--are genetically diverse but morphologically are all classified in the Caudovirales with double-stranded DNA and tails. We describe here a group of five closely related mycobacteriophages--Corndog, Catdawg, Dylan, Firecracker, and YungJamal--designated as Cluster O with long flexible tails but with unusual prolate capsids. Proteomic analysis of phage Corndog particles, Catdawg particles, and Corndog-infected cells confirms expression of half of the predicted gene products and indicates a non-canonical mechanism for translation of the Corndog tape measure protein. Bioinformatic analysis identifies 8-9 strongly predicted SigA promoters and all five Cluster O genomes contain more than 30 copies of a 17 bp repeat sequence with dyad symmetry located throughout the genomes. Comparison of the Cluster O phages provides insights into phage genome evolution including the processes of gene flux by horizontal genetic exchange.
Collapse
|
42
|
Hia F, Chionh YH, Pang YLJ, DeMott MS, McBee ME, Dedon PC. Mycobacterial RNA isolation optimized for non-coding RNA: high fidelity isolation of 5S rRNA from Mycobacterium bovis BCG reveals novel post-transcriptional processing and a complete spectrum of modified ribonucleosides. Nucleic Acids Res 2014; 43:e32. [PMID: 25539917 PMCID: PMC4357692 DOI: 10.1093/nar/gku1317] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
A major challenge in the study of mycobacterial RNA biology is the lack of a comprehensive RNA isolation method that overcomes the unusual cell wall to faithfully yield the full spectrum of non-coding RNA (ncRNA) species. Here, we describe a simple and robust procedure optimized for the isolation of total ncRNA, including 5S, 16S and 23S ribosomal RNA (rRNA) and tRNA, from mycobacteria, using Mycobacterium bovis BCG to illustrate the method. Based on a combination of mechanical disruption and liquid and solid-phase technologies, the method produces all major species of ncRNA in high yield and with high integrity, enabling direct chemical and sequence analysis of the ncRNA species. The reproducibility of the method with BCG was evident in bioanalyzer electrophoretic analysis of isolated RNA, which revealed quantitatively significant differences in the ncRNA profiles of exponentially growing and non-replicating hypoxic bacilli. The method also overcame an historical inconsistency in 5S rRNA isolation, with direct sequencing revealing a novel post-transcriptional processing of 5S rRNA to its functional form and with chemical analysis revealing seven post-transcriptional ribonucleoside modifications in the 5S rRNA. This optimized RNA isolation procedure thus provides a means to more rigorously explore the biology of ncRNA species in mycobacteria.
Collapse
Affiliation(s)
- Fabian Hia
- Singapore MIT Alliance for Research and Technology, 1 CREATE Way, 138602, Singapore
| | - Yok Hian Chionh
- Singapore MIT Alliance for Research and Technology, 1 CREATE Way, 138602, Singapore Department of Microbiology and Immunology Programme, National University of Singapore, 117456, Singapore
| | - Yan Ling Joy Pang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael S DeMott
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Megan E McBee
- Singapore MIT Alliance for Research and Technology, 1 CREATE Way, 138602, Singapore
| | - Peter C Dedon
- Singapore MIT Alliance for Research and Technology, 1 CREATE Way, 138602, Singapore Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
43
|
Genomics and proteomics of mycobacteriophage patience, an accidental tourist in the Mycobacterium neighborhood. mBio 2014; 5:e02145. [PMID: 25467442 PMCID: PMC4324244 DOI: 10.1128/mbio.02145-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Newly emerging human viruses such as Ebola virus, severe acute respiratory syndrome (SARS) virus, and HIV likely originate within an extant population of viruses in nonhuman hosts and acquire the ability to infect and cause disease in humans. Although several mechanisms preventing viral infection of particular hosts have been described, the mechanisms and constraints on viral host expansion are ill defined. We describe here mycobacteriophage Patience, a newly isolated phage recovered using Mycobacterium smegmatis mc(2)155 as a host. Patience has genomic features distinct from its M. smegmatis host, including a much lower GC content (50.3% versus 67.4%) and an abundance of codons that are rarely used in M. smegmatis. Nonetheless, it propagates well in M. smegmatis, and we demonstrate the use of mass spectrometry to show expression of over 75% of the predicted proteins, to identify new genes, to refine the genome annotation, and to estimate protein abundance. We propose that Patience evolved primarily among lower-GC hosts