1
|
Farhat M, Cox H, Ghanem M, Denkinger CM, Rodrigues C, Abd El Aziz MS, Enkh-Amgalan H, Vambe D, Ugarte-Gil C, Furin J, Pai M. Drug-resistant tuberculosis: a persistent global health concern. Nat Rev Microbiol 2024; 22:617-635. [PMID: 38519618 DOI: 10.1038/s41579-024-01025-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 03/25/2024]
Abstract
Drug-resistant tuberculosis (TB) is estimated to cause 13% of all antimicrobial resistance-attributable deaths worldwide and is driven by both ongoing resistance acquisition and person-to-person transmission. Poor outcomes are exacerbated by late diagnosis and inadequate access to effective treatment. Advances in rapid molecular testing have recently improved the diagnosis of TB and drug resistance. Next-generation sequencing of Mycobacterium tuberculosis has increased our understanding of genetic resistance mechanisms and can now detect mutations associated with resistance phenotypes. All-oral, shorter drug regimens that can achieve high cure rates of drug-resistant TB within 6-9 months are now available and recommended but have yet to be scaled to global clinical use. Promising regimens for the prevention of drug-resistant TB among high-risk contacts are supported by early clinical trial data but final results are pending. A person-centred approach is crucial in managing drug-resistant TB to reduce the risk of poor treatment outcomes, side effects, stigma and mental health burden associated with the diagnosis. In this Review, we describe current surveillance of drug-resistant TB and the causes, risk factors and determinants of drug resistance as well as the stigma and mental health considerations associated with it. We discuss recent advances in diagnostics and drug-susceptibility testing and outline the progress in developing better treatment and preventive therapies.
Collapse
Affiliation(s)
- Maha Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Helen Cox
- Institute of Infectious Disease and Molecular Medicine, Wellcome Centre for Infectious Disease Research and Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa
| | - Marwan Ghanem
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Claudia M Denkinger
- Division of Infectious Disease and Tropical Medicine, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg University Hospital, Heidelberg, Germany
| | | | - Mirna S Abd El Aziz
- Division of Infectious Disease and Tropical Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Debrah Vambe
- National TB Control Programme, Manzini, Eswatini
| | - Cesar Ugarte-Gil
- School of Public and Population Health, University of Texas Medical Branch, Galveston, TX, USA
| | - Jennifer Furin
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | - Madhukar Pai
- McGill International TB Centre, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
2
|
Rodriguez A, Diehl JD, Wright GS, Bonar CD, Lundgren TJ, Moss MJ, Li J, Milenkovic T, Huber PW, Champion MM, Emrich SJ, Clark PL. Synonymous codon substitutions modulate transcription and translation of a divergent upstream gene by modulating antisense RNA production. Proc Natl Acad Sci U S A 2024; 121:e2405510121. [PMID: 39190361 PMCID: PMC11388325 DOI: 10.1073/pnas.2405510121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Synonymous codons were originally viewed as interchangeable, with no phenotypic consequences. However, substantial evidence has now demonstrated that synonymous substitutions can perturb a variety of gene expression and protein homeostasis mechanisms, including translational efficiency, translational fidelity, and cotranslational folding of the encoded protein. To date, most studies of synonymous codon-derived perturbations have focused on effects within a single gene. Here, we show that synonymous codon substitutions made far within the coding sequence of Escherichia coli plasmid-encoded chloramphenicol acetyltransferase (cat) can significantly increase expression of the divergent upstream tetracycline resistance gene, tetR. In four out of nine synonymously recoded cat sequences tested, expression of the upstream tetR gene was significantly elevated due to transcription of a long antisense RNA (asRNA) originating from a transcription start site within cat. Surprisingly, transcription of this asRNA readily bypassed the native tet transcriptional repression mechanism. Even more surprisingly, accumulation of the TetR protein correlated with the level of asRNA, rather than total tetR RNA. These effects of synonymous codon substitutions on transcription and translation of a neighboring gene suggest that synonymous codon usage in bacteria may be under selection to both preserve the amino acid sequence of the encoded gene and avoid DNA sequence elements that can significantly perturb expression of neighboring genes. Avoiding such sequences may be especially important in plasmids and prokaryotic genomes, where genes and regulatory elements are often densely packed. Similar considerations may apply to the design of genetic circuits for synthetic biology applications.
Collapse
Affiliation(s)
- Anabel Rodriguez
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Jacob D. Diehl
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Gabriel S. Wright
- Department of Computer Science & Engineering, University of Notre Dame, Notre Dame, IN46556
| | - Christopher D. Bonar
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Taylor J. Lundgren
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - McKenze J. Moss
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Jun Li
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN46556
| | - Tijana Milenkovic
- Department of Computer Science & Engineering, University of Notre Dame, Notre Dame, IN46556
| | - Paul W. Huber
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Matthew M. Champion
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Scott J. Emrich
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN37996
| | - Patricia L. Clark
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN46556
| |
Collapse
|
3
|
Zhong T, Wu H, Hu J, Liu Y, Zheng Y, Li N, Sun Z, Yin XF, He QY, Sun X. Two synonymous single-nucleotide polymorphisms promoting fluoroquinolone resistance of Escherichia coli in the environment. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133849. [PMID: 38432089 DOI: 10.1016/j.jhazmat.2024.133849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Single-nucleotide polymorphism (SNP) is one of the core mechanisms that respond to antibiotic resistance of Escherichia coli (E. coli), which is a major issue in environmental pollution. A specific type of SNPs, synonymous SNPs, have been generally considered as the "silent" SNPs since they do not change the encoded amino acid. However, the impact of synonymous SNPs on mRNA splicing, nucleo-cytoplasmic export, stability, and translation was gradually discovered in the last decades. Figuring out the mechanism of synonymous SNPs in regulating antibiotic resistance is critical to improve antimicrobial therapy strategies in clinics and biological treatment strategies of antibiotic-resistant E. coli-polluted materials. With our newly designed antibiotic resistant SNPs prediction algorithm, Multilocus Sequence Type based Identification for Phenotype-single nucleotide polymorphism Analysis (MIPHA), and in vivo validation, we identified 2 important synonymous SNPs 522 G>A and 972 C>T, located at hisD gene, which was previously predicted as a fluoroquinolone resistance-related gene without a detailed mechanism in the E. coli samples with environmental backgrounds. We first discovered that hisD causes gyrA mutation via the upregulation of sbmC and its downstream gene umuD. Moreover, those 2 synonymous SNPs of hisD cause its own translational slowdown and further reduce the expression levels of sbmC and its downstream gene umuD, making the fluoroquinolone resistance determining region of gyrA remains unmutated, ultimately causing the bacteria to lose their ability to resist drugs. This study provided valuable insight into the role of synonymous SNPs in mediating antibiotic resistance of bacteria and a new perspective for the treatment of environmental pollution caused by drug-resistant bacteria.
Collapse
Affiliation(s)
- Tairan Zhong
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Haiming Wu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jiehua Hu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yun Liu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yundan Zheng
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Nan Li
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhenghua Sun
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xing-Feng Yin
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Xuesong Sun
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
4
|
Widney KA, Yang DD, Rusch LM, Copley SD. CRISPR-Cas9-assisted genome editing in E. coli elevates the frequency of unintended mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.584922. [PMID: 38562785 PMCID: PMC10983943 DOI: 10.1101/2024.03.19.584922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Cas-assisted lambda Red recombineering techniques have rapidly become a mainstay of bacterial genome editing. Such techniques have been used to construct both individual mutants and massive libraries to assess the effects of genomic changes. We have found that a commonly used Cas9-assisted editing method results in unintended mutations elsewhere in the genome in 26% of edited clones. The unintended mutations are frequently found over 200 kb from the intended edit site and even over 10 kb from potential off-target sites. We attribute the high frequency of unintended mutations to error-prone polymerases expressed in response to dsDNA breaks introduced at the edit site. Most unintended mutations occur in regulatory or coding regions and thus may have phenotypic effects. Our findings highlight the risks associated with genome editing techniques involving dsDNA breaks in E. coli and likely other bacteria and emphasize the importance of sequencing the genomes of edited cells to ensure the absence of unintended mutations.
Collapse
Affiliation(s)
- Karl A. Widney
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, 80205, USA
| | - Dong-Dong Yang
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, 80205, USA
| | - Leo M. Rusch
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, 80205, USA
| | - Shelley D. Copley
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, 80205, USA
| |
Collapse
|
5
|
Yang DD, Rusch LM, Widney KA, Morgenthaler AB, Copley SD. Synonymous edits in the Escherichia coli genome have substantial and condition-dependent effects on fitness. Proc Natl Acad Sci U S A 2024; 121:e2316834121. [PMID: 38252823 PMCID: PMC10835057 DOI: 10.1073/pnas.2316834121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
CRISPR-Cas-based genome editing is widely used in bacteria at scales ranging from construction of individual mutants to massively parallel libraries. This procedure relies on guide RNA-directed cleavage of the genome followed by repair with a template that introduces a desired mutation along with synonymous "immunizing" mutations to prevent re-cleavage of the genome after editing. Because the immunizing mutations do not change the protein sequence, they are often assumed to be neutral. However, synonymous mutations can change mRNA structures in ways that alter levels of the encoded proteins. We have tested the assumption that immunizing mutations are neutral by constructing a library of over 50,000 edits that consist of only synonymous mutations in Escherichia coli. Thousands of edits had substantial effects on fitness during growth of E. coli on acetate, a poor carbon source that is toxic at high concentrations. The percentage of high-impact edits varied considerably between genes and at different positions within genes. We reconstructed clones with high-impact edits and found that 69% indeed had significant effects on growth in acetate. Interestingly, fewer edits affected fitness during growth in glucose, a preferred carbon source, suggesting that changes in protein expression caused by synonymous mutations may be most important when an organism encounters challenging conditions. Finally, we showed that synonymous edits can have widespread effects; a synonymous edit at the 5' end of ptsI altered expression of hundreds of genes. Our results suggest that the synonymous immunizing edits introduced during CRISPR-Cas-based genome editing should not be assumed to be innocuous.
