1
|
An in silico reverse vaccinology study of Brachyspira pilosicoli, the causative organism of intestinal spirochaetosis, to identify putative vaccine candidates. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
2
|
Blair JMA, Zeth K, Bavro VN, Sancho-Vaello E. The role of bacterial transport systems in the removal of host antimicrobial peptides in Gram-negative bacteria. FEMS Microbiol Rev 2022; 46:6617596. [PMID: 35749576 PMCID: PMC9629497 DOI: 10.1093/femsre/fuac032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/23/2022] [Accepted: 06/22/2022] [Indexed: 01/09/2023] Open
Abstract
Antibiotic resistance is a global issue that threatens our progress in healthcare and life expectancy. In recent years, antimicrobial peptides (AMPs) have been considered as promising alternatives to the classic antibiotics. AMPs are potentially superior due to their lower rate of resistance development, since they primarily target the bacterial membrane ('Achilles' heel' of the bacteria). However, bacteria have developed mechanisms of AMP resistance, including the removal of AMPs to the extracellular space by efflux pumps such as the MtrCDE or AcrAB-TolC systems, and the internalization of AMPs to the cytoplasm by the Sap transporter, followed by proteolytic digestion. In this review, we focus on AMP transport as a resistance mechanism compiling all the experimental evidence for the involvement of efflux in AMP resistance in Gram-negative bacteria and combine this information with the analysis of the structures of the efflux systems involved. Finally, we expose some open questions with the aim of arousing the interest of the scientific community towards the AMPs-efflux pumps interactions. All the collected information broadens our understanding of AMP removal by efflux pumps and gives some clues to assist the rational design of AMP-derivatives as inhibitors of the efflux pumps.
Collapse
Affiliation(s)
- Jessica M A Blair
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Kornelius Zeth
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Vassiliy N Bavro
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, United Kingdom
| | - Enea Sancho-Vaello
- Corresponding author. College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom. E-mail:
| |
Collapse
|
3
|
Webber A, Ratnaweera M, Harris A, Luisi BF, Ntsogo Enguéné VY. A Model for Allosteric Communication in Drug Transport by the AcrAB-TolC Tripartite Efflux Pump. Antibiotics (Basel) 2022; 11:52. [PMID: 35052929 PMCID: PMC8773123 DOI: 10.3390/antibiotics11010052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 01/30/2023] Open
Abstract
RND family efflux pumps are complex macromolecular machines involved in multidrug resistance by extruding antibiotics from the cell. While structural studies and molecular dynamics simulations have provided insights into the architecture and conformational states of the pumps, the path followed by conformational changes from the inner membrane protein (IMP) to the periplasmic membrane fusion protein (MFP) and to the outer membrane protein (OMP) in tripartite efflux assemblies is not fully understood. Here, we investigated AcrAB-TolC efflux pump's allostery by comparing resting and transport states using difference distance matrices supplemented with evolutionary couplings data and buried surface area measurements. Our analysis indicated that substrate binding by the IMP triggers quaternary level conformational changes in the MFP, which induce OMP to switch from the closed state to the open state, accompanied by a considerable increase in the interface area between the MFP subunits and between the OMPs and MFPs. This suggests that the pump's transport-ready state is at a more favourable energy level than the resting state, but raises the puzzle of how the pump does not become stably trapped in a transport-intermediate state. We propose a model for pump allostery that includes a downhill energetic transition process from a proposed 'activated' transport state back to the resting pump.
Collapse
Affiliation(s)
- Anya Webber
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK; (A.W.); (A.H.)
| | - Malitha Ratnaweera
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK;
| | - Andrzej Harris
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK; (A.W.); (A.H.)
| | - Ben F. Luisi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK; (A.W.); (A.H.)
| | | |
Collapse
|
4
|
A Unique Sequence Is Essential for Efficient Multidrug Efflux Function of the MtrD Protein of Neisseria gonorrhoeae. mBio 2021; 12:e0167521. [PMID: 34465021 PMCID: PMC8406276 DOI: 10.1128/mbio.01675-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial resistance in Neisseria gonorrhoeae has reached an alarming level, severely impacting the effective treatment of gonorrhea. Belonging to the resistance-nodulation-cell division (RND) superfamily of efflux transporters, the MtrD membrane protein of N. gonorrhoeae provides resistance to a broad range of antimicrobial compounds. A unique feature of MtrD is an 11-residue sequence (from N917 to P927 [N917-P927]) that connects transmembrane helices (TMS) 9 and 10; this sequence is not present in homologous RND proteins. This study explores the structural and functional roles of the N917-P927 region by means of mutant analysis and molecular dynamics simulations. We show that N917-P927 plays a key role in modulating substrate access to the binding cleft and influences the overall orientation of the protein within the inner membrane necessary for optimal functioning. Removal of N917-P927 significantly reduced MtrD-mediated resistance to a range of antimicrobials and mutations of three single amino acids impacted MtrD-mediated multidrug resistance. Furthermore, molecular dynamics simulations showed deletion of N917-P927 in MtrD may dysregulate access of the substrate to the binding cleft and closure of the substrate-binding pocket during the transport cycle. These findings indicate that N917-P927 is a key region for interacting with the inner membrane, conceivably influencing substrate capture from the membrane-periplasm interface and thus is essential for full multidrug resistance capacity of MtrD. IMPORTANCE The historical sexually transmitted infection gonorrhea continues to be a major public health concern with an estimated global annual incidence of 86.9 million cases. N. gonorrhoeae has been identified by the World Health Organization as one of the 12 antimicrobial-resistant bacterial species that poses the greatest risk to human health. As the major efflux pump in gonococci, the MtrD transporter contributes to the cell envelope barrier in this organism and pumps antimicrobials from the periplasm and inner membrane, resulting in resistance. This study demonstrates that a unique region of the MtrD protein that connects TMS 9 and TMS 10 forms a structure that may interact with the inner membrane positioning TMS 9 and stabilizing the protein facilitating substrate capture from the inner membrane-periplasm interface. Analysis of mutants of this region identified that it was essential for MtrD-mediated multidrug resistance. Characterization of the structure and function of this unique local region of MtrD has implications for drug efflux mechanisms used by related proteins and is important knowledge for development of antibiotics that bypass efflux.