and that the disparities between its genomic profile and that of M. smegmatis presented only a minimal barrier to host expansion. Rapid adaptions to its new host include recent acquisition of higher-GC genes, expression of out-of-frame proteins within predicted genes, and codon selection among highly expressed genes toward the translational apparatus of its new host. IMPORTANCE The mycobacteriophage Patience genome has a notably lower GC content (50.3%) than its Mycobacterium smegmatis host (67.4%) and has markedly different codon usage biases. The viral genome has an abundance of codons that are rare in the host and are decoded by wobble tRNA pairing, although the phage grows well and expression of most of the genes is detected by mass spectrometry. Patience thus has the genomic profile of a virus that evolved primarily in one type of host genetic landscape (moderate-GC bacteria) but has found its way into a distinctly different high-GC environment. Although Patience genes are ill matched to the host expression apparatus, this is of little functional consequence and has not evidently imposed a barrier to migration across the microbial landscape. Interestingly, comparison of expression levels and codon usage profiles reveals evidence of codon selection as the genome evolves and adapts to its new environment.
Collapse
|
44
|
Mutational analysis of the mycobacteriophage BPs promoter PR reveals context-dependent sequences for mycobacterial gene expression. J Bacteriol 2014; 196:3589-97. [PMID: 25092027 DOI: 10.1128/jb.01801-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PR promoter of mycobacteriophage BPs directs early lytic gene expression and is under the control of the BPs repressor, gp33. Reporter gene fusions showed that PR has modest activity in an extrachromosomal context but has activity that is barely detectable in an integrated context, even in the absence of its repressor. Mutational dissection of PR showed that it uses a canonical -10 hexamer recognized by SigA, and mutants with mutations to the sequence 5'-TATAMT had the greatest activities. It does not contain a 5'-TGN-extended -10 sequence, although mutants with mutations creating an extended -10 sequence had substantially increased promoter activity. Mutations in the -35 hexamer also influenced promoter activity but were strongly context dependent, and similar substitutions in the -35 hexamer differentially affected promoter activity, depending on the -10 and extended -10 motifs. This warrants caution in the construction of synthetic promoters or the bioinformatic prediction of promoter activity. Combinations of mutations throughout PR generated a calibrated series of promoters for expression of stably integrated recombinant genes in both Mycobacterium smegmatis and M. tuberculosis, with maximal promoter activity being more than 2-fold that of the strong hsp60 promoter.
Collapse
|
45
|
Chandra G, Chater KF. Developmental biology of Streptomyces from the perspective of 100 actinobacterial genome sequences. FEMS Microbiol Rev 2014; 38:345-79. [PMID: 24164321 PMCID: PMC4255298 DOI: 10.1111/1574-6976.12047] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/06/2013] [Accepted: 08/20/2013] [Indexed: 12/22/2022] Open
Abstract
To illuminate the evolution and mechanisms of actinobacterial complexity, we evaluate the distribution and origins of known Streptomyces developmental genes and the developmental significance of actinobacteria-specific genes. As an aid, we developed the Actinoblast database of reciprocal blastp best hits between the Streptomyces coelicolor genome and more than 100 other actinobacterial genomes (http://streptomyces.org.uk/actinoblast/). We suggest that the emergence of morphological complexity was underpinned by special features of early actinobacteria, such as polar growth and the coupled participation of regulatory Wbl proteins and the redox-protecting thiol mycothiol in transducing a transient nitric oxide signal generated during physiologically stressful growth transitions. It seems that some cell growth and division proteins of early actinobacteria have acquired greater importance for sporulation of complex actinobacteria than for mycelial growth, in which septa are infrequent and not associated with complete cell separation. The acquisition of extracellular proteins with structural roles, a highly regulated extracellular protease cascade, and additional regulatory genes allowed early actinobacterial stationary phase processes to be redeployed in the emergence of aerial hyphae from mycelial mats and in the formation of spore chains. These extracellular proteins may have contributed to speciation. Simpler members of morphologically diverse clades have lost some developmental genes.