Collapse
Affiliation(s)
- Dong-Dong Yang
- Department of Molecular, Cellular and Developmental Biology and the Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO80309
| | - Leo M. Rusch
- Department of Molecular, Cellular and Developmental Biology and the Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO80309
| | - Karl A. Widney
- Department of Molecular, Cellular and Developmental Biology and the Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO80309
| | - Andrew B. Morgenthaler
- Department of Molecular, Cellular and Developmental Biology and the Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO80309
- Amyris, Inc., Emeryville, CA94608
| | - Shelley D. Copley
- Department of Molecular, Cellular and Developmental Biology and the Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO80309
| |
Collapse
|
6
|
El-Kholy MA, Helaly GF, El Ghazzawi EF, El-Sawaf G, Shawky SM. Analysis of CDR1 and MDR1 Gene Expression and ERG11 Substitutions in Clinical Candida tropicalis Isolates from Alexandria, Egypt. Braz J Microbiol 2023; 54:2609-2615. [PMID: 37606863 PMCID: PMC10689625 DOI: 10.1007/s42770-023-01106-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023] Open
Abstract
INTRODUCTION Candida tropicalis is a common non-albicans Candida (NAC) species that causes numerous fungal infections. Increasing antifungal resistance to azoles in NAC is becoming a major health problem worldwide; however, in Egypt, almost no data is available regarding fluconazole resistance mechanisms in C. tropicalis. The current study aims to investigate two possible important molecular mechanisms involved in fluconazole resistance in C. tropicalis isolates. MATERIALS Fifty-four clinical C. tropicalis isolates were included. Identification and antifungal susceptibility profiles of the isolates were carried out using the VITEK 2 compact system. The molecular investigation of fluconazole resistance included the expression of the CDR1 and MDR1 genes by quantitative real-time RT-PCR as well as the sequence analysis of the ERG11 gene. RESULTS Antifungal susceptibility testing identified 30 fluconazole-non-susceptible isolates. Statistically, CDR1 gene expression in fluconazole-non-susceptible isolates was significantly higher than that in fluconazole-susceptible isolates, with MDR1 gene expression levels that were similar in both non-susceptible and susceptible isolates. Sequence analysis of the ERG11 gene of 26 fluconazole-resistant isolates identified two missense mutations: A395T (Y132F) and G1390A (G464S). CONCLUSIONS This study has highlighted the role of overexpression of the CDR1 gene and ERG11 gene mutations in fluconazole non-susceptibility. Further studies in Egypt are required to investigate other possible molecular mechanisms involved in azole resistance.
Collapse
Affiliation(s)
- Mohammed A El-Kholy
- Department of Microbiology and Biotechnology, Division of Clinical and Biological Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), Alexandria, Egypt.
| | - Ghada F Helaly
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Ebtisam F El Ghazzawi
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Gamal El-Sawaf
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Sherine M Shawky
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
7
|
Lin BC, Katneni U, Jankowska KI, Meyer D, Kimchi-Sarfaty C. In silico methods for predicting functional synonymous variants. Genome Biol 2023; 24:126. [PMID: 37217943 PMCID: PMC10204308 DOI: 10.1186/s13059-023-02966-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
Single nucleotide variants (SNVs) contribute to human genomic diversity. Synonymous SNVs are previously considered to be "silent," but mounting evidence has revealed that these variants can cause RNA and protein changes and are implicated in over 85 human diseases and cancers. Recent improvements in computational platforms have led to the development of numerous machine-learning tools, which can be used to advance synonymous SNV research. In this review, we discuss tools that should be used to investigate synonymous variants. We provide supportive examples from seminal studies that demonstrate how these tools have driven new discoveries of functional synonymous SNVs.
Collapse
Affiliation(s)
- Brian C Lin
- Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, US FDA, Silver Spring, MD, USA
| | - Upendra Katneni
- Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, US FDA, Silver Spring, MD, USA
| | - Katarzyna I Jankowska
- Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, US FDA, Silver Spring, MD, USA
| | - Douglas Meyer
- Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, US FDA, Silver Spring, MD, USA
| | - Chava Kimchi-Sarfaty
- Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, US FDA, Silver Spring, MD, USA.
| |
Collapse
|
8
|
Domínguez J, Boeree MJ, Cambau E, Chesov D, Conradie F, Cox V, Dheda K, Dudnyk A, Farhat MR, Gagneux S, Grobusch MP, Gröschel MI, Guglielmetti L, Kontsevaya I, Lange B, van Leth F, Lienhardt C, Mandalakas AM, Maurer FP, Merker M, Miotto P, Molina-Moya B, Morel F, Niemann S, Veziris N, Whitelaw A, Horsburgh CR, Lange C. Clinical implications of molecular drug resistance testing for Mycobacterium tuberculosis: a 2023 TBnet/RESIST-TB consensus statement. THE LANCET. INFECTIOUS DISEASES 2023; 23:e122-e137. [PMID: 36868253 PMCID: PMC11460057 DOI: 10.1016/s1473-3099(22)00875-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 03/05/2023]
Abstract
Drug-resistant tuberculosis is a substantial health-care concern worldwide. Despite culture-based methods being considered the gold standard for drug susceptibility testing, molecular methods provide rapid information about the Mycobacterium tuberculosis mutations associated with resistance to anti-tuberculosis drugs. This consensus document was developed on the basis of a comprehensive literature search, by the TBnet and RESIST-TB networks, about reporting standards for the clinical use of molecular drug susceptibility testing. Review and the search for evidence included hand-searching journals and searching electronic databases. The panel identified studies that linked mutations in genomic regions of M tuberculosis with treatment outcome data. Implementation of molecular testing for the prediction of drug resistance in M tuberculosis is key. Detection of mutations in clinical isolates has implications for the clinical management of patients with multidrug-resistant or rifampicin-resistant tuberculosis, especially in situations when phenotypic drug susceptibility testing is not available. A multidisciplinary team including clinicians, microbiologists, and laboratory scientists reached a consensus on key questions relevant to molecular prediction of drug susceptibility or resistance to M tuberculosis, and their implications for clinical practice. This consensus document should help clinicians in the management of patients with tuberculosis, providing guidance for the design of treatment regimens and optimising outcomes.
Collapse
Affiliation(s)
- José Domínguez
- Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, CIBER Enfermedades Respiratorias, INNOVA4TB Consortium, Barcelona, Spain.
| | - Martin J Boeree
- Department of Lung Diseases, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Emmanuelle Cambau
- Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France, APHP-Hôpital Bichat, Mycobacteriology Laboratory, INSERM, University Paris Cite, IAME UMR1137, Paris, France
| | - Dumitru Chesov
- Department of Pneumology and Allergology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Moldova; Division of Clinical Infectious Diseases, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany
| | - Francesca Conradie
- Department of Clinical Medicine, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Vivian Cox
- Centre for Infectious Disease Epidemiology and Research, School of Public Health and Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Keertan Dheda
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa; Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| | - Andrii Dudnyk
- Department of Tuberculosis, Clinical Immunology and Allergy, National Pirogov Memorial Medical University, Vinnytsia, Ukraine; Public Health Center, Ministry of Health of Ukraine, Kyiv, Ukraine
| | - Maha R Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sebastien Gagneux
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Martin P Grobusch
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Amsterdam, Netherlands
| | - Matthias I Gröschel
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Lorenzo Guglielmetti
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, (Cimi-Paris), APHP Sorbonne Université, Department of Bacteriology Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | - Irina Kontsevaya
- Division of Clinical Infectious Diseases, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany; Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Berit Lange
- Department for Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany; German Centre for Infection Research, TI BBD, Braunschweig, Germany
| | - Frank van Leth
- Department of Health Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands; Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | - Christian Lienhardt
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK; UMI 233 IRD-U1175 INSERM - Université de Montpellier, Institut de Recherche pour le Développement, Montpellier, France
| | - Anna M Mandalakas
- Division of Clinical Infectious Diseases, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany; Global TB Program, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Florian P Maurer
- National and Supranational Reference Center for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Merker
- Division of Evolution of the Resistome, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany
| | - Paolo Miotto
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Barbara Molina-Moya
- Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, CIBER Enfermedades Respiratorias, INNOVA4TB Consortium, Barcelona, Spain
| | - Florence Morel
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, (Cimi-Paris), APHP Sorbonne Université, Department of Bacteriology Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | - Stefan Niemann
- Division of Molecular and Experimental Mycobacteriology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Department of Human, Biological and Translational Medical Sciences, School of Medicine, University of Namibia, Windhoek, Namibia
| | - Nicolas Veziris
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, (Cimi-Paris), APHP Sorbonne Université, Department of Bacteriology Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | - Andrew Whitelaw
- Division of Medical Microbiology, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa; National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| | - Charles R Horsburgh
- Departments of Epidemiology, Biostatistics, Global Health and Medicine, Boston University Schools of Public Health and Medicine, Boston, MA, USA
| | - Christoph Lange
- Division of Clinical Infectious Diseases, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany; Global TB Program, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
9
|
Anthony RM, Tagliani E, Nikolayevskyy V, de Zwaan R, Mulder A, Kamst M, Ködmön C, van der Werf MJ, Cirillo D, van Soolingen D. Experiences from 4 Years of Organization of an External Quality Assessment for Mycobacterium tuberculosis Whole-Genome Sequencing in the European Union/European Economic Area. Microbiol Spectr 2023; 11:e0224422. [PMID: 36475728 PMCID: PMC9927412 DOI: 10.1128/spectrum.02244-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Here, we report the development and key features of the first external quality assessment (EQA) scheme for Mycobacterium tuberculosis whole-genome sequencing (WGS). The results of four rounds (2017 to 2020) of implementation within the European tuberculosis reference laboratories network (ERLTB-Net-2) are presented and discussed. EQA panels comprising 10 genomic DNAs were distributed to ERLTB-Net 2 laboratories volunteering to participate in this exercise. Since 2018, five FASTQ files were added to better assess the dry WGS processes, and in 2020, three of the five files were replaced by synthetic files (providing additional flexibility for the mutations included in the panels). Ten National tuberculosis reference laboratories participated in all four EQA rounds, and seven participated in at least one. High-confidence resistance mutations were correctly identified by all laboratories, but challenges remained with respect to the identification of mixed loci and interpretation of rare mutations. M. tuberculosis genotyping and clustering analysis was >90% accurate for pure samples with the main challenges being related to the analysis of mixed genotypes and DNA FASTQ files. The development and implementation of this WGS EQA scheme has contributed to the continuous improvement in performance of participating laboratories in M. tuberculosis WGS and data analysis. This scheme can serve as a model of comprehensive quality assessment for M. tuberculosis WGS that can be replicated in different settings worldwide. IMPORTANCE The wider availability of whole-genome sequencing (WGS) coupled to new developments in bioinformatic tools and databases to interpret Mycobacterium tuberculosis complex WGS data has accelerated the adoption of this method for the routine prediction of antimycobacterial drug resistance and genotyping, thus necessitating the establishment of a comprehensive external quality control system. Here, we report 4 years of development and results from such a panel.
