1
|
Sherry DM, Graf IR, Bryant SJ, Emonet T, Machta BB. Lattice ultrasensitivity amplifies signals in E. coli without fine-tuning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.28.596300. [PMID: 38854030 PMCID: PMC11160650 DOI: 10.1101/2024.05.28.596300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The E. coli chemosensory lattice, consisting of receptors, kinases, and adaptor proteins, is an important test case for biochemical signal processing. Kinase output is characterized by precise adaptation to a wide range of background ligand levels and large gain in response to small relative changes in concentration. Existing models of this lattice achieve their gain through allosteric interactions between either receptors or core units of receptors and kinases. Here we introduce a model which operates through an entirely different mechanism in which receptors gate inherently far from equilibrium enzymatic reactions between neighboring kinases. Our lattice model achieves gain through a mechanism more closely related to zero-order ultrasensitivity than to allostery. Thus, we call it lattice ultrasensitivity (LU). Unlike other lattice critical models, the LU model can achieve arbitrarily high gain through time-scale separation, rather than through finetuning. The model also captures qualitative experimental results which are difficult to reconcile with existing models. We discuss possible implementations in the lattice's baseplate where long flexible linkers could potentially mediate interactions between neighboring core units.
Collapse
|
2
|
Hathcock D, Yu Q, Tu Y. Time-reversal symmetry breaking in the chemosensory array reveals a general mechanism for dissipation-enhanced cooperative sensing. Nat Commun 2024; 15:8892. [PMID: 39406715 PMCID: PMC11480488 DOI: 10.1038/s41467-024-52799-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
The Escherichia coli chemoreceptors form an extensive array that achieves cooperative and adaptive sensing of extracellular signals. The receptors control the activity of histidine kinase CheA, which drives a nonequilibrium phosphorylation-dephosphorylation reaction cycle for response regulator CheY. Cooperativity and dissipation are both important aspects of chemotaxis signaling, yet their consequences have only been studied separately. Recent single-cell FRET measurements revealed that kinase activity of the array spontaneously switches between active and inactive states, with asymmetric switching times that signify time-reversal symmetry breaking in the underlying dynamics. Here, we present a nonequilibrium lattice model of the chemosensory array, which demonstrates that the observed asymmetric switching dynamics can only be explained by an interplay between the dissipative reactions within individual core units and the cooperative coupling between neighboring units. Microscopically, the switching time asymmetry originates from irreversible transition paths. The model shows that strong dissipation enables sensitive and rapid signaling response by relieving the speed-sensitivity trade-off, which can be tested by future single-cell experiments. Overall, our model provides a general framework for studying biological complexes composed of coupled subunits that are individually driven by dissipative cycles and the rich nonequilibrium physics within.
Collapse
Affiliation(s)
| | - Qiwei Yu
- IBM T. J. Watson Research Center, Yorktown Heights, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, USA
| | - Yuhai Tu
- IBM T. J. Watson Research Center, Yorktown Heights, USA.
| |
Collapse
|
3
|
Koler M, Parkinson JS, Vaknin A. Signal integration in chemoreceptor complexes. Proc Natl Acad Sci U S A 2024; 121:e2312064121. [PMID: 38530894 PMCID: PMC10998596 DOI: 10.1073/pnas.2312064121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 03/01/2024] [Indexed: 03/28/2024] Open
Abstract
Motile bacteria use large receptor arrays to detect chemical and physical stimuli in their environment, process this complex information, and accordingly bias their swimming in a direction they deem favorable. The chemoreceptor molecules form tripod-like trimers of receptor dimers through direct contacts between their cytoplasmic tips. A pair of trimers, together with a dedicated kinase enzyme, form a core signaling complex. Hundreds of core complexes network to form extended arrays. While considerable progress has been made in revealing the hierarchical structure of the array, the molecular properties underlying signal processing in these structures remain largely unclear. Here we analyzed the signaling properties of nonnetworked core complexes in live cells by following both conformational and kinase control responses to attractant stimuli and to output-biasing lesions at various locations in the receptor molecule. Contrary to the prevailing view that individual receptors are binary two-state devices, we demonstrate that conformational coupling between the ligand binding and the kinase-control receptor domains is, in fact, only moderate. In addition, we demonstrate communication between neighboring receptors through their trimer-contact domains that biases them to adopt similar signaling states. Taken together, these data suggest a view of signaling in receptor trimers that allows significant signal integration to occur within individual core complexes.