Collapse
|
46
|
|
47
|
Abstract
ABSTRACT
Mycobacteriophages have provided numerous essential tools for mycobacterial genetics, including delivery systems for transposons, reporter genes, and allelic exchange substrates, and components for plasmid vectors and mutagenesis. Their genetically diverse genomes also reveal insights into the broader nature of the phage population and the evolutionary mechanisms that give rise to it. The substantial advances in our understanding of the biology of mycobacteriophages including a large collection of completely sequenced genomes indicates a rich potential for further contributions in tuberculosis genetics and beyond.
Collapse
|
48
|
Hatfull GF. Molecular Genetics of Mycobacteriophages. Microbiol Spectr 2014; 2:1-36. [PMID: 25328854 PMCID: PMC4199240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023] Open
Abstract
Mycobacteriophages have provided numerous essential tools for mycobacterial genetics, including delivery systems for transposons, reporter genes, and allelic exchange substrates, and components for plasmid vectors and mutagenesis. Their genetically diverse genomes also reveal insights into the broader nature of the phage population and the evolutionary mechanisms that give rise to it. The substantial advances in our understanding of the biology of mycobacteriophages including a large collection of completely sequenced genomes indicates a rich potential for further contributions in tuberculosis genetics and beyond.
Collapse
Affiliation(s)
- Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
49
|
Cluster M mycobacteriophages Bongo, PegLeg, and Rey with unusually large repertoires of tRNA isotypes. J Virol 2013; 88:2461-80. [PMID: 24335314 DOI: 10.1128/jvi.03363-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED Genomic analysis of a large set of phages infecting the common host Mycobacterium smegmatis mc(2)155 shows that they span considerable genetic diversity. There are more than 20 distinct types that lack nucleotide similarity with each other, and there is considerable diversity within most of the groups. Three newly isolated temperate mycobacteriophages, Bongo, PegLeg, and Rey, constitute a new group (cluster M), with the closely related phages Bongo and PegLeg forming subcluster M1 and the more distantly related Rey forming subcluster M2. The cluster M mycobacteriophages have siphoviral morphologies with unusually long tails, are homoimmune, and have larger than average genomes (80.2 to 83.7 kbp). They exhibit a variety of features not previously described in other mycobacteriophages, including noncanonical genome architectures and several unusual sets of conserved repeated sequences suggesting novel regulatory systems for both transcription and translation. In addition to containing transfer-messenger RNA and RtcB-like RNA ligase genes, their genomes encode 21 to 24 tRNA genes encompassing complete or nearly complete sets of isotypes. We predict that these tRNAs are used in late lytic growth, likely compensating for the degradation or inadequacy of host tRNAs. They may represent a complete set of tRNAs necessary for late lytic growth, especially when taken together with the apparent lack of codons in the same late genes that correspond to tRNAs that the genomes of the phages do not obviously encode. IMPORTANCE The bacteriophage population is vast, dynamic, and old and plays a central role in bacterial pathogenicity. We know surprisingly little about the genetic diversity of the phage population, although metagenomic and phage genome sequencing indicates that it is great. Probing the depth of genetic diversity of phages of a common host, Mycobacterium smegmatis, provides a higher resolution of the phage population and how it has evolved. Three new phages constituting a new cluster M further expand the diversity of the mycobacteriophages and introduce novel features. As such, they provide insights into phage genome architecture, virion structure, and gene regulation at the transcriptional and translational levels.
Collapse
|