Collapse
Affiliation(s)
- R. M. Anthony
- National Tuberculosis Reference Laboratory, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - E. Tagliani
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - V. Nikolayevskyy
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | - R. de Zwaan
- National Tuberculosis Reference Laboratory, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - A. Mulder
- National Tuberculosis Reference Laboratory, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - M. Kamst
- National Tuberculosis Reference Laboratory, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - C. Ködmön
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | | | - D. Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - D. van Soolingen
- National Tuberculosis Reference Laboratory, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | |
Collapse
|
10
|
Xiao YX, Liu KH, Lin WH, Chan TH, Jou R. Whole-genome sequencing-based analyses of drug-resistant Mycobacterium tuberculosis from Taiwan. Sci Rep 2023; 13:2540. [PMID: 36781938 PMCID: PMC9925824 DOI: 10.1038/s41598-023-29652-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Drug-resistant tuberculosis (DR-TB) posed challenges to global TB control. Whole-genome sequencing (WGS) is recommended for predicting drug resistance to guide DR-TB treatment and management. Nevertheless, data are lacking in Taiwan. Phenotypic drug susceptibility testing (DST) of 12 anti-TB drugs was performed for 200 Mycobacterium tuberculosis isolates. WGS was performed using the Illumina platform. Drug resistance profiles and lineages were predicted in silico using the Total Genotyping Solution for TB (TGS-TB). Using the phenotypic DST results as a reference, WGS-based prediction demonstrated high concordance rates of isoniazid (95.0%), rifampicin (RIF) (98.0%), pyrazinamide (98.5%) and fluoroquinolones (FQs) (99.5%) and 96.0% to 99.5% for second-line injectable drugs (SLIDs); whereas, lower concordance rates of ethambutol (87.5%), streptomycin (88.0%) and ethionamide (84.0%). Furthermore, minimum inhibitory concentrations confirmed that RIF rpoB S450L, FQs gyrA D94G and SLIDs rrs a1401g conferred high resistance levels. Besides, we identified lineage-associated mutations in lineage 1 (rpoB H445Y and fabG1 c-15t) and predominant lineage 2 (rpoB S450L and rpsL K43R). The WGS-based prediction of drug resistance is highly concordant with phenotypic DST results and can provide comprehensive genetic information to guide DR-TB precision therapies in Taiwan.
Collapse
Affiliation(s)
- Yu-Xin Xiao
- Tuberculosis Research Center, Taiwan Centers for Disease Control, Ministry of Health and Welfare, No. 161, Kun-Yang Street, Taipei, 11561, Taiwan, R.O.C
- Reference Laboratory of Mycobacteriology, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan, R.O.C
| | - Kuang-Hung Liu
- Tuberculosis Research Center, Taiwan Centers for Disease Control, Ministry of Health and Welfare, No. 161, Kun-Yang Street, Taipei, 11561, Taiwan, R.O.C
- Reference Laboratory of Mycobacteriology, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan, R.O.C
| | - Wan-Hsuan Lin
- Tuberculosis Research Center, Taiwan Centers for Disease Control, Ministry of Health and Welfare, No. 161, Kun-Yang Street, Taipei, 11561, Taiwan, R.O.C
- Reference Laboratory of Mycobacteriology, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan, R.O.C
| | - Tai-Hua Chan
- Tuberculosis Research Center, Taiwan Centers for Disease Control, Ministry of Health and Welfare, No. 161, Kun-Yang Street, Taipei, 11561, Taiwan, R.O.C
- Reference Laboratory of Mycobacteriology, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan, R.O.C
| | - Ruwen Jou
- Tuberculosis Research Center, Taiwan Centers for Disease Control, Ministry of Health and Welfare, No. 161, Kun-Yang Street, Taipei, 11561, Taiwan, R.O.C..
- Reference Laboratory of Mycobacteriology, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan, R.O.C..
| |
Collapse
|
11
|
Sun M, Ge S, Li Z. The Role of Phosphorylation and Acylation in the Regulation of Drug Resistance in Mycobacterium tuberculosis. Biomedicines 2022; 10:biomedicines10102592. [PMID: 36289854 PMCID: PMC9599588 DOI: 10.3390/biomedicines10102592] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Tuberculosis is a chronic and lethal infectious disease caused by Mycobacterium tuberculosis. In previous decades, most studies in this area focused on the pathogenesis and drug targets for disease treatments. However, the emergence of drug-resistant strains has increased the difficulty of clinical trials over time. Now, more post-translational modified proteins in Mycobacterium tuberculosis have been discovered. Evidence suggests that these proteins have the ability to influence tuberculosis drug resistance. Hence, this paper systematically summarizes updated research on the impacts of protein acylation and phosphorylation on the acquisition of drug resistance in Mycobacterium tuberculosis through acylation and phosphorylation protein regulating processes. This provides us with a better understanding of the mechanism of antituberculosis drugs and may contribute to a reduction the harm that tuberculosis brings to society, as well as aiding in the discovery of new drug targets and therapeutic regimen adjustments in the future.
Collapse
Affiliation(s)
- Manluan Sun
- School of Medicine, Shanxi Datong University, Datong 037009, China
- Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, China
- Correspondence:
| | - Sai Ge
- Institute of Carbon Materials Science, Shanxi Datong University, Datong 037009, China
- Center of Academic Journal, Shanxi Datong University, Datong 037009, China
| | - Zhaoyang Li
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Bainomugisa A, Lavu E, Pandey S, Majumdar S, Banamu J, Coulter C, Marais B, Coin L, Graham SM, du Cros P. Evolution and spread of a highly drug resistant strain of Mycobacterium tuberculosis in Papua New Guinea. BMC Infect Dis 2022; 22:437. [PMID: 35524232 PMCID: PMC9077924 DOI: 10.1186/s12879-022-07414-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Molecular mechanisms determining the transmission and prevalence of drug resistant tuberculosis (DR-TB) in Papua New Guinea (PNG) are poorly understood. We used genomic and drug susceptibility data to explore the evolutionary history, temporal acquisition of resistance and transmission dynamics of DR-TB across PNG. METHODS We performed whole genome sequencing on isolates from Central Public Health Laboratory, PNG, collected 2017-2019. Data analysis was done on a composite dataset that also included 100 genomes previously sequenced from Daru, PNG (2012-2015). RESULTS Sampled isolates represented 14 of the 22 PNG provinces, the majority (66/94; 70%) came from the National Capital District (NCD). In the composite dataset, 91% of strains were Beijing 2.2.1.1, identified in 13 provinces. Phylogenetic tree of Beijing strains revealed two clades, Daru dominant clade (A) and NCD dominant clade (B). Multi-drug resistance (MDR) was repeatedly and independently acquired, with the first MDR cases in both clades noted to have emerged in the early 1990s, while fluoroquinolone resistance emerged in 2009 (95% highest posterior density 2000-2016). We identified the presence of a frameshift mutation within Rv0678 (p.Asp47fs) which has been suggested to confer resistance to bedaquiline, despite no known exposure to the drug. Overall genomic clustering was significantly associated with rpoC compensatory and inhA promoter mutations (p < 0.001), with high percentage of most genomic clusters (12/14) identified in NCD, reflecting its role as a potential national amplifier. CONCLUSIONS The acquisition and evolution of drug resistance among the major clades of Beijing strain threaten the success of DR-TB treatment in PNG. With continued transmission of this strain in PNG, genotypic drug resistance surveillance using whole genome sequencing is essential for improved public health response to outbreaks. With occurrence of resistance to newer drugs such as bedaquiline, knowledge of full drug resistance profiles will be important for optimal treatment selection.
Collapse
Affiliation(s)
| | - Evelyn Lavu
- University of Papua New Guinea, Port Moresby, Papua New Guinea.,Central Public Health Laboratory, Port Moresby, Papua New Guinea
| | - Sushil Pandey
- Queensland Mycobacteria Reference Laboratory, Brisbane, QLD, Australia
| | - Suman Majumdar
- Burnet Institute, 85 Commercial Road, Melbourne, VIC, 3004, Australia.,University of Melbourne Department of Paediatrics and Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Jennifer Banamu
- Central Public Health Laboratory, Port Moresby, Papua New Guinea
| | - Chris Coulter
- Queensland Mycobacteria Reference Laboratory, Brisbane, QLD, Australia
| | - Ben Marais
- University of Sydney, Sydney, NSW, Australia
| | - Lachlan Coin
- Peter Doherty Institute, Melbourne, VIC, Australia
| | - Stephen M Graham
- Burnet Institute, 85 Commercial Road, Melbourne, VIC, 3004, Australia.,University of Melbourne Department of Paediatrics and Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Philipp du Cros
- Burnet Institute, 85 Commercial Road, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
13
|
Vargas R, Freschi L, Spitaleri A, Tahseen S, Barilar I, Niemann S, Miotto P, Cirillo DM, Köser CU, Farhat MR. Role of Epistasis in Amikacin, Kanamycin, Bedaquiline, and Clofazimine Resistance in Mycobacterium tuberculosis Complex. Antimicrob Agents Chemother 2021; 65:e0116421. [PMID: 34460306 PMCID: PMC8522733 DOI: 10.1128/aac.01164-21] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance among bacterial pathogens poses a major global health threat. Mycobacterium tuberculosis complex (MTBC) is estimated to have the highest resistance rates of any pathogen globally. Given the low growth rate and the need for a biosafety level 3 laboratory, the only realistic avenue to scale up drug susceptibility testing (DST) for this pathogen is to rely on genotypic techniques. This raises the fundamental question of whether a mutation is a reliable surrogate for phenotypic resistance or whether the presence of a second mutation can completely counteract its effect, resulting in major diagnostic errors (i.e., systematic false resistance results). To date, such epistatic interactions have only been reported for streptomycin that is now rarely used. By analyzing more than 31,000 MTBC genomes, we demonstrated that the eis C-14T promoter mutation, which is interrogated by several genotypic DST assays endorsed by the World Health Organization, cannot confer resistance to amikacin and kanamycin if it coincides with loss-of-function (LoF) mutations in the coding region of eis. To our knowledge, this represents the first definitive example of antibiotic reversion in MTBC. Moreover, we raise the possibility that mmpR (Rv0678) mutations are not valid markers of resistance to bedaquiline and clofazimine if these coincide with an LoF mutation in the efflux pump encoded by mmpS5 (Rv0677c) and mmpL5 (Rv0676c).