Collapse
|
5
|
Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Chem Rev 2021; 121:5479-5596. [PMID: 33909410 PMCID: PMC8277102 DOI: 10.1021/acs.chemrev.1c00055] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Tripartite efflux pumps and the related type 1 secretion systems (T1SSs) in Gram-negative organisms are diverse in function, energization, and structural organization. They form continuous conduits spanning both the inner and the outer membrane and are composed of three principal components-the energized inner membrane transporters (belonging to ABC, RND, and MFS families), the outer membrane factor channel-like proteins, and linking the two, the periplasmic adaptor proteins (PAPs), also known as the membrane fusion proteins (MFPs). In this review we summarize the recent advances in understanding of structural biology, function, and regulation of these systems, highlighting the previously undescribed role of PAPs in providing a common architectural scaffold across diverse families of transporters. Despite being built from a limited number of basic structural domains, these complexes present a staggering variety of architectures. While key insights have been derived from the RND transporter systems, a closer inspection of the operation and structural organization of different tripartite systems reveals unexpected analogies between them, including those formed around MFS- and ATP-driven transporters, suggesting that they operate around basic common principles. Based on that we are proposing a new integrated model of PAP-mediated communication within the conformational cycling of tripartite systems, which could be expanded to other types of assemblies.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jessica Kobylka
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Miriam S. Kuth
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Klaas M. Pos
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Martin Picard
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, CNRS
UMR 7099, Université de Paris, 75005 Paris, France
- Fondation
Edmond de Rothschild pour le développement de la recherche
Scientifique, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jessica M. A. Blair
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Vassiliy N. Bavro
- School
of Life Sciences, University of Essex, Colchester, CO4 3SQ United Kingdom
| |
Collapse
|
6
|
Song J, Zhou J, Zhang L, Li R. Mitochondria-Mediated Azole Drug Resistance and Fungal Pathogenicity: Opportunities for Therapeutic Development. Microorganisms 2020; 8:E1574. [PMID: 33066090 PMCID: PMC7600254 DOI: 10.3390/microorganisms8101574] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/16/2022] Open
Abstract
In recent years, the role of mitochondria in pathogenic fungi in terms of azole resistance and fungal pathogenicity has been a rapidly developing field. In this review, we describe the molecular mechanisms by which mitochondria are involved in regulating azole resistance and fungal pathogenicity. Mitochondrial function is involved in the regulation of drug efflux pumps at the transcriptional and posttranslational levels. On the one hand, defects in mitochondrial function can serve as the signal leading to activation of calcium signaling and the pleiotropic drug resistance pathway and, therefore, can globally upregulate the expression of drug efflux pump genes, leading to azole drug resistance. On the other hand, mitochondria also contribute to azole resistance through modulation of drug efflux pump localization and activity. Mitochondria further contribute to azole resistance through participating in iron homeostasis and lipid biosynthesis. Additionally, mitochondrial dynamics play an important role in azole resistance. Meanwhile, mitochondrial morphology is important for fungal virulence, playing roles in growth in stressful conditions in a host. Furthermore, there is a close link between mitochondrial respiration and fungal virulence, and mitochondrial respiration plays an important role in morphogenetic transition, hypoxia adaptation, and cell wall biosynthesis. Finally, we discuss the possibility for targeting mitochondrial factors for the development of antifungal therapies.
Collapse
Affiliation(s)
- Jinxing Song
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China;
- Shandong Provincial Key Laboratory of Infection and Immunity, Jinan 250012, China;
| | - Jingwen Zhou
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China;
| | - Lei Zhang
- Shandong Provincial Key Laboratory of Infection and Immunity, Jinan 250012, China;
| | - Rongpeng Li
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China;
| |
Collapse
|
7
|
Marshall RL, Bavro VN. Mutations in the TolC Periplasmic Domain Affect Substrate Specificity of the AcrAB-TolC Pump. Front Mol Biosci 2020; 7:166. [PMID: 32850959 PMCID: PMC7396618 DOI: 10.3389/fmolb.2020.00166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/01/2020] [Indexed: 01/08/2023] Open
Abstract
TolC and the other members of the outer membrane factor (OMF) family are outer membrane proteins forming trimeric channels that serve as a conduit for most actively effluxed substrates in Gram-negative bacteria by providing a key component in a multitude of tripartite efflux-pumps. Current models of tripartite pump assembly ascribe substrate selection to the inner-membrane transporter and periplasmic-adapter protein (PAP) assembly, suggesting that TolC is a passive, non-selective channel. While the membrane-embedded portion of the protein adopts a porin-like fold, the periplasmic domain of TolC presents a unique "alpha-barrel" architecture. This alpha-barrel consists of pseudo-continuous α-helices forming curved coiled-coils, whose tips form α-helical hairpins, relaxation of which results in a transition of TolC from a closed to an open-aperture state allowing effective efflux of substrates through its channel. Here, we analyzed the effects of site-directed mutations targeting the alpha-barrel of TolC, of the principal tripartite efflux-pump Escherichia coli AcrAB-TolC, on the activity and specificity of efflux. Live-cell functional assays with these TolC mutants revealed that positions both at the periplasmic tip of, and partway up the TolC coiled-coil alpha-barrel domain are involved in determining the functionality of the complex. We report that mutations affecting the electrostatic properties of the channel, particularly the D371V mutation, significantly impact growth even in the absence of antibiotics, causing hyper-susceptibility to all tested efflux-substrates. These results suggest that inhibition of TolC functionality is less well-tolerated than deletion of tolC, and such inhibition may have an antibacterial effect. Significantly and unexpectedly, we identified antibiotic-specific phenotypes associated with novel TolC mutations, suggesting that substrate specificity may not be determined solely by the transporter protein or the PAP, but may reside at least partially with the TolC-channel. Furthermore, some of the effects of mutations are difficult to reconcile with the currently prevalent tip-to-tip model of PAP-TolC interaction due to their location higher-up on the TolC alpha-barrel relative to the proposed PAP-docking sites. Taken together our results suggest a possible new role for TolC in vetting of efflux substrates, alongside its established role in tripartite complex assembly.
Collapse
Affiliation(s)
- Robert L. Marshall
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Vassiliy N. Bavro
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| |
Collapse
|
8
|
Multidrug Resistance in Neisseria gonorrhoeae: Identification of Functionally Important Residues in the MtrD Efflux Protein. mBio 2019; 10:mBio.02277-19. [PMID: 31744915 PMCID: PMC6867893 DOI: 10.1128/mbio.02277-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
With over 78 million new infections globally each year, gonorrhea remains a frustratingly common infection. Continuous development and spread of antimicrobial-resistant strains of Neisseria gonorrhoeae, the causative agent of gonorrhea, have posed a serious threat to public health. One of the mechanisms in N. gonorrhoeae involved in resistance to multiple drugs is performed by the MtrD multidrug resistance efflux pump. This study demonstrated that the MtrD pump has a broader substrate specificity than previously proposed and identified a cluster of residues important for drug binding and translocation. Additionally, a permeation pathway for the MtrD substrate progesterone actively moving through the protein was determined, revealing key interactions within the putative MtrD drug binding pockets. Identification of functionally important residues and substrate-protein interactions of the MtrD protein is crucial to develop future strategies for the treatment of multidrug-resistant gonorrhea. A key mechanism that Neisseria gonorrhoeae uses to achieve multidrug resistance is the expulsion of structurally different antimicrobials by the MtrD multidrug efflux protein. MtrD resembles the homologous Escherichia coli AcrB efflux protein with several common structural features, including an open cleft containing putative access and deep binding pockets proposed to interact with substrates. A highly discriminating N. gonorrhoeae strain, with the MtrD and NorM multidrug efflux pumps inactivated, was constructed and used to confirm and extend the substrate profile of MtrD to include 14 new compounds. The structural basis of substrate interactions with MtrD was interrogated by a combination of long-timescale molecular dynamics simulations and docking studies together with site-directed mutagenesis of selected residues. Of the MtrD mutants generated, only one (S611A) retained a wild-type (WT) resistance profile, while others (F136A, F176A, I605A, F610A, F612C, and F623C) showed reduced resistance to different antimicrobial compounds. Docking studies of eight MtrD substrates confirmed that many of the mutated residues play important nonspecific roles in binding to these substrates. Long-timescale molecular dynamics simulations of MtrD with its substrate progesterone showed the spontaneous binding of the substrate to the access pocket of the binding cleft and its subsequent penetration into the deep binding pocket, allowing the permeation pathway for a substrate through this important resistance mechanism to be identified. These findings provide a detailed picture of the interaction of MtrD with substrates that can be used as a basis for rational antibiotic and inhibitor design.