Collapse
Affiliation(s)
- Moriah Koler
- The Racah Institute of Physics, The Hebrew University, Jerusalem91904, Israel
| | - John S. Parkinson
- School of Biological Sciences, University of Utah, Salt Lake City, UT84112
| | - Ady Vaknin
- The Racah Institute of Physics, The Hebrew University, Jerusalem91904, Israel
| |
Collapse
|
4
|
Hathcock D, Yu Q, Mello BA, Amin DN, Hazelbauer GL, Tu Y. A nonequilibrium allosteric model for receptor-kinase complexes: The role of energy dissipation in chemotaxis signaling. Proc Natl Acad Sci U S A 2023; 120:e2303115120. [PMID: 37824527 PMCID: PMC10589639 DOI: 10.1073/pnas.2303115120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/29/2023] [Indexed: 10/14/2023] Open
Abstract
The Escherichia coli chemotaxis signaling pathway has served as a model system for the adaptive sensing of environmental signals by large protein complexes. The chemoreceptors control the kinase activity of CheA in response to the extracellular ligand concentration and adapt across a wide concentration range by undergoing methylation and demethylation. Methylation shifts the kinase response curve by orders of magnitude in ligand concentration while incurring a much smaller change in the ligand binding curve. Here, we show that the disproportionate shift in binding and kinase response is inconsistent with equilibrium allosteric models. To resolve this inconsistency, we present a nonequilibrium allosteric model that explicitly includes the dissipative reaction cycles driven by adenosine triphosphate (ATP) hydrolysis. The model successfully explains all existing joint measurements of ligand binding, receptor conformation, and kinase activity for both aspartate and serine receptors. Our results suggest that the receptor complex acts as an enzyme: Receptor methylation modulates the ON-state kinetics of the kinase (e.g., phosphorylation rate), while ligand binding controls the equilibrium balance between kinase ON/OFF states. Furthermore, sufficient energy dissipation is responsible for maintaining and enhancing the sensitivity range and amplitude of the kinase response. We demonstrate that the nonequilibrium allosteric model is broadly applicable to other sensor-kinase systems by successfully fitting previously unexplained data from the DosP bacterial oxygen-sensing system. Overall, this work provides a nonequilibrium physics perspective on cooperative sensing by large protein complexes and opens up research directions for understanding their microscopic mechanisms through simultaneous measurements and modeling of ligand binding and downstream responses.
Collapse
Affiliation(s)
- David Hathcock
- IBM T. J. Watson Research Center, Yorktown Heights, NY10598
| | - Qiwei Yu
- IBM T. J. Watson Research Center, Yorktown Heights, NY10598
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
| | - Bernardo A. Mello
- International Center of Physics, Physics Institute, University of Brasilia, Brasilia70919-970, Brazil
| | - Divya N. Amin
- Department of Biochemistry, University of Missouri, Columbia, MO65211
| | | | - Yuhai Tu
- IBM T. J. Watson Research Center, Yorktown Heights, NY10598
| |
Collapse
|
5
|
Nakamura K, Kobayashi TJ. Connection between the Bacterial Chemotactic Network and Optimal Filtering. PHYSICAL REVIEW LETTERS 2021; 126:128102. [PMID: 33834835 DOI: 10.1103/physrevlett.126.128102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
The chemotactic network of Escherichia coli has been studied extensively both biophysically and information theoretically. Nevertheless, connection between these two aspects is still elusive. In this work, we report such a connection. We derive an optimal filtering dynamics under the assumption that E. coli's sensory system optimally infers the binary information whether it is swimming up or down along an exponential ligand gradient from noisy sensory signals. Then we show that a standard biochemical model of the chemotactic network is mathematically equivalent to this information-theoretically optimal dynamics. Moreover, we demonstrate that an experimentally observed nonlinear response relation can be reproduced from the optimal dynamics. These results suggest that the biochemical network of E. coli chemotaxis is designed to optimally extract the binary information along an exponential gradient in a noisy condition.