Collapse
Affiliation(s)
- Roger Vargas
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Luca Freschi
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrea Spitaleri
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sabira Tahseen
- National TB Reference Laboratory, National TB Control Program, Islamabad, Pakistan
| | - Ivan Barilar
- German Center for Infection Research, Partner site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Stefan Niemann
- German Center for Infection Research, Partner site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Paolo Miotto
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Maha R. Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
- Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Bailey SF, Alonso Morales LA, Kassen R. Effects of synonymous mutations beyond codon bias: The evidence for adaptive synonymous substitutions from microbial evolution experiments. Genome Biol Evol 2021; 13:6300525. [PMID: 34132772 PMCID: PMC8410137 DOI: 10.1093/gbe/evab141] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 12/22/2022] Open
Abstract
Synonymous mutations are often assumed to be neutral with respect to fitness because they do not alter the encoded amino acid and so cannot be 'seen' by natural selection. Yet a growing body of evidence suggests that synonymous mutations can have fitness effects that drive adaptive evolution through their impacts on gene expression and protein folding. Here, we review what microbial experiments have taught us about the contribution of synonymous mutations to adaptation. A survey of site-directed mutagenesis experiments reveals the distributions of fitness effects for nonsynonymous and synonymous mutations are more similar, especially for beneficial mutations, than expected if all synonymous mutations were neutral, suggesting they should drive adaptive evolution more often than is typically observed. A review of experimental evolution studies where synonymous mutations have contributed to adaptation shows they can impact fitness through a range of mechanisms including the creation of illicit RNA polymerase binding sites impacting transcription and changes to mRNA folding stability that modulate translation. We suggest that clonal interference in evolving microbial populations may be the reason synonymous mutations play a smaller role in adaptive evolution than expected based on their observed fitness effects. We finish by discussing the impacts of falsely assuming synonymous mutations are neutral and discuss directions for future work exploring the role of synonymous mutations in adaptive evolution.
Collapse
Affiliation(s)
- Susan F Bailey
- Department of Biology, Clarkson University, Potsdam, NY 13699, USA
| | | | - Rees Kassen
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
15
|
Sheikh BA, Bhat BA, Mehraj U, Mir W, Hamadani S, Mir MA. Development of New Therapeutics to Meet the Current Challenge of Drug Resistant Tuberculosis. Curr Pharm Biotechnol 2021; 22:480-500. [PMID: 32600226 DOI: 10.2174/1389201021666200628021702] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/01/2020] [Accepted: 05/13/2020] [Indexed: 11/22/2022]
Abstract
Tuberculosis (TB) is a prominent infective disease and a major reason of mortality/ morbidity globally. Mycobacterium tuberculosis causes a long-lasting latent infection in a significant proportion of human population. The increasing burden of tuberculosis is mainly caused due to multi drug-resistance. The failure of conventional treatment has been observed in large number of cases. Drugs that are used to treat extensively drug-resistant tuberculosis are expensive, have limited efficacy, and have more side effects for a longer duration of time and are often associated with poor prognosis. To regulate the emergence of multidrug resistant tuberculosis, extensively drug-resistant tuberculosis and totally drug resistant tuberculosis, efforts are being made to understand the genetic/molecular basis of target drug delivery and mechanisms of drug resistance. Understanding the molecular approaches and pathology of Mycobacterium tuberculosis through whole genome sequencing may further help in the improvement of new therapeutics to meet the current challenge of global health. Understanding cellular mechanisms that trigger resistance to Mycobacterium tuberculosis infection may expose immune associates of protection, which could be an important way for vaccine development, diagnostics, and novel host-directed therapeutic strategies. The recent development of new drugs and combinational therapies for drug-resistant tuberculosis through major collaboration between industry, donors, and academia gives an improved hope to overcome the challenges in tuberculosis treatment. In this review article, an attempt was made to highlight the new developments of drug resistance to the conventional drugs and the recent progress in the development of new therapeutics for the treatment of drugresistant and non-resistant cases.
Collapse
Affiliation(s)
- Bashir A Sheikh
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Basharat A Bhat
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Umar Mehraj
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Wajahat Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Suhail Hamadani
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Manzoor A Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| |
Collapse
|
16
|
Norouzi F, Moghim S, Farzaneh S, Fazeli H, Salehi M, Nasr Esfahani B. Significance of the coexistence of non-codon 315 katG, inhA, and oxyR-ahpC intergenic gene mutations among isoniazid-resistant and multidrug-resistant isolates of Mycobacterium tuberculosis: a report of novel mutations. Pathog Glob Health 2021; 116:22-29. [PMID: 34086544 DOI: 10.1080/20477724.2021.1928870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Tuberculosis (TB) is a global threat due to the emergence and spread of drug-resistant Mycobacterium tuberculosis (MTB). Isoniazid (INH) is the main antibiotic used for prevention and treatment of TB. Evidence shows that accumulated mutations can produce INH resistant (INHR) strains, resulting in the progression of multidrug-resistant (MDR) TB. Since point mutations in katG gene, inhA gene, and oxyR-ahpC region correlated with the INH resistance, in this study, we aimed to identify mutations in these three genes in INHR and MDR clinical isolates of MTB by Sanger DNA sequencing analysis. Thirty-three out of 438 isolates were resistant, including 66.7% INHR and 30.3% MDR isolates. In the katG gene, 68.2% INHR isolates had non-synonymous point mutations, mainly R463L (63.6%), and non-synonymous point mutation KatG L587P was seen in one of the MDR isolate. A novel silent substitution L649L was identified in the inhA gene of the MDR isolates. The oxyR-ahpC intergenic region g-88a common mutations (63.6%) in INHR and two distinct novel mutations were found at positions -76 and -77 of the oxyR-ahpC intergenic region. The coexistence of katG non-codon 315 with oxyR-ahpC intergenic region mutations was highly frequent in INHR 59.1% and MDR isolates 70%. Since mutations of all three genes 95.5% lead to the detection of INHR, they might be useful for molecular detection. Our results indicated the continuous evolution and region-specific prevalence of INH resistance. Overall, identification of new mutations in INH resistance can improve the available strategies for diagnosis and control of TB.
Collapse
Affiliation(s)
- Fatemeh Norouzi
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sharareh Moghim
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - ShimaSadat Farzaneh
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Fazeli
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahshid Salehi
- Regional Tuberculosis Reference Laboratories in Isfahan, Isfahan, Iran
| | - Bahram Nasr Esfahani
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
17
|
Callens M, Pradier L, Finnegan M, Rose C, Bedhomme S. Read between the lines: Diversity of non-translational selection pressures on local codon usage. Genome Biol Evol 2021; 13:6263832. [PMID: 33944930 PMCID: PMC8410138 DOI: 10.1093/gbe/evab097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 12/14/2022] Open
Abstract
Protein coding genes can contain specific motifs within their nucleotide sequence that function as a signal for various biological pathways. The presence of such sequence motifs within a gene can have beneficial or detrimental effects on the phenotype and fitness of an organism, and this can lead to the enrichment or avoidance of this sequence motif. The degeneracy of the genetic code allows for the existence of alternative synonymous sequences that exclude or include these motifs, while keeping the encoded amino acid sequence intact. This implies that locally, there can be a selective pressure for preferentially using a codon over its synonymous alternative in order to avoid or enrich a specific sequence motif. This selective pressure could -in addition to mutation, drift and selection for translation efficiency and accuracy- contribute to shape the codon usage bias. In this review, we discuss patterns of avoidance of (or enrichment for) the various biological signals contained in specific nucleotide sequence motifs: transcription and translation initiation and termination signals, mRNA maturation signals, and antiviral immune system targets. Experimental data on the phenotypic or fitness effects of synonymous mutations in these sequence motifs confirm that they can be targets of local selection pressures on codon usage. We also formulate the hypothesis that transposable elements could have a similar impact on codon usage through their preferred integration sequences. Overall, selection on codon usage appears to be a combination of a global selection pressure imposed by the translation machinery, and a patchwork of local selection pressures related to biological signals contained in specific sequence motifs.
Collapse
Affiliation(s)
- Martijn Callens
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, Université de Montpellier, Université Paul Valéry Montpellier 3, Ecole Pratique des Hautes Etudes, Institut de Recherche pour le Développement, 34000 Montpellier, France
| | - Léa Pradier
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, Université de Montpellier, Université Paul Valéry Montpellier 3, Ecole Pratique des Hautes Etudes, Institut de Recherche pour le Développement, 34000 Montpellier, France
| | - Michael Finnegan
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, Université de Montpellier, Université Paul Valéry Montpellier 3, Ecole Pratique des Hautes Etudes, Institut de Recherche pour le Développement, 34000 Montpellier, France
| | - Caroline Rose
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, Université de Montpellier, Université Paul Valéry Montpellier 3, Ecole Pratique des Hautes Etudes, Institut de Recherche pour le Développement, 34000 Montpellier, France
| | - Stéphanie Bedhomme
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, Université de Montpellier, Université Paul Valéry Montpellier 3, Ecole Pratique des Hautes Etudes, Institut de Recherche pour le Développement, 34000 Montpellier, France
| |
Collapse
|
18
|
Click ES, Kurbatova EV, Alexander H, Dalton TL, Chen MP, Posey JE, Ershova J, Cegielski JP. Isoniazid and Rifampin-Resistance Mutations Associated With Resistance to Second-Line Drugs and With Sputum Culture Conversion. J Infect Dis 2021; 221:2072-2082. [PMID: 32002554 DOI: 10.1093/infdis/jiaa042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/28/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Mutations in the genes inhA, katG, and rpoB confer resistance to anti-tuberculosis (TB) drugs isoniazid and rifampin. We questioned whether specific mutations in these genes were associated with different clinical and microbiological characteristics. METHODS In a multicountry prospective cohort study of multidrug-resistant TB, we identified inhA, katG, and rpoB mutations in sputum isolates using the Hain MTBDRplus line probe assay. For specific mutations, we performed bivariate analysis to determine relative risk of baseline or acquired resistance to other TB drugs. We compared time to sputum culture conversion (TSCC) using Kaplan-Meier curves and stratified Cox regression. RESULTS In total, 447 participants enrolled from January 2005 to December 2008 from 7 countries were included. Relative to rpoB S531L, isolates with rpoB D516V had less cross-resistance to rifabutin, increased baseline resistance to other drugs, and increased acquired fluoroquinolone resistance. Relative to mutation of katG only, mutation of inhA promoter and katG was associated with baseline extensively drug resistant (XDR) TB, increased acquired fluoroquinolone resistance, and slower TSCC (125.5 vs 89.0 days). CONCLUSIONS Specific mutations in inhA and katG are associated with differences in resistance to other drugs and TSCC. Molecular testing may make it possible to tailor treatment and assess additional drug resistance risk according to specific mutation profile.