Collapse
|
9
|
Moffatt JH, Harper M, Boyce JD. Mechanisms of Polymyxin Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1145:55-71. [PMID: 31364071 DOI: 10.1007/978-3-030-16373-0_5] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Polymyxin antibiotics are increasingly being used as last-line therapeutic options against a number of multidrug resistant bacteria. These antibiotics show strong bactericidal activity against a range of Gram-negative bacteria, but with the increased use of these antibiotics resistant strains are emerging at an alarming rate. Furthermore, some Gram-negative species, such as Neisseria meningitidis, Proteus mirabilis and Burkholderia spp., are intrinsically resistant to the action of polymyxins. Most identified polymyxin resistance mechanisms in Gram-negative bacteria involve changes to the lipopolysaccharide (LPS) structure, as polymyxins initially interact with the negatively charged lipid A component of LPS. The controlled addition of positively charged residues such as 4-amino-L-arabinose, phosphoethanolamine and/or galactosamine to LPS results in a reduced negative charge on the bacterial surface and therefore reduced interaction between the polymyxin and the LPS. Polymyxin resistant species produce LPS that intrinsically contains one or more of these additions. While the genes necessary for most of these additions are chromosomally encoded, plasmid-borne phosphoethanolamine transferases (mcr-1 to mcr-8) have recently been identified and these plasmids threaten to increase the rate of dissemination of clinically relevant colistin resistance. Uniquely, Acinetobacter baumannii can also become highly resistant to polymyxins via spontaneous mutations in the lipid A biosynthesis genes lpxA, lpxC or lpxD such that they produce no LPS or lipid A. A range of other non-LPS-dependent polymyxin resistance mechanisms has also been identified in bacteria, but these generally result in only low levels of resistance. These include increased anionic capsular polysaccharide production in Klebsiella pneumoniae, expression of efflux systems such as MtrCDE in N. meningitidis, and altered expression of outer membrane proteins in a small number of species.
Collapse
Affiliation(s)
- Jennifer H Moffatt
- Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, Australia
| | - Marina Harper
- Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, Australia.,Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Australia
| | - John D Boyce
- Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, Australia. .,Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Australia.
| |
Collapse
|
10
|
Handing JW, Ragland SA, Bharathan UV, Criss AK. The MtrCDE Efflux Pump Contributes to Survival of Neisseria gonorrhoeae From Human Neutrophils and Their Antimicrobial Components. Front Microbiol 2018; 9:2688. [PMID: 30515136 PMCID: PMC6256084 DOI: 10.3389/fmicb.2018.02688] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/22/2018] [Indexed: 12/24/2022] Open
Abstract
The mucosal inflammatory response to Neisseria gonorrhoeae (Gc) is characterized by recruitment of neutrophils to the site of infection. Gc survives exposure to neutrophils by limiting the ability of neutrophils to make antimicrobial products and by expressing factors that defend against these products. The multiple transferable resistance (Mtr) system is a tripartite efflux pump, comprised of the inner membrane MtrD, the periplasmic attachment protein MtrC, and the outer membrane channel MtrE. Gc MtrCDE exports a diverse array of substrates, including certain detergents, dyes, antibiotics, and host-derived antimicrobial peptides. Here we report that MtrCDE contributes to the survival of Gc after exposure to adherent, chemokine-treated primary human neutrophils, specifically in the extracellular milieu. MtrCDE enhanced survival of Gc in neutrophil extracellular traps and in the supernatant from neutrophils that had undergone degranulation (granule exocytosis), a process that releases antimicrobial proteins into the extracellular milieu. The extent of degranulation was unaltered in neutrophils exposed to parental or mtr mutant Gc. MtrCDE expression contributed to Gc defense against some neutrophil-derived antimicrobial peptides but not others. These findings demonstrate that the Mtr system contributes to Gc survival after neutrophil challenge, a key feature of the host immune response to acute gonorrhea.
Collapse
Affiliation(s)
- Jonathan W Handing
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Stephanie A Ragland
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Urmila V Bharathan
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Alison K Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
11
|
Neuberger A, Du D, Luisi BF. Structure and mechanism of bacterial tripartite efflux pumps. Res Microbiol 2018; 169:401-413. [PMID: 29787834 DOI: 10.1016/j.resmic.2018.05.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 02/20/2018] [Accepted: 05/14/2018] [Indexed: 12/22/2022]
Abstract
Efflux pumps are membrane proteins which contribute to multi-drug resistance. In Gram-negative bacteria, some of these pumps form complex tripartite assemblies in association with an outer membrane channel and a periplasmic membrane fusion protein. These tripartite machineries span both membranes and the periplasmic space, and they extrude from the bacterium chemically diverse toxic substrates. In this chapter, we summarise current understanding of the structural architecture, functionality, and regulation of tripartite multi-drug efflux assemblies.
Collapse
Affiliation(s)
- Arthur Neuberger
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Dijun Du
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
12
|
Lu WJ, Lin HJ, Janganan TK, Li CY, Chin WC, Bavro VN, Lin HTV. ATP-Binding Cassette Transporter VcaM from Vibrio cholerae is Dependent on the Outer Membrane Factor Family for Its Function. Int J Mol Sci 2018; 19:ijms19041000. [PMID: 29584668 PMCID: PMC5979437 DOI: 10.3390/ijms19041000] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/23/2018] [Accepted: 03/25/2018] [Indexed: 11/16/2022] Open
Abstract
Vibrio cholerae ATP-binding cassette transporter VcaM (V. cholerae ABC multidrug resistance pump) has previously been shown to confer resistance to a variety of medically important drugs. In this study, we set to analyse its properties both in vitro in detergent-solubilised state and in vivo to differentiate its dependency on auxiliary proteins for its function. We report the first detailed kinetic parameters of purified VcaM and the rate of phosphate (Pi) production. To determine the possible functional dependencies of VcaM on the tripartite efflux pumps we then utilized different E. coli strains lacking the principal secondary transporter AcrB (Acriflavine resistance protein), as well as cells lacking the outer membrane factor (OMF) TolC (Tolerance to colicins). Consistent with the ATPase function of VcaM we found it to be susceptible to sodium orthovanadate (NaOV), however, we also found a clear dependency of VcaM function on TolC. Inhibitors targeting secondary active transporters had no effects on either VcaM-conferred resistance or Hoechst 33342 accumulation, suggesting that VcaM might be capable of engaging with the TolC-channel without periplasmic mediation by additional transporters. Our findings are indicative of VcaM being capable of a one-step substrate translocation from cytosol to extracellular space utilising the TolC-channel, making it the only multidrug ABC-transporter outside of the MacB-family with demonstrable TolC-dependency.