Collapse
Affiliation(s)
- Kento Nakamura
- Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8654, Japan
| | - Tetsuya J Kobayashi
- Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8654, Japan
| |
Collapse
|
6
|
Cassidy CK, Himes BA, Sun D, Ma J, Zhao G, Parkinson JS, Stansfeld PJ, Luthey-Schulten Z, Zhang P. Structure and dynamics of the E. coli chemotaxis core signaling complex by cryo-electron tomography and molecular simulations. Commun Biol 2020; 3:24. [PMID: 31925330 PMCID: PMC6954272 DOI: 10.1038/s42003-019-0748-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/19/2019] [Indexed: 01/08/2023] Open
Abstract
To enable the processing of chemical gradients, chemotactic bacteria possess large arrays of transmembrane chemoreceptors, the histidine kinase CheA, and the adaptor protein CheW, organized as coupled core-signaling units (CSU). Despite decades of study, important questions surrounding the molecular mechanisms of sensory signal transduction remain unresolved, owing especially to the lack of a high-resolution CSU structure. Here, we use cryo-electron tomography and sub-tomogram averaging to determine a structure of the Escherichia coli CSU at sub-nanometer resolution. Based on our experimental data, we use molecular simulations to construct an atomistic model of the CSU, enabling a detailed characterization of CheA conformational dynamics in its native structural context. We identify multiple, distinct conformations of the critical P4 domain as well as asymmetries in the localization of the P3 bundle, offering several novel insights into the CheA signaling mechanism.
Collapse
Affiliation(s)
- C Keith Cassidy
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Benjamin A Himes
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Dapeng Sun
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Jun Ma
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Gongpu Zhao
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - John S Parkinson
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- School of Life Sciences & Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Zaida Luthey-Schulten
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemistry and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Peijun Zhang
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA.
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
- Electron Bio-Imaging Centre, Diamond Light Sources, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
| |
Collapse
|
7
|
Conformational shifts in a chemoreceptor helical hairpin control kinase signaling in Escherichia coli. Proc Natl Acad Sci U S A 2019; 116:15651-15660. [PMID: 31315979 PMCID: PMC6681711 DOI: 10.1073/pnas.1902521116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Motile bacteria use chemoreceptor signaling arrays to track chemical gradients with high precision. The Escherichia coli chemotaxis system offers an ideal model for probing the molecular mechanisms of transmembrane and intracellular signaling. In this study, we characterized the signaling properties of mutant E. coli receptors that had amino acid replacements in residues that form a salt-bridge connection between the cytoplasmic tips of receptor molecules. The mutant signaling defects suggested that the chemoreceptor tip operates as a two-state device with discrete active and inactive conformations and that the level of output activity modulates connections between receptor signaling units that produce highly cooperative responses to attractant stimuli. These findings shed important light on the nature and control of receptor signaling states. Motile Escherichia coli cells use chemoreceptor signaling arrays to track chemical gradients with exquisite precision. Highly conserved residues in the cytoplasmic hairpin tip of chemoreceptor molecules promote assembly of trimer-based signaling complexes and modulate the activity of their CheA kinase partners. To explore hairpin tip output states in the serine receptor Tsr, we characterized the signaling consequences of amino acid replacements at the salt-bridge residue pair E385-R388. All mutant receptors assembled trimers and signaling complexes, but most failed to support serine chemotaxis in soft agar assays. Small side-chain replacements at either residue produced OFF- or ON-shifted outputs that responded to serine stimuli in wild-type fashion, suggesting that these receptors, like the wild-type, operate as two-state signaling devices. Larger aliphatic or aromatic side chains caused slow or partial kinase control responses that proved dependent on the connections between core signaling units that promote array cooperativity. In a mutant lacking one of two key adapter-kinase contacts (interface 2), those mutant receptors exhibited more wild-type behaviors. Lastly, mutant receptors with charged amino acid replacements assembled signaling complexes that were locked in kinase-ON (E385K|R) or kinase-OFF (R388D|E) output. The hairpin tips of mutant receptors with these more aberrant signaling properties probably have nonnative structures or dynamic behaviors. Our results suggest that chemoeffector stimuli and adaptational modifications influence the cooperative connections between core signaling units. This array remodeling process may involve activity-dependent changes in the relative strengths of interface 1 and 2 interactions between the CheW and CheA.P5 components of receptor core signaling complexes.