Collapse
Affiliation(s)
- Eleanor S Click
- Division of Global HIV and TB, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ekaterina V Kurbatova
- Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Heather Alexander
- Division of Global HIV and TB, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Tracy L Dalton
- Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michael P Chen
- Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - James E Posey
- Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Julia Ershova
- Division of Global HIV and TB, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - J Peter Cegielski
- Division of Global HIV and TB, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
19
|
Cao Y, Parmar H, Gaur RL, Lieu D, Raghunath S, Via N, Battaglia S, Cirillo DM, Denkinger C, Georghiou S, Kwiatkowski R, Persing D, Alland D, Chakravorty S. Xpert MTB/XDR: a 10-Color Reflex Assay Suitable for Point-of-Care Settings To Detect Isoniazid, Fluoroquinolone, and Second-Line-Injectable-Drug Resistance Directly from Mycobacterium tuberculosis-Positive Sputum. J Clin Microbiol 2021; 59:e02314-20. [PMID: 33298611 PMCID: PMC8106700 DOI: 10.1128/jcm.02314-20] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/22/2020] [Indexed: 11/20/2022] Open
Abstract
We describe the design, development, analytical performance, and a limited clinical evaluation of the 10-color Xpert MTB/XDR assay (CE-IVD only, not for sale in the United States). This assay is intended as a reflex test to detect resistance to isoniazid (INH), fluoroquinolones (FLQ), ethionamide (ETH), and second-line injectable drugs (SLIDs) in unprocessed sputum samples and concentrated sputum sediments which are positive for Mycobacterium tuberculosis The Xpert MTB/XDR assay simultaneously amplifies eight genes and promoter regions in M. tuberculosis and analyzes melting temperatures (Tm s) using sloppy molecular beacon (SMB) probes to identify mutations associated with INH, FLQ, ETH, and SLID resistance. Results can be obtained in under 90 min using 10-color GeneXpert modules. The assay can differentiate low- versus high-level resistance to INH and FLQ as well as cross-resistance versus individual resistance to SLIDs by identifying mutation-specific Tm s or Tm patterns generated by the SMB probes. The assay has a limit of detection comparable to that of the Xpert MTB/RIF assay and successfully detected 16 clinically significant mutations in a challenge set of clinical isolate DNA. In a clinical study performed at two sites with 100 sputum and 214 clinical isolates, the assay showed a sensitivity of 94% to 100% and a specificity of 100% for all drugs except for ETH compared to that of sequencing. The sensitivity and specificity were in the same ranges as those of phenotypic drug-susceptibility testing. Used in combination with a primary tuberculosis diagnostic test, this assay should expand the capacity for detection of drug-resistant tuberculosis near the point of care.
Collapse
Affiliation(s)
- Yuan Cao
- New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Heta Parmar
- New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | | | | | | | - Nova Via
- Cepheid Inc., Sunnyvale, California, USA
| | | | | | | | | | | | | | - David Alland
- New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Soumitesh Chakravorty
- New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- Cepheid Inc., Sunnyvale, California, USA
| |
Collapse
|
20
|
Systematic Review of Mutations Associated with Isoniazid Resistance Points to Continuing Evolution and Subsequent Evasion of Molecular Detection, and Potential for Emergence of Multidrug Resistance in Clinical Strains of Mycobacterium tuberculosis. Antimicrob Agents Chemother 2021; 65:AAC.02091-20. [PMID: 33361298 DOI: 10.1128/aac.02091-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/13/2020] [Indexed: 01/24/2023] Open
Abstract
Molecular testing is rapidly becoming an integral component of global tuberculosis (TB) control. Uncommon mechanisms of resistance escape detection by these platforms and undermine our ability to contain outbreaks. This article is a systematic review of published articles that reported isoniazid (INH) resistance-conferring mutations between September 2013 and December 2019. The genes katG, inhA, and fabG1, and the intergenic region oxyR'-ahpC were considered in this review. Fifty-two articles were included that described 9,306 clinical isolates (5,804 INH resistant [INHr] and 3,502 INH susceptible [INHs]) from 31 countries. The three most frequently mutated loci continue to be locus 315 of katG (katG315; n = 4,271), locus -15 of inhA (inhA-15; n = 787), and locus -8 of inhA (inhA-8; 106). However, the diagnostic value of inhA-8 is far lower than previously thought, as it only appears in 25 (0.4%) of the INHr isolates lacking the first two mutations. I catalogued 45 new loci (29 katG, nine inhA, and seven ahpC) associated with INH resistance and identified 59 loci (common to this and previous reviews) as a reliable basis for molecular diagnostics. Including all observed mutations provides a cumulative sensitivity of 85.6%. In 14.4% of resistant isolates, no mechanism of resistance was detected, making them likely to escape molecular detection, and in the case of INH monoresistance, likely to convert to multidrug-resistant TB (MDR-TB). Integrating the information cataloged in this study into current diagnostic tools is essential for combating the emergence of MDR-TB, and its exclusion can lead to an unintended selection against common mechanisms and to diversifying evolution. Observation of many low-frequency resistance-conferring mutations points to an advantage of whole-genome sequencing (WGS) for diagnostics. Finally, I provide five recommendations for future diagnostic platforms.
Collapse
|
21
|
Gil H, Margaryan H, Azamat I, Ziba B, Bayram H, Nazirov P, Gomez D, Singh J, Zayniddin S, Parpieva N, Achar J. Accuracy of molecular drug susceptibility testing amongst tuberculosis patients in Karakalpakstan, Uzbekistan. Trop Med Int Health 2021; 26:421-427. [PMID: 33406316 DOI: 10.1111/tmi.13543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES In this retrospective study, we evaluated the diagnostic accuracy of molecular tests (MT) for the detection of DR-TB, compared to the gold standard liquid-based drug susceptibility testing (DST) in Karakalpakstan. METHODS A total of 6670 specimens received in the Republican TB No 1 Hospital Laboratory of Karakalpakstan between January and July 2017 from new and retreatment patients were analysed. Samples were tested using Xpert MTB/RIF and line probe assays (LPA) for the detection of mutations associated with resistance. The sensitivity and specificity of MTs were calculated relative to results based on DST. RESULTS The accuracy of MT for detection of rifampicin resistance was high, with sensitivity and specificity over 98%. However, we observed reduced sensitivity of LPA for detection of resistance; 86% for isoniazid (95% CI 82-90%), 86% for fluoroquinolones (95% CI 68-96%), 70% for capreomycin (95% CI 46-88%) and 23% for kanamycin (95% CI 13-35%). CONCLUSIONS We show that MTs are a useful tool for rapid and safe diagnosis of DR-TB; however, clinicians should be aware of their limitations. Although detection of rifampicin resistance was highly accurate, our data suggest that resistance mutations circulating in the Republic of Karakalpakstan for other drugs were not detected by the methods used here. This merits further investigation.
Collapse
Affiliation(s)
- Horacio Gil
- Médecins Sans Frontières (MSF), Nukus, Uzbekistan
| | | | | | | | - Halmuratov Bayram
- Republican TB No 1 Hospital Laboratory of Karakalpakstan, Nukus, Uzbekistan
| | - Pirimqul Nazirov
- Republican TB No 1 Hospital of Karakalpakstan, Nukus, Uzbekistan
| | | | | | | | - Nargiza Parpieva
- National Tuberculosis Reference Laboratory, Tashkent, Uzbekistan
| | - Jay Achar
- MSF, London, UK.,Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
22
|
Rivière E, Whitfield MG, Nelen J, Heupink TH, Van Rie A. Identifying isoniazid resistance markers to guide inclusion of high-dose isoniazid in tuberculosis treatment regimens. Clin Microbiol Infect 2020; 26:1332-1337. [PMID: 32653663 DOI: 10.1016/j.cmi.2020.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Effective use of antibiotics is critical to control the global tuberculosis pandemic. High-dose isoniazid (INH) can be effective in the presence of low-level resistance. We performed a systematic literature review to improve our understanding of the differential impact of genomic Mycobacterium tuberculosis (Mtb) variants on the level of INH resistance. The following online databases were searched: PubMed, Web of Science and Embase. Articles reporting on clinical Mtb isolates with linked genotypic and phenotypic data and reporting INH resistance levels were eligible for inclusion. METHODS All genomic regions reported in the eligible studies were included in the analysis, including: katG, inhA, ahpC, oxyR-ahpC, furA, fabG1, kasA, rv1592c, iniA, iniB, iniC, rv0340, rv2242 and nat. The level of INH resistance was determined by MIC: low-level resistance was defined as 0.1-0.4 μg/mL on liquid and 0.2-1.0 μg/mL on solid media, high-level resistance as >0.4μg/mL on liquid and >1.0 μg/mL on solid media. RESULTS A total of 1212 records were retrieved of which 46 were included. These 46 studies reported 1697 isolates of which 21% (n = 362) were INH susceptible, 17% (n = 287) had low-level, and 62% (n = 1048) high-level INH resistance. Overall, 24% (n = 402) of isolates were reported as wild type and 76% (n = 1295) had ≥1 relevant genetic variant. Among 1295 isolates with ≥1 variant, 78% (n = 1011) had a mutation in the katG gene. Of the 867 isolates with a katG mutation in codon 315, 93% (n = 810) had high-level INH resistance. In contrast, only 50% (n = 72) of the 144 isolates with a katG variant not in the 315-position had high-level resistance. Of the 284 isolates with ≥1 relevant genetic variant and wild type katG gene, 40% (n = 114) had high-level INH resistance. CONCLUSIONS Presence of a variant in the katG gene is a good marker of high-level INH resistance only if located in codon 315.
Collapse
Affiliation(s)
- E Rivière
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.
| | - M G Whitfield
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - J Nelen
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - T H Heupink
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - A Van Rie
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
23
|
Kardan-Yamchi J, Kazemian H, Battaglia S, Abtahi H, Rahimi Foroushani A, Hamzelou G, Cirillo DM, Ghodousi A, Feizabadi MM. Whole Genome Sequencing Results Associated with Minimum Inhibitory Concentrations of 14 Anti-Tuberculosis Drugs among Rifampicin-Resistant Isolates of Mycobacterium Tuberculosis from Iran. J Clin Med 2020; 9:jcm9020465. [PMID: 32046149 PMCID: PMC7073636 DOI: 10.3390/jcm9020465] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 01/30/2023] Open
Abstract
Accurate and timely detection of drug resistance can minimize the risk of further resistance development and lead to effective treatment. The aim of this study was to determine the resistance to first/second-line anti-tuberculosis drugs in rifampicin/multidrug-resistant Mycobacterium tuberculosis (RR/MDR-MTB) isolates. Molecular epidemiology of strains was determined using whole genome sequencing (WGS)-based genotyping. A total of 35 RR/MDR-MTB isolates were subjected to drug susceptibility testing against first/second-line drugs using 7H9 Middlebrook in broth microdilution method. Illumina technology was used for paired-end WGS applying a Maxwell 16 Cell DNA Purification kit and the NextSeq platform. Data analysis and single nucleotide polymorphism calling were performed using MTBseq pipeline. The genome-based resistance to each drug among the resistant phenotypes was as follows: rifampicin (97.1%), isoniazid (96.6%), ethambutol (100%), levofloxacin (83.3%), moxifloxacin (83.3%), amikacin (100%), kanamycin (100%), capreomycin (100%), prothionamide (100%), D-cycloserine (11.1%), clofazimine (20%), bedaquiline (0.0%), and delamanid (44.4%). There was no linezolid-resistant phenotype, and a bedaquiline-resistant strain was wild type for related genes. The Beijing, Euro-American, and Delhi-CAS were the most populated lineage/sublineages. Drug resistance-associated mutations were mostly linked to minimum inhibitory concentration results. However, the role of well-known drug-resistant genes for D-cycloserine, clofazimine, bedaquiline, and delamanid was found to be more controversial.