Collapse
Affiliation(s)
- Wen-Jung Lu
- Department of Food Science, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan.
| | - Hsuan-Ju Lin
- Department of Food Science, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan.
| | - Thamarai K Janganan
- School of Life Sciences, University of Bedfordshire, University Square, Luton LU1 3JU, UK.
| | - Cheng-Yi Li
- Department of Food Science, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan.
| | - Wei-Chiang Chin
- Department of Food Science, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan.
| | - Vassiliy N Bavro
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.
| | - Hong-Ting Victor Lin
- Department of Food Science, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan.
| |
Collapse
|
13
|
Trans-envelope multidrug efflux pumps of Gram-negative bacteria and their synergism with the outer membrane barrier. Res Microbiol 2018; 169:351-356. [PMID: 29454787 DOI: 10.1016/j.resmic.2018.02.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 11/20/2022]
Abstract
Antibiotic resistance is a serious threat to public health. Significant efforts are currently directed toward containment of the spread of resistance, finding new therapeutic options concerning resistant human and animal pathogens, and addressing the gaps in the fundamental understanding of mechanisms of resistance. Experimental data and kinetic modeling revealed a major factor in resistance, the synergy between active efflux and the low permeability barrier of the outer membrane, which dramatically reduces the intracellular accumulation of many antibiotics. The structural and mechanistic particularities of trans-envelope efflux pumps amplify the effectiveness of cell envelopes as permeability barriers. An important feature of this synergism is that efflux pumps and the outer membrane barriers are mechanistically independent and select antibiotics based on different physicochemical properties. The synergism amplifies even weak polyspecificity of multidrug efflux pumps and creates a major hurdle in the discovery and development of new therapeutics against Gram-negative pathogens.
Collapse
|
14
|
Tamburrino G, Llabrés S, Vickery ON, Pitt SJ, Zachariae U. Modulation of the Neisseria gonorrhoeae drug efflux conduit MtrE. Sci Rep 2017; 7:17091. [PMID: 29213101 PMCID: PMC5719041 DOI: 10.1038/s41598-017-16995-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 11/21/2017] [Indexed: 11/09/2022] Open
Abstract
Widespread antibiotic resistance, especially of Gram-negative bacteria, has become a severe concern for human health. Tripartite efflux pumps are one of the major contributors to resistance in Gram-negative pathogens, by efficiently expelling a broad spectrum of antibiotics from the organism. In Neisseria gonorrhoeae, one of the first bacteria for which pan-resistance has been reported, the most expressed efflux complex is MtrCDE. Here we present the electrophysiological characterisation of the outer membrane component MtrE and the membrane fusion protein MtrC, obtained by a combination of planar lipid bilayer recordings and in silico techniques. Our in vitro results show that MtrE can be regulated by periplasmic binding events and that the interaction between MtrE and MtrC is sufficient to stabilize this complex in an open state. In contrast to other efflux conduits, the open complex only displays a slight preference for cations. The maximum conductance we obtain in the in vitro recordings is comparable to that seen in our computational electrophysiology simulations conducted on the MtrE crystal structure, indicating that this state may reflect a physiologically relevant open conformation of MtrE. Our results suggest that the MtrC/E binding interface is an important modulator of MtrE function, which could potentially be targeted by new efflux inhibitors.
Collapse
Affiliation(s)
- Giulia Tamburrino
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Physics, School of Science and Engineering, University of Dundee, Dundee, DD1 4NH, UK
| | - Salomé Llabrés
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Physics, School of Science and Engineering, University of Dundee, Dundee, DD1 4NH, UK
| | - Owen N Vickery
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Physics, School of Science and Engineering, University of Dundee, Dundee, DD1 4NH, UK
| | - Samantha J Pitt
- School of Medicine, University of St Andrews, St Andrews, KY16 9TF, UK.
| | - Ulrich Zachariae
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
- Physics, School of Science and Engineering, University of Dundee, Dundee, DD1 4NH, UK.
| |
Collapse
|
15
|
Müller RT, Pos KM. The assembly and disassembly of the AcrAB-TolC three-component multidrug efflux pump. Biol Chem 2016; 396:1083-9. [PMID: 26061621 DOI: 10.1515/hsz-2015-0150] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/03/2015] [Indexed: 11/15/2022]
Abstract
In Gram-negative bacteria, tripartite efflux pumps, like AcrAB-TolC from Escherichia coli, play a prominent role in the resistance against multiple antibiotics. Transport of the drugs across the outer membrane and its coupling to the electrochemical gradient is dependent on the presence of all three components. As the activity of the E. coli AcrAB-TolC efflux pump is dependent on both the concentration of substrates and the extent of the electrochemical gradient across the inner membrane, the dynamics of tripartite pump assembly and disassembly might be crucial for effective net transport of drugs towards the outside of the cell.
Collapse
|
16
|
Daury L, Orange F, Taveau JC, Verchère A, Monlezun L, Gounou C, Marreddy RKR, Picard M, Broutin I, Pos KM, Lambert O. Tripartite assembly of RND multidrug efflux pumps. Nat Commun 2016; 7:10731. [PMID: 26867482 PMCID: PMC4754349 DOI: 10.1038/ncomms10731] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/15/2016] [Indexed: 12/18/2022] Open
Abstract
Tripartite multidrug efflux systems of Gram-negative bacteria are composed of an inner membrane transporter, an outer membrane channel and a periplasmic adaptor protein. They are assumed to form ducts inside the periplasm facilitating drug exit across the outer membrane. Here we present the reconstitution of native Pseudomonas aeruginosa MexAB–OprM and Escherichia coli AcrAB–TolC tripartite Resistance Nodulation and cell Division (RND) efflux systems in a lipid nanodisc system. Single-particle analysis by electron microscopy reveals the inner and outer membrane protein components linked together via the periplasmic adaptor protein. This intrinsic ability of the native components to self-assemble also leads to the formation of a stable interspecies AcrA–MexB–TolC complex suggesting a common mechanism of tripartite assembly. Projection structures of all three complexes emphasize the role of the periplasmic adaptor protein as part of the exit duct with no physical interaction between the inner and outer membrane components. Tripartite efflux systems consist of inner membrane, outer membrane and periplasmic components. Here, Daury et al. reconstitute native versions of RND transporters in nanodiscs and present projection structures emphasizing the role of the periplasmic adaptor in linking the inner and outer membrane proteins.