Collapse
|
8
|
Waite AJ, Frankel NW, Emonet T. Behavioral Variability and Phenotypic Diversity in Bacterial Chemotaxis. Annu Rev Biophys 2018; 47:595-616. [PMID: 29618219 DOI: 10.1146/annurev-biophys-062215-010954] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Living cells detect and process external signals using signaling pathways that are affected by random fluctuations. These variations cause the behavior of individual cells to fluctuate over time (behavioral variability) and generate phenotypic differences between genetically identical individuals (phenotypic diversity). These two noise sources reduce our ability to predict biological behavior because they diversify cellular responses to identical signals. Here, we review recent experimental and theoretical advances in understanding the mechanistic origin and functional consequences of such variation in Escherichia coli chemotaxis-a well-understood model of signal transduction and behavior. After briefly summarizing the architecture and logic of the chemotaxis system, we discuss determinants of behavior and chemotactic performance of individual cells. Then, we review how cell-to-cell differences in protein abundance map onto differences in individual chemotactic abilities and how phenotypic variability affects the performance of the population. We conclude with open questions to be addressed by future research.
Collapse
Affiliation(s)
- Adam James Waite
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520; .,Current affiliation: Calico Life Sciences, LLC, South San Francisco, California 94080
| | - Nicholas W Frankel
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520; .,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158
| | - Thierry Emonet
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520; .,Department of Physics, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
9
|
Fluorescence Anisotropy to Detect In Vivo Stimulus-Induced Changes in Chemoreceptor Packing. Methods Mol Biol 2018. [PMID: 29429096 DOI: 10.1007/978-1-4939-7577-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The anisotropy of the fluorescence emitted from fluorescent proteins, such as yellow fluorescent protein (YFP), is sensitive to Homo-FRET between the proteins. This effect can be used to detect in vivo ligand-induced changes in packing or conformation of tagged chemoreceptors. Such measurements of clustered or dispersed core-signaling units revealed quantitative dose-dependent responses of these sensors.
Collapse
|
10
|
Colin R, Rosazza C, Vaknin A, Sourjik V. Multiple sources of slow activity fluctuations in a bacterial chemosensory network. eLife 2017; 6:26796. [PMID: 29231168 PMCID: PMC5809148 DOI: 10.7554/elife.26796] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 12/02/2017] [Indexed: 12/31/2022] Open
Abstract
Cellular networks are intrinsically subject to stochastic fluctuations, but analysis of the resulting noise remained largely limited to gene expression. The pathway controlling chemotaxis of Escherichia coli provides one example where posttranslational signaling noise has been deduced from cellular behavior. This noise was proposed to result from stochasticity in chemoreceptor methylation, and it is believed to enhance environment exploration by bacteria. Here we combined single-cell FRET measurements with analysis based on the fluctuation-dissipation theorem (FDT) to characterize origins of activity fluctuations within the chemotaxis pathway. We observed surprisingly large methylation-independent thermal fluctuations of receptor activity, which contribute to noise comparably to the energy-consuming methylation dynamics. Interactions between clustered receptors involved in amplification of chemotactic signals are also necessary to produce the observed large activity fluctuations. Our work thus shows that the high response sensitivity of this cellular pathway also increases its susceptibility to noise, from thermal and out-of-equilibrium processes.
Collapse
Affiliation(s)
- Remy Colin
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.,LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Christelle Rosazza
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.,LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Ady Vaknin
- The Racah Institute of Physics, The Hebrew University, Jerusalem, Israel
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.,LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| |
Collapse
|
11
|
Keegstra JM, Kamino K, Anquez F, Lazova MD, Emonet T, Shimizu TS. Phenotypic diversity and temporal variability in a bacterial signaling network revealed by single-cell FRET. eLife 2017; 6:e27455. [PMID: 29231170 PMCID: PMC5809149 DOI: 10.7554/elife.27455] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 11/17/2017] [Indexed: 11/13/2022] Open
Abstract
We present in vivo single-cell FRET measurements in the Escherichia coli chemotaxis system that reveal pervasive signaling variability, both across cells in isogenic populations and within individual cells over time. We quantify cell-to-cell variability of adaptation, ligand response, as well as steady-state output level, and analyze the role of network design in shaping this diversity from gene expression noise. In the absence of changes in gene expression, we find that single cells demonstrate strong temporal fluctuations. We provide evidence that such signaling noise can arise from at least two sources: (i) stochastic activities of adaptation enzymes, and (ii) receptor-kinase dynamics in the absence of adaptation. We demonstrate that under certain conditions, (ii) can generate giant fluctuations that drive signaling activity of the entire cell into a stochastic two-state switching regime. Our findings underscore the importance of molecular noise, arising not only in gene expression but also in protein networks.