Collapse
Affiliation(s)
- Jalil Kardan-Yamchi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran 1417653911, Iran;
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417653911, Iran;
| | - Hossein Kazemian
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417653911, Iran;
| | - Simone Battaglia
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (S.B.)
| | - Hamidreza Abtahi
- Thoracic Research Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran 1417653911, Iran;
| | - Abbas Rahimi Foroushani
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran 1417653911, Iran;
| | - Gholamreza Hamzelou
- Tehran Regional Reference Laboratory for Tuberculosis, Tehran University of Medical Sciences, Tehran 1417653911, Iran;
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (S.B.)
| | - Arash Ghodousi
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (S.B.)
- Correspondence: (A.G.); (M.M.F.)
| | - Mohammad Mehdi Feizabadi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417653911, Iran;
- Thoracic Research Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran 1417653911, Iran;
- Correspondence: (A.G.); (M.M.F.)
| |
Collapse
|
24
|
Lebeuf-Taylor E, McCloskey N, Bailey SF, Hinz A, Kassen R. The distribution of fitness effects among synonymous mutations in a gene under directional selection. eLife 2019; 8:45952. [PMID: 31322500 PMCID: PMC6692132 DOI: 10.7554/elife.45952] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 07/18/2019] [Indexed: 12/21/2022] Open
Abstract
The fitness effects of synonymous mutations, nucleotide changes that do not alter the encoded amino acid, have often been assumed to be neutral, but a growing body of evidence suggests otherwise. We used site-directed mutagenesis coupled with direct measures of competitive fitness to estimate the distribution of fitness effects among synonymous mutations for a gene under directional selection and capable of adapting via synonymous nucleotide changes. Synonymous mutations had highly variable fitness effects, both deleterious and beneficial, resembling those of nonsynonymous mutations in the same gene. This variation in fitness was underlain by changes in transcription linked to the creation of internal promoter sites. A positive correlation between fitness and the presence of synonymous substitutions across a phylogeny of related Pseudomonads suggests these mutations may be common in nature. Taken together, our results provide the most compelling evidence to date that synonymous mutations with non-neutral fitness effects may in fact be commonplace.
Collapse
Affiliation(s)
| | - Nick McCloskey
- Department of Biology, University of Ottawa, Ottawa, Canada
| | - Susan F Bailey
- Department of Biology, Clarkson University, Potsdam, United States
| | - Aaron Hinz
- Department of Biology, University of Ottawa, Ottawa, Canada
| | - Rees Kassen
- Department of Biology, University of Ottawa, Ottawa, Canada
| |
Collapse
|
25
|
Isoniazid Resistance in Mycobacterium tuberculosis Is a Heterogeneous Phenotype Composed of Overlapping MIC Distributions with Different Underlying Resistance Mechanisms. Antimicrob Agents Chemother 2019; 63:AAC.00092-19. [PMID: 31010866 PMCID: PMC6591585 DOI: 10.1128/aac.00092-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/28/2019] [Indexed: 12/22/2022] Open
Abstract
MIC testing using the Bactec mycobacteria growth indicator tube system 960 of 70 phylogenetically diverse, isoniazid-resistant clinical strains of Mycobacterium tuberculosis revealed a complex pattern of overlapping MIC distributions. Whole-genome sequencing explained most of the levels of resistance observed. MIC testing using the Bactec mycobacteria growth indicator tube system 960 of 70 phylogenetically diverse, isoniazid-resistant clinical strains of Mycobacterium tuberculosis revealed a complex pattern of overlapping MIC distributions. Whole-genome sequencing explained most of the levels of resistance observed. The MIC distribution of strains with only inhA promoter mutations was split by the current concentration endorsed by the Clinical and Laboratory Standards Institute to detect low-level resistance to isoniazid and is, consequently, likely not optimally set.
Collapse
|
26
|
Yang Y, Niehaus KE, Walker TM, Iqbal Z, Walker AS, Wilson DJ, Peto TEA, Crook DW, Smith EG, Zhu T, Clifton DA. Machine learning for classifying tuberculosis drug-resistance from DNA sequencing data. Bioinformatics 2019; 34:1666-1671. [PMID: 29240876 PMCID: PMC5946815 DOI: 10.1093/bioinformatics/btx801] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 12/10/2017] [Indexed: 01/07/2023] Open
Abstract
Motivation Correct and rapid determination of Mycobacterium tuberculosis (MTB) resistance against available tuberculosis (TB) drugs is essential for the control and management of TB. Conventional molecular diagnostic test assumes that the presence of any well-studied single nucleotide polymorphisms is sufficient to cause resistance, which yields low sensitivity for resistance classification. Summary Given the availability of DNA sequencing data from MTB, we developed machine learning models for a cohort of 1839 UK bacterial isolates to classify MTB resistance against eight anti-TB drugs (isoniazid, rifampicin, ethambutol, pyrazinamide, ciprofloxacin, moxifloxacin, ofloxacin, streptomycin) and to classify multi-drug resistance. Results Compared to previous rules-based approach, the sensitivities from the best-performing models increased by 2-4% for isoniazid, rifampicin and ethambutol to 97% (P < 0.01), respectively; for ciprofloxacin and multi-drug resistant TB, they increased to 96%. For moxifloxacin and ofloxacin, sensitivities increased by 12 and 15% from 83 and 81% based on existing known resistance alleles to 95% and 96% (P < 0.01), respectively. Particularly, our models improved sensitivities compared to the previous rules-based approach by 15 and 24% to 84 and 87% for pyrazinamide and streptomycin (P < 0.01), respectively. The best-performing models increase the area-under-the-ROC curve by 10% for pyrazinamide and streptomycin (P < 0.01), and 4–8% for other drugs (P < 0.01). Availability and implementation The details of source code are provided at http://www.robots.ox.ac.uk/~davidc/code.php. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yang Yang
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, OX3 7DQ, UK
| | - Katherine E Niehaus
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, OX3 7DQ, UK
| | - Timothy M Walker
- Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Zamin Iqbal
- Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - A Sarah Walker
- Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK.,NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Daniel J Wilson
- Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Tim E A Peto
- Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK.,National Infection Service, Public Health England, Colindale, London, UK
| | - Derrick W Crook
- Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK.,NIHR Oxford Biomedical Research Centre, Oxford, UK.,National Infection Service, Public Health England, Colindale, London, UK
| | | | - Tingting Zhu
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, OX3 7DQ, UK
| | - David A Clifton
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, OX3 7DQ, UK
| |
Collapse
|
27
|
Validation of Novel Mycobacterium tuberculosis Isoniazid Resistance Mutations Not Detectable by Common Molecular Tests. Antimicrob Agents Chemother 2018; 62:AAC.00974-18. [PMID: 30082293 DOI: 10.1128/aac.00974-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/03/2018] [Indexed: 01/20/2023] Open
Abstract
Resistance to the first-line antituberculosis (TB) drug isoniazid (INH) is widespread, and the mechanism of resistance is unknown in approximately 15% of INH-resistant (INH-R) strains. To improve molecular detection of INH-R TB, we used whole-genome sequencing (WGS) to analyze 52 phenotypically INH-R Mycobacterium tuberculosis complex (MTBC) clinical isolates that lacked the common katG S315T or inhA promoter mutations. Approximately 94% (49/52) of strains had mutations at known INH-associated loci that were likely to confer INH resistance. All such mutations would be detectable by sequencing more DNA adjacent to existing target regions. Use of WGS minimized the chances of missing infrequent INH resistance mutations outside commonly targeted hotspots. We used recombineering to generate 12 observed clinical katG mutations in the pansusceptible H37Rv reference strain and determined their impact on INH resistance. Our functional genetic experiments have confirmed the role of seven suspected INH resistance mutations and discovered five novel INH resistance mutations. All recombineered katG mutations conferred resistance to INH at a MIC of ≥0.25 μg/ml and should be added to the list of INH resistance determinants targeted by molecular diagnostic assays. We conclude that WGS is a useful tool for detecting uncommon INH resistance mutations that would otherwise be missed by current targeted molecular testing methods and suggest that its use (or use of expanded conventional or next-generation-based targeted sequencing) may provide earlier diagnosis of INH-R TB.
Collapse
|
28
|
Zhu C, Liu Y, Hu L, Yang M, He ZG. Molecular mechanism of the synergistic activity of ethambutol and isoniazid against Mycobacterium tuberculosis. J Biol Chem 2018; 293:16741-16750. [PMID: 30185616 DOI: 10.1074/jbc.ra118.002693] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/26/2018] [Indexed: 11/06/2022] Open
Abstract
Isoniazid (INH) and ethambutol (EMB) are two major first-line drugs for managing tuberculosis (TB), caused by the microbe Mycobacterium tuberculosis Although co-use of these two drugs is common in clinical practice, the mechanism for the potential synergistic interplay between them remains unclear. Here, we present first evidence that INH and EMB act synergistically through a transcriptional repressor of the inhA gene, the target gene of INH encoding an enoyl-acyl carrier protein reductase of the fatty acid synthase type II system required for bacterial cell wall integrity. We report that EMB binds a hypothetical transcription factor encoded by the Rv0273c gene, designated here as EtbR. Using DNA footprinting, we found that EtbR specifically recognizes a motif sequence in the upstream region of the inhA gene. Using isothermal titration calorimetry and surface plasmon resonance assays, we observed that EMB binds EtbR in a 1:1 ratio and thereby stimulates its DNA-binding activity. When a nonlethal dose of EMB was delivered in combination with INH, EMB increased the INH susceptibility of cultured M. tuberculosis cells. In summary, EMB induces EtbR-mediated repression of inhA and thereby enhances the mycobactericidal effect of INH. Our findings uncover a molecular mechanism for the synergistic activity of two important anti-TB drugs.