Collapse
Affiliation(s)
- Laetitia Daury
- Université de Bordeaux, CBMN UMR 5248, Bordeaux INP, IECB, Pessac F-33600, France.,CNRS, CBMN UMR 5248, Pessac F-33600, France
| | - François Orange
- Université de Bordeaux, CBMN UMR 5248, Bordeaux INP, IECB, Pessac F-33600, France.,CNRS, CBMN UMR 5248, Pessac F-33600, France
| | - Jean-Christophe Taveau
- Université de Bordeaux, CBMN UMR 5248, Bordeaux INP, IECB, Pessac F-33600, France.,CNRS, CBMN UMR 5248, Pessac F-33600, France
| | - Alice Verchère
- Laboratoire de Cristallographie et RMN Biologiques, UMR 8015, CNRS, Université Paris Descartes, Faculté de Pharmacie, 4 Avenue de l'Observatoire, Paris 75006, France
| | - Laura Monlezun
- Laboratoire de Cristallographie et RMN Biologiques, UMR 8015, CNRS, Université Paris Descartes, Faculté de Pharmacie, 4 Avenue de l'Observatoire, Paris 75006, France
| | - Céline Gounou
- Université de Bordeaux, CBMN UMR 5248, Bordeaux INP, IECB, Pessac F-33600, France.,CNRS, CBMN UMR 5248, Pessac F-33600, France
| | - Ravi K R Marreddy
- Institute of Biochemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Martin Picard
- Laboratoire de Cristallographie et RMN Biologiques, UMR 8015, CNRS, Université Paris Descartes, Faculté de Pharmacie, 4 Avenue de l'Observatoire, Paris 75006, France
| | - Isabelle Broutin
- Laboratoire de Cristallographie et RMN Biologiques, UMR 8015, CNRS, Université Paris Descartes, Faculté de Pharmacie, 4 Avenue de l'Observatoire, Paris 75006, France
| | - Klaas M Pos
- Institute of Biochemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Olivier Lambert
- Université de Bordeaux, CBMN UMR 5248, Bordeaux INP, IECB, Pessac F-33600, France.,CNRS, CBMN UMR 5248, Pessac F-33600, France
| |
Collapse
|
17
|
An overview of bacterial efflux pumps and computational approaches to study efflux pump inhibitors. Future Med Chem 2016; 8:195-210. [DOI: 10.4155/fmc.15.173] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Micro-organisms express a wide range of transmembrane pumps known as multidrug efflux pumps that improve the micro-organism's ability to survive in severe environments and contribute to resistance against antibiotic and antimicrobial agents. There is significant interest in developing efflux inhibitors as an adjunct to treatment with current and next generation of antibiotics. A greater understanding of drug recognition and transport by multidrug efflux pumps is needed to develop clinically useful inhibitors, given the breadth of molecules that can be effluxed by these systems. We summarize some structural and functional data that could provide insights into the inhibition of transport mechanisms of these intricate molecular nanomachines with a focus on the advances in computational approaches.
Collapse
|
18
|
Delmar JA, Yu EW. The AbgT family: A novel class of antimetabolite transporters. Protein Sci 2015; 25:322-37. [PMID: 26443496 DOI: 10.1002/pro.2820] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/05/2015] [Indexed: 12/29/2022]
Abstract
The AbgT family of transporters was thought to contribute to bacterial folate biosynthesis by importing the catabolite p-aminobenzoyl-glutamate for producing this essential vitamin. Approximately 13,000 putative transporters of the family have been identified. However, before our work, no structural information was available and even functional data were minimal for this family of membrane proteins. To elucidate the structure and function of the AbgT family of transporters, we recently determined the X-ray structures of the full-length Alcanivorax borkumensis YdaH and Neisseria gonorrhoeae MtrF membrane proteins. The structures reveal that these two transporters assemble as dimers with architectures distinct from all other families of transporters. Both YdaH and MtrF are bowl-shaped dimers with a solvent-filled basin extending from the cytoplasm halfway across the membrane bilayer. The protomers of YdaH and MtrF contain nine transmembrane helices and two hairpins. These structures directly suggest a plausible pathway for substrate transport. A combination of the crystal structure, genetic analysis and substrate accumulation assay indicates that both YdaH and MtrF behave as exporters, capable of removing the folate metabolite p-aminobenzoic acid from bacterial cells. Further experimental data based on drug susceptibility and radioactive transport assay suggest that both YdaH and MtrF participate as antibiotic efflux pumps, importantly mediating bacterial resistance to sulfonamide antimetabolite drugs. It is possible that many of these AbgT-family transporters act as exporters, thereby conferring bacterial resistance to sulfonamides. The AbgT-family transporters may be important targets for the rational design of novel antibiotics to combat bacterial infections.
Collapse
Affiliation(s)
- Jared A Delmar
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa, 50011
| | - Edward W Yu
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa, 50011.,Department of Chemistry, Iowa State University, Ames, Iowa, 50011
| |
Collapse
|
19
|
Chim N, Torres R, Liu Y, Capri J, Batot G, Whitelegge JP, Goulding CW. The Structure and Interactions of Periplasmic Domains of Crucial MmpL Membrane Proteins from Mycobacterium tuberculosis. ACTA ACUST UNITED AC 2015; 22:1098-107. [PMID: 26278184 DOI: 10.1016/j.chembiol.2015.07.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 06/25/2015] [Accepted: 07/13/2015] [Indexed: 11/29/2022]
Abstract
Mycobacterium tuberculosis mycobacterial membrane protein large (MmpL) proteins are important in substrate transport across the inner membrane. Here, we show that MmpL proteins are classified into two phylogenetic clusters, where MmpL cluster II contains three soluble domains (D1, D2, and D3) and has two full-length members, MmpL3 and MmpL11. Significantly, MmpL3 is currently the most druggable M. tuberculosis target. We have solved the 2.4-Å MmpL11-D2 crystal structure, revealing structural homology to periplasmic porter subdomains of RND (multidrug) transporters. The resulting predicted cluster II MmpL membrane topology has D1 and D2 residing, and possibly interacting, within the periplasm. Crosslinking and biolayer interferometry experiments confirm that cluster II D1 and D2 bind with weak affinities, and guided D1-D2 heterodimeric model assemblies. The predicted full-length MmpL3 and MmpL11 structural models reveal key substrate binding and transport residues, and may serve as templates to set the stage for in silico anti-tuberculosis drug development.