Collapse
Affiliation(s)
| | | | | | | | - Thierry Emonet
- Department of Molecular, Cellular and Developmental BiologyYale UniversityNew HavenUnited States
- Department of PhysicsYale UniversityNew HavenUnited States
| | | |
Collapse
|
12
|
Colin R, Sourjik V. Emergent properties of bacterial chemotaxis pathway. Curr Opin Microbiol 2017; 39:24-33. [PMID: 28822274 DOI: 10.1016/j.mib.2017.07.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 07/27/2017] [Indexed: 11/17/2022]
Abstract
The chemotaxis pathway of Escherichia coli is the most studied sensory system in prokaryotes. The highly conserved general architecture of this pathway consists of two modules which mediate signal transduction and adaptation. The signal transduction module detects and amplifies changes in environmental conditions and rapidly transmits these signals to control bacterial swimming behavior. The adaptation module gradually resets the activity and sensitivity of the first module after initial stimulation and thereby enables the temporal comparisons necessary for bacterial chemotaxis. Recent experimental and theoretical work has unraveled multiple quantitative features emerging from the interplay between these two modules. This has laid the groundwork for rationalization of these emerging properties in the context of the evolutionary optimization of the chemotactic behavior.
Collapse
Affiliation(s)
- Remy Colin
- Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology, Karl-von-Frisch-strasse 16, 35043 Marburg, Germany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology, Karl-von-Frisch-strasse 16, 35043 Marburg, Germany.
| |
Collapse
|
13
|
Lai RZ, Gosink KK, Parkinson JS. Signaling Consequences of Structural Lesions that Alter the Stability of Chemoreceptor Trimers of Dimers. J Mol Biol 2017; 429:823-835. [PMID: 28215934 DOI: 10.1016/j.jmb.2017.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/07/2017] [Accepted: 02/10/2017] [Indexed: 12/18/2022]
Abstract
Residues E402 and R404 of the Escherichia coli serine chemoreceptor, Tsr, appear to form a salt bridge that spans the interfaces between neighboring dimers in the Tsr trimer of dimers, a key structural component of receptor core signaling complexes. To assess their functional roles, we constructed full sets of single amino acid replacement mutants at E402 and R404 and characterized their signaling behaviors with a suite of in vivo assays. Our results indicate that the E402 and R404 residues of Tsr play their most critical signaling roles at their inner locations near the trimer axis where they likely participate in stabilizing the trimer-of-dimer packing and the kinase-ON state of core signaling complexes. Mutant receptors with a variety of side-chain replacements still accessed both the ON and OFF signaling states, suggesting that core signaling complexes produce kinase activity over a range of receptor conformations and dynamic motions. Similarly, the kinase-OFF state may not be a discrete conformation but rather a range of structures outside the range of those suitable for kinase activation. Consistent with this idea, some structural lesions at both E402 and R404 produced signaling behaviors that are not compatible with discrete two-state models of core complex signaling states. Those lesions might stabilize intermediate receptor conformations along the OFF-ON energy landscape. Amino acid replacements produced different constellations of signaling defects at each residue, indicating that they play distinct structure-function roles. R404, but not E402, was critical for high signal cooperativity in the receptor array.
Collapse
Affiliation(s)
- Run-Zhi Lai
- Biology Department, University of Utah, Salt Lake City, UT 84112, USA
| | - Khoosheh K Gosink
- Biology Department, University of Utah, Salt Lake City, UT 84112, USA
| | - John S Parkinson
- Biology Department, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
14
|
Abstract
Motile bacteria use large receptor arrays to detect and follow chemical gradients in their environment. Extended receptor arrays, composed of networked signaling complexes, promote cooperative stimulus control of their associated signaling kinases. Here, we used structural lesions at the communication interface between core complexes to create an Escherichia coli strain with functional but dispersed signaling complexes. This strain allowed us to directly study how networking of signaling complexes affects chemotactic signaling and gradient-tracking performance. We demonstrate that networking of receptor complexes provides bacterial cells with about 10-fold-heightened detection sensitivity to attractants while maintaining a wide dynamic range over which receptor adaptational modifications can tune response sensitivity. These advantages proved especially critical for chemotaxis toward an attractant source under conditions in which bacteria are unable to alter the attractant gradient. Chemoreceptor arrays are found in many motile bacteria. However, although our understanding of bacterial chemotaxis is quite detailed, the signaling and behavioral advantages of networked receptor arrays had not been directly studied in cells. We have recently shown that lesions in a key interface of the E. coli receptor array diminish physical connections and functional coupling between core signaling complexes while maintaining their basic signaling capacity. In this study, we exploited an interface 2 mutant to show, for the first time, that coupling between core complexes substantially enhances stimulus detection and chemotaxis performance.