Collapse
Affiliation(s)
- Chen Zhu
- From the National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Liu
- From the National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lihua Hu
- From the National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Yang
- From the National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zheng-Guo He
- From the National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
29
|
Kristofich J, Morgenthaler AB, Kinney WR, Ebmeier CC, Snyder DJ, Old WM, Cooper VS, Copley SD. Synonymous mutations make dramatic contributions to fitness when growth is limited by a weak-link enzyme. PLoS Genet 2018; 14:e1007615. [PMID: 30148850 PMCID: PMC6128649 DOI: 10.1371/journal.pgen.1007615] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 09/07/2018] [Accepted: 08/07/2018] [Indexed: 01/26/2023] Open
Abstract
Synonymous mutations do not alter the specified amino acid but may alter the structure or function of an mRNA in ways that impact fitness. There are few examples in the literature, however, in which the effects of synonymous mutations on microbial growth rates have been measured, and even fewer for which the underlying mechanism is understood. We evolved four populations of a strain of Salmonella enterica in which a promiscuous enzyme has been recruited to replace an essential enzyme. A previously identified point mutation increases the enzyme’s ability to catalyze the newly needed reaction (required for arginine biosynthesis) but decreases its ability to catalyze its native reaction (required for proline biosynthesis). The poor performance of this enzyme limits growth rate on glucose. After 260 generations, we identified two synonymous mutations in the first six codons of the gene encoding the weak-link enzyme that increase growth rate by 41 and 67%. We introduced all possible synonymous mutations into the first six codons and found substantial effects on growth rate; one doubles growth rate, and another completely abolishes growth. Computational analyses suggest that these mutations affect either the stability of a stem-loop structure that sequesters the start codon or the accessibility of the region between the Shine-Dalgarno sequence and the start codon. Thus, these mutations would be predicted to affect translational efficiency and thereby indirectly affect mRNA stability because translating ribosomes protect mRNA from degradation. Experimental data support these hypotheses. We conclude that the effects of the synonymous mutations are due to a combination of effects on mRNA stability and translation efficiency that alter levels of the weak-link enzyme. These findings suggest that synonymous mutations can have profound effects on fitness under strong selection and that their importance in evolution may be under-appreciated. When a new enzyme is needed, microbes often recruit a pre-existing enzyme with a promiscuous activity corresponding to the newly needed activity. Such enzymes are often the “weak-link” in metabolism because they have not evolved to efficiently catalyze the new reaction. Under these circumstances, increasing the level of the weak-link enzyme can improve fitness. We evolved a strain of S. enterica in which a weak-link enzyme–E383A ProA–serves essential functions in synthesis of proline and arginine for 260 generations and then sequenced the genomes of several evolved strains. A mutation in the promoter of the operon encoding E383A ProA increased growth rate 9-fold. More surprisingly, a mutation upstream of the start codon and two synonymous mutations within the first six codons also increased growth rate by up to 68%. Introduction of all possible synonymous mutations in the first six codons showed that some doubled growth rate, while others slowed or even prevented growth. Computational and experimental data suggest that these effects were due to enhanced translational efficiency of the weak-link enzyme. These results show that synonymous mutations, once assumed to be selectively neutral, can have strong impacts on fitness when growth rate is limited by a weak-link enzyme.
Collapse
Affiliation(s)
- JohnCarlo Kristofich
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, United States of America
| | - Andrew B. Morgenthaler
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, United States of America
| | - Wallis R. Kinney
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, United States of America
| | - Christopher C. Ebmeier
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Daniel J. Snyder
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - William M. Old
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Vaughn S. Cooper
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Shelley D. Copley
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, United States of America
- * E-mail:
| |
Collapse
|
30
|
Fitness-compensatory mutations facilitate the spread of drug-resistant F15/LAM4/KZN and F28 Mycobacterium tuberculosis strains in KwaZulu-Natal, South Africa. J Genet 2018; 96:599-612. [PMID: 28947708 DOI: 10.1007/s12041-017-0805-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
While the acquisition of drug resistance is often accompanied by fitness costs, Mycobacterium tuberculosis has developed mechanisms to overcome these costs in the form of compensatory mutations. In an attempt to dissect strain-specific differences in biological fitness, 10 M. tuberculosis genomes, representing F15/LAM4/KZN, Beijing, F11 and F28 genotypes were sequenced on the Illumina MiSeq platform. Drug-susceptible F15/LAM4/KZN strains differed by 43 SNPs, demonstrating that heterogeneity exists even among closely-related strains. We found unique, nonsynonymous single-nucleotide polymorphisms (SNPs) in the sigA and grcC1 genes of multidrug resistant (MDR) and XDR F15/LAM4/KZN strains, respectively. The F28 MDR strain harboured a novel ubiA mutation in combination with its embB M306I mutation, which may be related to ethambutol resistance. In addition, it possessed a low-frequency rpoC mutation, suggesting that this strain was in the process of developing compensation. In contrast, no compensatory mutations were identified in Beijing and F11 MDR strains, corroborating its low in vitro fitness. Clinical strains also harboured unique SNPs in a number of important genes associated with virulence, highlighting the need for future studies which examine the correlation of genetic variations with phenotypic diversity. In summary, whole-genome sequencing revealed the presence of fitness-compensatory mutations in F15/LAM4/KZN and F28 genotypes which predominate in MDR and/or extensively drug resistant (XDR) forms in KwaZulu-Natal, South Africa.
Collapse
|
31
|
Dookie N, Rambaran S, Padayatchi N, Mahomed S, Naidoo K. Evolution of drug resistance in Mycobacterium tuberculosis: a review on the molecular determinants of resistance and implications for personalized care. J Antimicrob Chemother 2018; 73:1138-1151. [PMID: 29360989 PMCID: PMC5909630 DOI: 10.1093/jac/dkx506] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Drug-resistant TB (DR-TB) remains a significant challenge in TB treatment and control programmes worldwide. Advances in sequencing technology have significantly increased our understanding of the mechanisms of resistance to anti-TB drugs. This review provides an update on advances in our understanding of drug resistance mechanisms to new, existing drugs and repurposed agents. Recent advances in WGS technology hold promise as a tool for rapid diagnosis and clinical management of TB. Although the standard approach to WGS of Mycobacterium tuberculosis is slow due to the requirement for organism culture, recent attempts to sequence directly from clinical specimens have improved the potential to diagnose and detect resistance within days. The introduction of new databases may be helpful, such as the Relational Sequencing TB Data Platform, which contains a collection of whole-genome sequences highlighting key drug resistance mutations and clinical outcomes. Taken together, these advances will help devise better molecular diagnostics for more effective DR-TB management enabling personalized treatment, and will facilitate the development of new drugs aimed at improving outcomes of patients with this disease.
Collapse
Affiliation(s)
- Navisha Dookie
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Santhuri Rambaran
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Nesri Padayatchi
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council (SAMRC) - CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Sharana Mahomed
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council (SAMRC) - CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| |
Collapse
|
32
|
Heyckendorf J, Andres S, Köser CU, Olaru ID, Schön T, Sturegård E, Beckert P, Schleusener V, Kohl TA, Hillemann D, Moradigaravand D, Parkhill J, Peacock SJ, Niemann S, Lange C, Merker M. What Is Resistance? Impact of Phenotypic versus Molecular Drug Resistance Testing on Therapy for Multi- and Extensively Drug-Resistant Tuberculosis. Antimicrob Agents Chemother 2018; 62:e01550-17. [PMID: 29133554 PMCID: PMC5786814 DOI: 10.1128/aac.01550-17] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/26/2017] [Indexed: 12/29/2022] Open
Abstract
Rapid and accurate drug susceptibility testing (DST) is essential for the treatment of multi- and extensively drug-resistant tuberculosis (M/XDR-TB). We compared the utility of genotypic DST assays with phenotypic DST (pDST) using Bactec 960 MGIT or Löwenstein-Jensen to construct M/XDR-TB treatment regimens for a cohort of 25 consecutive M/XDR-TB patients and 15 possible anti-TB drugs. Genotypic DST results from Cepheid GeneXpert MTB/RIF (Xpert) and line probe assays (LPAs; Hain GenoType MTBDRplus 2.0 and MTBDRsl 2.0) and whole-genome sequencing (WGS) were translated into individual algorithm-derived treatment regimens for each patient. We further analyzed if discrepancies between the various methods were due to flaws in the genotypic or phenotypic test using MIC results. Compared with pDST, the average agreement in the number of drugs prescribed in genotypic regimens ranged from just 49% (95% confidence interval [CI], 39 to 59%) for Xpert and 63% (95% CI, 56 to 70%) for LPAs to 93% (95% CI, 88 to 98%) for WGS. Only the WGS regimens did not contain any drugs to which pDST showed resistance. Importantly, MIC testing revealed that pDST likely underestimated the true rate of resistance for key drugs (rifampin, levofloxacin, moxifloxacin, and kanamycin) because critical concentrations (CCs) were too high. WGS can be used to rule in resistance even in M/XDR strains with complex resistance patterns, but pDST for some drugs is still needed to confirm susceptibility and construct the final regimens. Some CCs for pDST need to be reexamined to avoid systematic false-susceptible results in low-level resistant isolates.