Collapse
Affiliation(s)
- Nicholas Chim
- Department of Molecular Biology and Biochemistry, UCI, Irvine, CA 92697, USA
| | - Rodrigo Torres
- Department of Molecular Biology and Biochemistry, UCI, Irvine, CA 92697, USA
| | - Yuqi Liu
- Department of Molecular Biology and Biochemistry, UCI, Irvine, CA 92697, USA
| | - Joe Capri
- The Pasarow Mass Spectrometry Laboratory, NPI-Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA 90024, USA
| | - Gaëlle Batot
- Department of Molecular Biology and Biochemistry, UCI, Irvine, CA 92697, USA
| | - Julian P Whitelegge
- The Pasarow Mass Spectrometry Laboratory, NPI-Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA 90024, USA
| | - Celia W Goulding
- Department of Molecular Biology and Biochemistry, UCI, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, UCI, Irvine, CA 92697, USA.
| |
Collapse
|
20
|
Ntsogo Enguéné VY, Verchère A, Phan G, Broutin I, Picard M. Catch me if you can: a biotinylated proteoliposome affinity assay for the investigation of assembly of the MexA-MexB-OprM efflux pump from Pseudomonas aeruginosa. Front Microbiol 2015; 6:541. [PMID: 26082762 PMCID: PMC4451422 DOI: 10.3389/fmicb.2015.00541] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/16/2015] [Indexed: 11/20/2022] Open
Abstract
Efflux pumps are membrane transporters that actively extrude various substrates, leading to multidrug resistance (MDR). In this study, we have designed a new test that allows investigating the assembly of the MexA-MexB-OprM efflux pump from the Gram negative bacteria Pseudomonas aeruginosa. The method relies on the streptavidin-mediated pull-down of OprM proteoliposomes upon interaction with MexAB proteoliposomes containing a biotin function carried by lipids. We give clear evidence for the importance of MexA in promoting and stabilizing the assembly of the MexAB-OprM complex. In addition, we have investigated the effect of the role of the lipid anchor of MexA as well as the role of the proton motive force on the assembly and disassembly of the efflux pump. The assay presented here allows for an accurate investigation of the assembly with only tens of microgram of protein and could be adapted to 96 wells plates. Hence, this work provides a basis for the medium-high screening of efflux pump inhibitors (EPIs).
Collapse
Affiliation(s)
- Véronique Yvette Ntsogo Enguéné
- Laboratoire de Cristallographie et RMN Biologiques, Faculté de Pharmacie de Paris, UMR 8015 CNRS - Université Paris 089 Descartes , Paris, France
| | - Alice Verchère
- Laboratoire de Cristallographie et RMN Biologiques, Faculté de Pharmacie de Paris, UMR 8015 CNRS - Université Paris 089 Descartes , Paris, France
| | - Gilles Phan
- Laboratoire de Cristallographie et RMN Biologiques, Faculté de Pharmacie de Paris, UMR 8015 CNRS - Université Paris 089 Descartes , Paris, France
| | - Isabelle Broutin
- Laboratoire de Cristallographie et RMN Biologiques, Faculté de Pharmacie de Paris, UMR 8015 CNRS - Université Paris 089 Descartes , Paris, France
| | - Martin Picard
- Laboratoire de Cristallographie et RMN Biologiques, Faculté de Pharmacie de Paris, UMR 8015 CNRS - Université Paris 089 Descartes , Paris, France
| |
Collapse
|
21
|
Symmons MF, Marshall RL, Bavro VN. Architecture and roles of periplasmic adaptor proteins in tripartite efflux assemblies. Front Microbiol 2015; 6:513. [PMID: 26074901 PMCID: PMC4446572 DOI: 10.3389/fmicb.2015.00513] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/08/2015] [Indexed: 12/12/2022] Open
Abstract
Recent years have seen major advances in the structural understanding of the different components of tripartite efflux assemblies, which encompass the multidrug efflux (MDR) pumps and type I secretion systems. The majority of these investigations have focused on the role played by the inner membrane transporters and the outer membrane factor (OMF), leaving the third component of the system – the Periplasmic Adaptor Proteins (PAPs) – relatively understudied. Here we review the current state of knowledge of these versatile proteins which, far from being passive linkers between the OMF and the transporter, emerge as active architects of tripartite assemblies, and play diverse roles in the transport process. Recognition between the PAPs and OMFs is essential for pump assembly and function, and targeting this interaction may provide a novel avenue for combating multidrug resistance. With the recent advances elucidating the drug efflux and energetics of the tripartite assemblies, the understanding of the interaction between the OMFs and PAPs is the last piece remaining in the complete structure of the tripartite pump assembly puzzle.
Collapse
Affiliation(s)
- Martyn F Symmons
- Department of Veterinary Medicine, University of Cambridge Cambridge, UK
| | - Robert L Marshall
- Institute of Microbiology and Infection, University of Birmingham Birmingham, UK
| | - Vassiliy N Bavro
- Institute of Microbiology and Infection, University of Birmingham Birmingham, UK
| |
Collapse
|
22
|
Su CC, Bolla JR, Kumar N, Radhakrishnan A, Long F, Delmar JA, Chou TH, Rajashankar KR, Shafer WM, Yu EW. Structure and function of Neisseria gonorrhoeae MtrF illuminates a class of antimetabolite efflux pumps. Cell Rep 2015; 11:61-70. [PMID: 25818299 DOI: 10.1016/j.celrep.2015.03.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/13/2014] [Accepted: 02/26/2015] [Indexed: 01/17/2023] Open
Abstract
Neisseria gonorrhoeae is an obligate human pathogen and the causative agent of the sexually transmitted disease gonorrhea. The control of this disease has been compromised by the increasing proportion of infections due to antibiotic-resistant strains, which are growing at an alarming rate. N. gonorrhoeae MtrF is an integral membrane protein that belongs to the AbgT family of transporters for which no structural information is available. Here, we describe the crystal structure of MtrF, revealing a dimeric molecule with architecture distinct from all other families of transporters. MtrF is a bowl-shaped dimer with a solvent-filled basin extending from the cytoplasm to halfway across the membrane bilayer. Each subunit of the transporter contains nine transmembrane helices and two hairpins, posing a plausible pathway for substrate transport. A combination of the crystal structure and biochemical functional assays suggests that MtrF is an antibiotic efflux pump mediating bacterial resistance to sulfonamide antimetabolite drugs.