Collapse
|
15
|
Koler M, Frank V, Amartely H, Friedler A, Vaknin A. Dynamic Clustering of the Bacterial Sensory Kinase BaeS. PLoS One 2016; 11:e0150349. [PMID: 26950881 PMCID: PMC4780735 DOI: 10.1371/journal.pone.0150349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/14/2016] [Indexed: 11/29/2022] Open
Abstract
Several bacterial sensory-kinase receptors form clusters on the cell membrane. However, the dynamics of sensory-kinase clustering are largely unclear. Using measurements of fluorescence anisotropy and time-lapse imaging of Escherichia coli cells, we demonstrate that copper ions trigger self-association of BaeS receptors and lead to rapid formation of clusters, which can be reversibly dispersed by a metal chelator. Copper ions did not trigger self-association of other fluorescently tagged sensory kinases, and other divalent metal ions could not elicit self-association of BaeS. The histidine residues in the BaeS periplasmic domain are essential for copper binding in vitro and are important for the copper-induced BaeS responses in vivo. BaeS clustering was triggered also under conditions that directly triggered BaeS-dependent transcriptional responses. Thus, clustering of sensory kinase receptors can be dynamic and context dependent and can be triggered by specific environmental cues.
Collapse
Affiliation(s)
- Moriah Koler
- The Racah Institute of Physics, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Vered Frank
- The Racah Institute of Physics, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Hadar Amartely
- The Institute of Chemistry, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Assaf Friedler
- The Institute of Chemistry, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Ady Vaknin
- The Racah Institute of Physics, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem, 91904, Israel
- * E-mail:
| |
Collapse
|
16
|
The source of high signal cooperativity in bacterial chemosensory arrays. Proc Natl Acad Sci U S A 2016; 113:3335-40. [PMID: 26951681 DOI: 10.1073/pnas.1600216113] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Escherichia coli chemosensory system consists of large arrays of transmembrane chemoreceptors associated with a dedicated histidine kinase, CheA, and a linker protein, CheW, that couples CheA activity to receptor control. The kinase activity responses to receptor ligand occupancy changes can be highly cooperative, reflecting allosteric coupling of multiple CheA and receptor molecules. Recent structural and functional studies have led to a working model in which receptor core complexes, the minimal units of signaling, are linked into hexagonal arrays through a unique interface 2 interaction between CheW and the P5 domain of CheA. To test this array model, we constructed and characterized CheA and CheW mutants with amino acid replacements at key interface 2 residues. The mutant proteins proved defective in interface 2-specific in vivo cross-linking assays, and formed signaling complexes that were dispersed around the cell membrane rather than clustered at the cell poles as in wild type chemosensory arrays. Interface 2 mutants down-regulated CheA activity in response to attractant stimuli in vivo, but with much less cooperativity than the wild type. Moreover, mutant cells containing fluorophore-tagged receptors exhibited greater basal anisotropy that changed rapidly in response to attractant stimuli, consistent with facile changes in loosely packed receptors. We conclude that interface 2 lesions disrupt important network connections between core complexes, preventing receptors from operating in large, allosteric teams. This work confirms the critical role of interface 2 in organizing the chemosensory array, in directing the clustered array to the cell poles, and in producing its highly cooperative signaling properties.
Collapse
|
17
|
A Trigger Residue for Transmembrane Signaling in the Escherichia coli Serine Chemoreceptor. J Bacteriol 2015; 197:2568-79. [PMID: 26013490 DOI: 10.1128/jb.00274-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/18/2015] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED The transmembrane Tsr protein of Escherichia coli mediates chemotactic responses to environmental serine gradients. Serine binds to the periplasmic domain of the homodimeric Tsr molecule, promoting a small inward displacement of one transmembrane helix (TM2). TM2 piston displacements, in turn, modulate the structural stability of the Tsr-HAMP domain on the cytoplasmic side of the membrane to control the autophosphorylation activity of the signaling CheA kinase bound to the membrane-distal cytoplasmic tip of Tsr. A five-residue control cable segment connects TM2 to the AS1 helix of HAMP and transmits stimulus and sensory adaptation signals between them. To explore the possible role of control cable helicity in transmembrane signaling by Tsr, we characterized the signaling properties of mutant receptors with various control cable alterations. An all-alanine control cable shifted Tsr output toward the kinase-on state, whereas an all-glycine control cable prevented Tsr from reaching either a fully on or fully off output state. Restoration of the native isoleucine (I214) in these synthetic control cables largely alleviated their signaling defects. Single amino acid replacements at Tsr-I214 shifted output toward the kinase-off (L, N, H, and R) or kinase-on (A and G) states, whereas other control cable residues tolerated most amino acid replacements with little change in signaling behavior. These findings indicate that changes in control cable helicity might mediate transitions between the kinase-on and kinase-off states during transmembrane signaling by chemoreceptors. Moreover, the Tsr-I214 side chain plays a key role, possibly through interaction with the membrane interfacial environment, in triggering signaling changes in response to TM2 piston displacements. IMPORTANCE The Tsr protein of E. coli mediates chemotactic responses to environmental serine gradients. Stimulus signals from the Tsr periplasmic sensing domain reach its cytoplasmic kinase control domain through piston displacements of a membrane-spanning helix and an adjoining five-residue control cable segment. We characterized the signaling properties of Tsr variants to elucidate the transmembrane signaling role of the control cable, an element present in many microbial sensory proteins. Both the kinase-on and kinase-off output states of Tsr depended on control cable helicity, but only one residue, I214, was critical for triggering responses to attractant inputs. These findings suggest that signal transmission in Tsr involves modulation of control cable helicity through interaction of the I214 side chain with the cytoplasmic membrane.
Collapse
|
18
|
Parkinson JS, Hazelbauer GL, Falke JJ. Signaling and sensory adaptation in Escherichia coli chemoreceptors: 2015 update. Trends Microbiol 2015; 23:257-66. [PMID: 25834953 DOI: 10.1016/j.tim.2015.03.003] [Citation(s) in RCA: 274] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 11/25/2022]
Abstract
Motile Escherichia coli cells track gradients of attractant and repellent chemicals in their environment with transmembrane chemoreceptor proteins. These receptors operate in cooperative arrays to produce large changes in the activity of a signaling kinase, CheA, in response to small changes in chemoeffector concentration. Recent research has provided a much deeper understanding of the structure and function of core receptor signaling complexes and the architecture of higher-order receptor arrays, which, in turn, has led to new insights into the molecular signaling mechanisms of chemoreceptor networks. Current evidence supports a new view of receptor signaling in which stimulus information travels within receptor molecules through shifts in the dynamic properties of adjoining structural elements rather than through a few discrete conformational states.
Collapse
Affiliation(s)
- John S Parkinson
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA.
| | - Gerald L Hazelbauer
- Department of Biochemistry, University of Missouri Columbia, Columbia, MO 65211, USA
| | - Joseph J Falke
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
19
|
Bi S, Lai L. Bacterial chemoreceptors and chemoeffectors. Cell Mol Life Sci 2015; 72:691-708. [PMID: 25374297 PMCID: PMC11113376 DOI: 10.1007/s00018-014-1770-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/05/2014] [Accepted: 10/23/2014] [Indexed: 01/11/2023]
Abstract
Bacteria use chemotaxis signaling pathways to sense environmental changes. Escherichia coli chemotaxis system represents an ideal model that illustrates fundamental principles of biological signaling processes. Chemoreceptors are crucial signaling proteins that mediate taxis toward a wide range of chemoeffectors. Recently, in deep study of the biochemical and structural features of chemoreceptors, the organization of higher-order clusters in native cells, and the signal transduction mechanisms related to the on-off signal output provides us with general insights to understand how chemotaxis performs high sensitivity, precise adaptation, signal amplification, and wide dynamic range. Along with the increasing knowledge, bacterial chemoreceptors can be engineered to sense novel chemoeffectors, which has extensive applications in therapeutics and industry. Here we mainly review recent advances in the E. coli chemotaxis system involving structure and organization of chemoreceptors, discovery, design, and characterization of chemoeffectors, and signal recognition and transduction mechanisms. Possible strategies for changing the specificity of bacterial chemoreceptors to sense novel chemoeffectors are also discussed.