Collapse
Affiliation(s)
- Chih-Chia Su
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Jani Reddy Bolla
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | - Nitin Kumar
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | | | - Feng Long
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Jared A Delmar
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Tsung-Han Chou
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Kanagalaghatta R Rajashankar
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Building 436E, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - William M Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA; Laboratories of Microbial Pathogenesis, VA Medical Center, Decatur, GA 30033, USA; Emory Antibiotic Resistance Center, Emory University, Atlanta, GA 30322, USA
| | - Edward W Yu
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA; Department of Chemistry, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
23
|
Zgurskaya HI, Weeks JW, Ntreh AT, Nickels LM, Wolloscheck D. Mechanism of coupling drug transport reactions located in two different membranes. Front Microbiol 2015; 6:100. [PMID: 25759685 PMCID: PMC4338810 DOI: 10.3389/fmicb.2015.00100] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 01/26/2015] [Indexed: 01/01/2023] Open
Abstract
Gram- negative bacteria utilize a diverse array of multidrug transporters to pump toxic compounds out of the cell. Some transporters, together with periplasmic membrane fusion proteins (MFPs) and outer membrane channels, assemble trans-envelope complexes that expel multiple antibiotics across outer membranes of Gram-negative bacteria and into the external medium. Others further potentiate this efflux by pumping drugs across the inner membrane into the periplasm. Together these transporters create a powerful network of efflux that protects bacteria against a broad range of antimicrobial agents. This review is focused on the mechanism of coupling transport reactions located in two different membranes of Gram-negative bacteria. Using a combination of biochemical, genetic and biophysical approaches we have reconstructed the sequence of events leading to the assembly of trans-envelope drug efflux complexes and characterized the roles of periplasmic and outer membrane proteins in this process. Our recent data suggest a critical step in the activation of intermembrane efflux pumps, which is controlled by MFPs. We propose that the reaction cycles of transporters are tightly coupled to the assembly of the trans-envelope complexes. Transporters and MFPs exist in the inner membrane as dormant complexes. The activation of complexes is triggered by MFP binding to the outer membrane channel, which leads to a conformational change in the membrane proximal domain of MFP needed for stimulation of transporters. The activated MFP-transporter complex engages the outer membrane channel to expel substrates across the outer membrane. The recruitment of the channel is likely triggered by binding of effectors (substrates) to MFP or MFP-transporter complexes. This model together with recent structural and functional advances in the field of drug efflux provides a fairly detailed understanding of the mechanism of drug efflux across the two membranes.
Collapse
Affiliation(s)
- Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma Norman, OK, USA
| | - Jon W Weeks
- Department of Chemistry and Biochemistry, University of Oklahoma Norman, OK, USA
| | - Abigail T Ntreh
- Department of Chemistry and Biochemistry, University of Oklahoma Norman, OK, USA
| | - Logan M Nickels
- Department of Chemistry and Biochemistry, University of Oklahoma Norman, OK, USA
| | - David Wolloscheck
- Department of Chemistry and Biochemistry, University of Oklahoma Norman, OK, USA
| |
Collapse
|
24
|
Maria-Neto S, de Almeida KC, Macedo MLR, Franco OL. Understanding bacterial resistance to antimicrobial peptides: From the surface to deep inside. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:3078-88. [PMID: 25724815 DOI: 10.1016/j.bbamem.2015.02.017] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 11/27/2022]
Abstract
Resistant bacterial infections are a major health problem in many parts of the world. The major commercial antibiotic classes often fail to combat common bacteria. Although antimicrobial peptides are able to control bacterial infections by interfering with microbial metabolism and physiological processes in several ways, a large number of cases of resistance to antibiotic peptide classes have also been reported. To gain a better understanding of the resistance process various technologies have been applied. Here we discuss multiple strategies by which bacteria could develop enhanced antimicrobial peptide resistance, focusing on sub-cellular regions from the surface to deep inside, evaluating bacterial membranes, cell walls and cytoplasmic metabolism. Moreover, some high-throughput methods for antimicrobial resistance detection and discrimination are also examined. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.
Collapse
Affiliation(s)
- Simone Maria-Neto
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Cidade Universitária S/N - Caixa Postal 549, 79070-900, Campo Grande, MS, Brazil; Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Keyla Caroline de Almeida
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, 70790-160 Brasília, DF, Brazil
| | - Maria Ligia Rodrigues Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Cidade Universitária S/N - Caixa Postal 549, 79070-900, Campo Grande, MS, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, 70790-160 Brasília, DF, Brazil; S-Inova, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil.
| |
Collapse
|
25
|
Abstract
Antibiotic-resistant bacteria that are difficult or impossible to treat are becoming increasingly common and are causing a global health crisis. Antibiotic resistance is encoded by several genes, many of which can transfer between bacteria. New resistance mechanisms are constantly being described, and new genes and vectors of transmission are identified on a regular basis. This article reviews recent advances in our understanding of the mechanisms by which bacteria are either intrinsically resistant or acquire resistance to antibiotics, including the prevention of access to drug targets, changes in the structure and protection of antibiotic targets and the direct modification or inactivation of antibiotics.
Collapse
|
26
|
Bolla JR, Su CC, Do SV, Radhakrishnan A, Kumar N, Long F, Chou TH, Delmar JA, Lei HT, Rajashankar KR, Shafer WM, Yu EW. Crystal structure of the Neisseria gonorrhoeae MtrD inner membrane multidrug efflux pump. PLoS One 2014; 9:e97903. [PMID: 24901477 PMCID: PMC4046932 DOI: 10.1371/journal.pone.0097903] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/24/2014] [Indexed: 01/07/2023] Open
Abstract
Neisseria gonorrhoeae is an obligate human pathogen and the causative agent of the sexually-transmitted disease gonorrhea. The control of this disease has been compromised by the increasing proportion of infections due to antibiotic-resistant strains, which are growing at an alarming rate. The MtrCDE tripartite multidrug efflux pump, belonging to the hydrophobic and amphiphilic efflux resistance-nodulation-cell division (HAE-RND) family, spans both the inner and outer membranes of N. gonorrhoeae and confers resistance to a variety of antibiotics and toxic compounds. We here report the crystal structure of the inner membrane MtrD multidrug efflux pump, which reveals a novel structural feature that is not found in other RND efflux pumps.
Collapse
Affiliation(s)
- Jani Reddy Bolla
- Department of Chemistry, Iowa State University, Ames, Iowa, United States of America
| | - Chih-Chia Su
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa, United States of America
| | - Sylvia V. Do
- Bioinformatics and Computational Biology Interdepartmental Graduate Program, Iowa State University, Ames, Iowa, United States of America
| | | | - Nitin Kumar
- Department of Chemistry, Iowa State University, Ames, Iowa, United States of America
| | - Feng Long
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa, United States of America
| | - Tsung-Han Chou
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa, United States of America
| | - Jared A. Delmar
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa, United States of America
| | - Hsiang-Ting Lei
- Department of Chemistry, Iowa State University, Ames, Iowa, United States of America
| | - Kanagalaghatta R. Rajashankar
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - William M. Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Laboratories of Microbial Pathogenesis, VA Medical Center, Decatur, Georgia, United States of America
| | - Edward W. Yu
- Department of Chemistry, Iowa State University, Ames, Iowa, United States of America
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa, United States of America
- Bioinformatics and Computational Biology Interdepartmental Graduate Program, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
27
|
Lei HT, Chou TH, Su CC, Bolla JR, Kumar N, Radhakrishnan A, Long F, Delmar JA, Do SV, Rajashankar KR, Shafer WM, Yu EW. Crystal structure of the open state of the Neisseria gonorrhoeae MtrE outer membrane channel. PLoS One 2014; 9:e97475. [PMID: 24901251 PMCID: PMC4046963 DOI: 10.1371/journal.pone.0097475] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 04/20/2014] [Indexed: 01/08/2023] Open
Abstract
Active efflux of antimicrobial agents is one of the most important strategies used by bacteria to defend against antimicrobial factors present in their environment. Mediating many cases of antibiotic resistance are transmembrane efflux pumps, composed of one or more proteins. The Neisseria gonorrhoeae MtrCDE tripartite multidrug efflux pump, belonging to the hydrophobic and amphiphilic efflux resistance-nodulation-cell division (HAE-RND) family, spans both the inner and outer membranes of N. gonorrhoeae and confers resistance to a variety of antibiotics and toxic compounds. We here describe the crystal structure of N. gonorrhoeae MtrE, the outer membrane component of the MtrCDE tripartite multidrug efflux system. This trimeric MtrE channel forms a vertical tunnel extending down contiguously from the outer membrane surface to the periplasmic end, indicating that our structure of MtrE depicts an open conformational state of this channel.