Collapse
Affiliation(s)
- Shuangyu Bi
- Center for Quantitative Biology, Peking University, Beijing, 100871 China
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Luhua Lai
- Center for Quantitative Biology, Peking University, Beijing, 100871 China
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| |
Collapse
|
20
|
Lai RZ, Parkinson JS. Functional suppression of HAMP domain signaling defects in the E. coli serine chemoreceptor. J Mol Biol 2014; 426:3642-55. [PMID: 25134756 DOI: 10.1016/j.jmb.2014.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/07/2014] [Accepted: 08/03/2014] [Indexed: 10/24/2022]
Abstract
HAMP domains play key signaling roles in many bacterial receptor proteins. The four-helix HAMP bundle of the homodimeric Escherichia coli serine chemoreceptor (Tsr) interacts with an adjoining four-helix sensory adaptation bundle to regulate the histidine autokinase CheA bound to the cytoplasmic tip of the Tsr molecule. The adaptation helices undergo reversible covalent modifications that tune the stimulus-responsive range of the receptor: unmodified E residues promote kinase-off output, and methylated E residues or Q replacements at modification sites promote kinase-on output. We used mutationally imposed adaptational modification states and cells with various combinations of the sensory adaptation enzymes, CheR and CheB, to characterize the signaling properties of mutant Tsr receptors that had amino acid replacements in packing layer 3 of the HAMP bundle and followed in vivo CheA activity with an assay based on Förster resonance energy transfer. We found that an alanine or a serine replacement at HAMP residue I229 effectively locked Tsr output in a kinase-on state, abrogating chemotactic responses. A second amino acid replacement in the same HAMP packing layer alleviated the I229A and I229S signaling defects. Receptors with the suppressor changes alone mediated chemotaxis in adaptation-proficient cells but exhibited altered sensitivity to serine stimuli. Two of the suppressors (S255E and S255A) shifted Tsr output toward the kinase-off state, but two others (S255G and L256F) shifted output toward a kinase-on state. The alleviation of locked-on defects by on-shifted suppressors implies that Tsr-HAMP has several conformationally distinct kinase-active output states and that HAMP signaling might involve dynamic shifts over a range of bundle conformations.
Collapse
Affiliation(s)
- Run-Zhi Lai
- Biology Department, University of Utah, Salt Lake City, UT 84112, USA
| | - John S Parkinson
- Biology Department, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
21
|
Herrera Seitz MK, Frank V, Massazza DA, Vaknin A, Studdert CA. Bacterial chemoreceptors of different length classes signal independently. Mol Microbiol 2014; 93:814-22. [DOI: 10.1111/mmi.12700] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2014] [Indexed: 01/22/2023]
Affiliation(s)
- M. Karina Herrera Seitz
- Instituto de Investigaciones Biológicas; Universidad Nacional de Mar del Plata; 7600 Mar del Plata Buenos Aires Argentina
| | - Vered Frank
- Racah Institute of Physics; Hebrew University; 91904 Jerusalem Israel
| | - Diego A. Massazza
- Instituto de Investigaciones Biológicas; Universidad Nacional de Mar del Plata; 7600 Mar del Plata Buenos Aires Argentina
| | - Ady Vaknin
- Racah Institute of Physics; Hebrew University; 91904 Jerusalem Israel
| | - Claudia A. Studdert
- Instituto de Investigaciones Biológicas; Universidad Nacional de Mar del Plata; 7600 Mar del Plata Buenos Aires Argentina
| |
Collapse
|
22
|
Josenhans C, Jung K, Rao CV, Wolfe AJ. A tale of two machines: a review of the BLAST meeting, Tucson, AZ, 20-24 January 2013. Mol Microbiol 2013; 91:6-25. [PMID: 24125587 DOI: 10.1111/mmi.12427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2013] [Indexed: 01/06/2023]
Abstract
Since its inception, Bacterial Locomotion and Signal Transduction (BLAST) meetings have been the place to exchange and share the latest developments in the field of bacterial signal transduction and motility. At the 12th BLAST meeting, held last January in Tucson, AZ, researchers from all over the world met to report and discuss progress in diverse aspects of the field. The majority of these advances, however, came at the level of atomic level structures and their associated mechanisms. This was especially true of the biological machines that sense and respond to environmental changes.
Collapse
Affiliation(s)
- Christine Josenhans
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg Strasse 1, 30625, Hannover, Germany
| | | | | | | |
Collapse
|