Collapse
Affiliation(s)
- Hsiang-Ting Lei
- Department of Chemistry, Iowa State University, Ames, Iowa, United States of America
| | - Tsung-Han Chou
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa, United States of America
| | - Chih-Chia Su
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa, United States of America
| | - Jani Reddy Bolla
- Department of Chemistry, Iowa State University, Ames, Iowa, United States of America
| | - Nitin Kumar
- Department of Chemistry, Iowa State University, Ames, Iowa, United States of America
| | | | - Feng Long
- Department of Chemistry, Iowa State University, Ames, Iowa, United States of America
| | - Jared A. Delmar
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa, United States of America
| | - Sylvia V. Do
- Bioinformatics and Computational Biology Interdepartmental Graduate Program, Iowa State University, Ames, Iowa, United States of America
| | - Kanagalaghatta R. Rajashankar
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - William M. Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Laboratories of Microbial Pathogenesis, VA Medical Center, Decatur, Georgia, United States of America
| | - Edward W. Yu
- Department of Chemistry, Iowa State University, Ames, Iowa, United States of America
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa, United States of America
- Bioinformatics and Computational Biology Interdepartmental Graduate Program, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
28
|
Du D, Wang Z, James NR, Voss JE, Klimont E, Ohene-Agyei T, Venter H, Chiu W, Luisi BF. Structure of the AcrAB-TolC multidrug efflux pump. Nature 2014; 509:512-5. [PMID: 24747401 PMCID: PMC4361902 DOI: 10.1038/nature13205] [Citation(s) in RCA: 463] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 03/05/2014] [Indexed: 12/12/2022]
Abstract
The capacity of numerous bacterial species to tolerate antibiotics and other toxic compounds arises in part from the activity of energy-dependent transporters. In Gram-negative bacteria, many of these transporters form multicomponent 'pumps' that span both inner and outer membranes and are driven energetically by a primary or secondary transporter component. A model system for such a pump is the acridine resistance complex of Escherichia coli. This pump assembly comprises the outer-membrane channel TolC, the secondary transporter AcrB located in the inner membrane, and the periplasmic AcrA, which bridges these two integral membrane proteins. The AcrAB-TolC efflux pump is able to transport vectorially a diverse array of compounds with little chemical similarity, thus conferring resistance to a broad spectrum of antibiotics. Homologous complexes are found in many Gram-negative species, including in animal and plant pathogens. Crystal structures are available for the individual components of the pump and have provided insights into substrate recognition, energy coupling and the transduction of conformational changes associated with the transport process. However, how the subunits are organized in the pump, their stoichiometry and the details of their interactions are not known. Here we present the pseudo-atomic structure of a complete multidrug efflux pump in complex with a modulatory protein partner from E. coli. The model defines the quaternary organization of the pump, identifies key domain interactions, and suggests a cooperative process for channel assembly and opening. These findings illuminate the basis for drug resistance in numerous pathogenic bacterial species.
Collapse
Affiliation(s)
- Dijun Du
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Zhao Wang
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Nathan R James
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Jarrod E Voss
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Ewa Klimont
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | | | - Henrietta Venter
- School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Wah Chiu
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
29
|
Su CC, Radhakrishnan A, Kumar N, Long F, Bolla JR, Lei HT, Delmar JA, Do SV, Chou TH, Rajashankar KR, Zhang Q, Yu EW. Crystal structure of the Campylobacter jejuni CmeC outer membrane channel. Protein Sci 2014; 23:954-61. [PMID: 24753291 DOI: 10.1002/pro.2478] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 11/07/2022]
Abstract
As one of the world's most prevalent enteric pathogens, Campylobacter jejuni is a major causative agent of human enterocolitis and is responsible for more than 400 million cases of diarrhea each year. The impact of this pathogen on children is of particular significance. Campylobacter has developed resistance to many antimicrobial agents via multidrug efflux machinery. The CmeABC tripartite multidrug efflux pump, belonging to the resistance-nodulation-cell division (RND) superfamily, plays a major role in drug resistant phenotypes of C. jejuni. This efflux complex spans the entire cell envelop of C. jejuni and mediates resistance to various antibiotics and toxic compounds. We here report the crystal structure of C. jejuni CmeC, the outer membrane component of the CmeABC tripartite multidrug efflux system. The structure reveals a possible mechanism for substrate export.
Collapse
Affiliation(s)
- Chih-Chia Su
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa, 50011
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Weeks JW, Bavro VN, Misra R. Genetic assessment of the role of AcrB β-hairpins in the assembly of the TolC-AcrAB multidrug efflux pump of Escherichia coli. Mol Microbiol 2014; 91:965-75. [PMID: 24386963 DOI: 10.1111/mmi.12508] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2014] [Indexed: 01/08/2023]
Abstract
The tripartite AcrAB-TolC multidrug efflux pump of Escherichia coli is the central conduit for cell-toxic compounds and contributes to antibiotic resistance. While high-resolution structures of all three proteins have been solved, much remains to be learned as to how the individual components come together to form a functional complex. In this study, we investigated the importance of the AcrB β-hairpins belonging to the DN and DC subdomains, which are presumed to dock with TolC, in complex stability and activity of the complete pump. Our data show that the DN subdomain β-hairpin residues play a more critical role in complex stability and activity than the DC subdomain hairpin residues. The failure of the AcrB DN β-hairpin deletion mutant to engage with TolC leads to the drug hypersensitivity phenotype, which is reversed by compensatory alterations in the lipoyl and β-barrel domains of AcrA. Moreover, AcrA and TolC mutants that induce TolC opening also reverse the drug hypersensitivity phenotype of the AcrB β-hairpin mutants, indicating a failure by the AcrB mutant to interact and thus induce TolC opening on its own. Together, these data suggest that both AcrB β-hairpins and AcrA act to stabilize the tripartite complex and induce TolC opening for drug expulsion.
Collapse
Affiliation(s)
- Jon W Weeks
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA; Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, OK, 73019, USA
| | | | | |
Collapse
|