Collapse
Affiliation(s)
- Jan Heyckendorf
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel, Borstel, Germany
- International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| | - Sönke Andres
- Division of Mycobacteriology (National Tuberculosis Reference Laboratory), Research Center Borstel, Borstel, Germany
| | - Claudio U Köser
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Ioana D Olaru
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel, Borstel, Germany
| | - Thomas Schön
- Department of Infectious Diseases and Clinical Microbiology, Kalmar County Hospital, Kalmar, Sweden
- Department of Clinical and Experimental Medicine, Division of Medical Microbiology, Linköping University, Linköping, Sweden
| | - Erik Sturegård
- Clinical Microbiology, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Patrick Beckert
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel, Borstel, Germany
- Division of Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Viola Schleusener
- Division of Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Thomas A Kohl
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel, Borstel, Germany
- Division of Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Doris Hillemann
- Division of Mycobacteriology (National Tuberculosis Reference Laboratory), Research Center Borstel, Borstel, Germany
| | | | | | - Sharon J Peacock
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Stefan Niemann
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel, Borstel, Germany
- Division of Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Christoph Lange
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel, Borstel, Germany
- International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Medicine, University of Namibia School of Medicine, Windhoek, Namibia
| | - Matthias Merker
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel, Borstel, Germany
- Division of Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| |
Collapse
|
33
|
Grandjean L, Gilman RH, Iwamoto T, Köser CU, Coronel J, Zimic M, Török ME, Ayabina D, Kendall M, Fraser C, Harris S, Parkhill J, Peacock SJ, Moore DAJ, Colijn C. Convergent evolution and topologically disruptive polymorphisms among multidrug-resistant tuberculosis in Peru. PLoS One 2017; 12:e0189838. [PMID: 29281674 PMCID: PMC5744980 DOI: 10.1371/journal.pone.0189838] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/01/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Multidrug-resistant tuberculosis poses a major threat to the success of tuberculosis control programs worldwide. Understanding how drug-resistant tuberculosis evolves can inform the development of new therapeutic and preventive strategies. METHODS Here, we use novel genome-wide analysis techniques to identify polymorphisms that are associated with drug resistance, adaptive evolution and the structure of the phylogenetic tree. A total of 471 samples from different patients collected between 2009 and 2013 in the Lima suburbs of Callao and Lima South were sequenced on the Illumina MiSeq platform with 150bp paired-end reads. After alignment to the reference H37Rv genome, variants were called using standardized methodology. Genome-wide analysis was undertaken using custom written scripts implemented in R software. RESULTS High quality homoplastic single nucleotide polymorphisms were observed in genes known to confer drug resistance as well as genes in the Mycobacterium tuberculosis ESX secreted protein pathway, pks12, and close to toxin/anti-toxin pairs. Correlation of homoplastic variant sites identified that many were significantly correlated, suggestive of epistasis. Variation in genes coding for ESX secreted proteins also significantly disrupted phylogenetic structure. Mutations in ESX genes in key antigenic epitope positions were also found to disrupt tree topology. CONCLUSION Variation in these genes have a biologically plausible effect on immunogenicity and virulence. This makes functional characterization warranted to determine the effects of these polymorphisms on bacterial fitness and transmission.
Collapse
Affiliation(s)
- Louis Grandjean
- University College London, Institute of Child Health, London, United Kingdom
- Academic Health Sciences Centre, Imperial College, London, United Kingdom
- Universidad Peruana Cayetano Heredia, Avenida Honorio Delgado, San Martin de Porras, Lima, Peru
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Robert H. Gilman
- Universidad Peruana Cayetano Heredia, Avenida Honorio Delgado, San Martin de Porras, Lima, Peru
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Tomatada Iwamoto
- Department of Infectious Diseases, Kobe Institute of Health, Chuo-ku, Kobe, Japan
| | - Claudio U. Köser
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jorge Coronel
- Universidad Peruana Cayetano Heredia, Avenida Honorio Delgado, San Martin de Porras, Lima, Peru
| | - Mirko Zimic
- Universidad Peruana Cayetano Heredia, Avenida Honorio Delgado, San Martin de Porras, Lima, Peru
| | - M. Estee Török
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Diepreye Ayabina
- Faculty of Natural Sciences, Department of Mathematics, Imperial College London, London, United Kingdom
| | - Michelle Kendall
- Faculty of Natural Sciences, Department of Mathematics, Imperial College London, London, United Kingdom
| | - Christophe Fraser
- Department of Infectious Diseases Epidemiology, Imperial College, London, United Kingdom
| | - Simon Harris
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Julian Parkhill
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Sharon J. Peacock
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom
- London School of Tropical Medicine and Hygiene, London, United Kingdom
| | - David A. J. Moore
- London School of Tropical Medicine and Hygiene, London, United Kingdom
| | - Caroline Colijn
- Faculty of Natural Sciences, Department of Mathematics, Imperial College London, London, United Kingdom
| |
Collapse
|
34
|
Miotto P, Tessema B, Tagliani E, Chindelevitch L, Starks AM, Emerson C, Hanna D, Kim PS, Liwski R, Zignol M, Gilpin C, Niemann S, Denkinger CM, Fleming J, Warren RM, Crook D, Posey J, Gagneux S, Hoffner S, Rodrigues C, Comas I, Engelthaler DM, Murray M, Alland D, Rigouts L, Lange C, Dheda K, Hasan R, Ranganathan UDK, McNerney R, Ezewudo M, Cirillo DM, Schito M, Köser CU, Rodwell TC. A standardised method for interpreting the association between mutations and phenotypic drug resistance in Mycobacterium tuberculosis. Eur Respir J 2017; 50:1701354. [PMID: 29284687 PMCID: PMC5898944 DOI: 10.1183/13993003.01354-2017] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/13/2017] [Indexed: 11/24/2022]
Abstract
A clear understanding of the genetic basis of antibiotic resistance in Mycobacterium tuberculosis is required to accelerate the development of rapid drug susceptibility testing methods based on genetic sequence.Raw genotype-phenotype correlation data were extracted as part of a comprehensive systematic review to develop a standardised analytical approach for interpreting resistance associated mutations for rifampicin, isoniazid, ofloxacin/levofloxacin, moxifloxacin, amikacin, kanamycin, capreomycin, streptomycin, ethionamide/prothionamide and pyrazinamide. Mutation frequencies in resistant and susceptible isolates were calculated, together with novel statistical measures to classify mutations as high, moderate, minimal or indeterminate confidence for predicting resistance.We identified 286 confidence-graded mutations associated with resistance. Compared to phenotypic methods, sensitivity (95% CI) for rifampicin was 90.3% (89.6-90.9%), while for isoniazid it was 78.2% (77.4-79.0%) and their specificities were 96.3% (95.7-96.8%) and 94.4% (93.1-95.5%), respectively. For second-line drugs, sensitivity varied from 67.4% (64.1-70.6%) for capreomycin to 88.2% (85.1-90.9%) for moxifloxacin, with specificity ranging from 90.0% (87.1-92.5%) for moxifloxacin to 99.5% (99.0-99.8%) for amikacin.This study provides a standardised and comprehensive approach for the interpretation of mutations as predictors of M. tuberculosis drug-resistant phenotypes. These data have implications for the clinical interpretation of molecular diagnostics and next-generation sequencing as well as efficient individualised therapy for patients with drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Paolo Miotto
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Belay Tessema
- Department of Medical Microbiology, University of Gondar, Gondar, Ethiopia
| | - Elisa Tagliani
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Angela M Starks
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Claudia Emerson
- Institute on Ethics & Policy for Innovation, Department of Philosophy, McMaster University, Hamilton, ON, Canada
| | | | - Peter S Kim
- Office of AIDS Research, National Institutes of Health, Rockville, MD, USA
| | | | - Matteo Zignol
- Global Tuberculosis Programme, World Health Organization, Geneva, Switzerland
| | - Christopher Gilpin
- Global Tuberculosis Programme, World Health Organization, Geneva, Switzerland
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Borstel, Germany
| | - Claudia M Denkinger
- Foundation for Innovative New Diagnostics, Campus Biotech, Geneva, Switzerland
| | - Joy Fleming
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Robin M Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Derrick Crook
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- National Infection Service, Public Health England, London, UK
| | - James Posey
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sven Hoffner
- Microbiology, Tumour and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Public Health Agency of Sweden, Solna, Sweden
| | | | - Iñaki Comas
- Tuberculosis Genomics Unit, Biomedicine Institute of Valencia (IBV-CSIC), Valencia, Spain
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Community (FISABIO), Valencia, Spain
- CIBER (Centros de Investigación Biomédica en Red) in Epidemiology and Public Health, Madrid, Spain
| | | | - Megan Murray
- Harvard School of Public Health, Department of Epidemiology, Boston, MA, USA
| | - David Alland
- Center for Emerging Pathogens, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Leen Rigouts
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Christoph Lange
- Division of Clinical Infectious Diseases and German Center for Infection Research Tuberculosis Unit, Research Center Borstel, Borstel, Germany
- International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Internal Medicine, University of Namibia School of Medicine, Windhoek, Namibia
| | - Keertan Dheda
- Lung Infection and Immunity Unit, Department of Medicine, Division of Pulmonology and UCT Lung Institute, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | - Rumina Hasan
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | | | - Ruth McNerney
- Department of Medicine, Division of Pulmonology, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | | | - Daniela M Cirillo
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Claudio U Köser
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Timothy C Rodwell
- Foundation for Innovative New Diagnostics, Campus Biotech, Geneva, Switzerland
- Department of Medicine, University of California, San Diego, CA, USA
| |
Collapse
|
35
|
Laborde J, Deraeve C, Bernardes-Génisson V. Update of Antitubercular Prodrugs from a Molecular Perspective: Mechanisms of Action, Bioactivation Pathways, and Associated Resistance. ChemMedChem 2017; 12:1657-1676. [DOI: 10.1002/cmdc.201700424] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/12/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Julie Laborde
- CNRS; LCC (Laboratoire de Chimie de Coordination); 205, route de Narbonne, BP 44099 31077 Toulouse, Cedex 4 France
- Université de Toulouse; UPS, INPT; 31077 Toulouse, Cedex 4 France
| | - Céline Deraeve
- CNRS; LCC (Laboratoire de Chimie de Coordination); 205, route de Narbonne, BP 44099 31077 Toulouse, Cedex 4 France
- Université de Toulouse; UPS, INPT; 31077 Toulouse, Cedex 4 France
| | - Vania Bernardes-Génisson
- CNRS; LCC (Laboratoire de Chimie de Coordination); 205, route de Narbonne, BP 44099 31077 Toulouse, Cedex 4 France
- Université de Toulouse; UPS, INPT; 31077 Toulouse, Cedex 4 France
| |
Collapse
|
36
|
Drug development against tuberculosis: Past, present and future. ACTA ACUST UNITED AC 2017; 64:252-275. [DOI: 10.1016/j.ijtb.2017.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/15/2017] [Indexed: 12/29/2022]
|
37
|
Lone MY, Athar M, Gupta VK, Jha PC. Identification of Mycobacterium tuberculosis enoyl-acyl carrier protein reductase inhibitors: A combined in-silico and in-vitro analysis. J Mol Graph Model 2017; 76:172-180. [DOI: 10.1016/j.jmgm.2017.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 01/20/2023]
|
38
|
Slepikas L, Chiriano G, Perozzo R, Tardy S, Kranjc A, Patthey-Vuadens O, Ouertatani-Sakouhi H, Kicka S, Harrison CF, Scrignari T, Perron K, Hilbi H, Soldati T, Cosson P, Tarasevicius E, Scapozza L. In Silico Driven Design and Synthesis of Rhodanine Derivatives as Novel Antibacterials Targeting the Enoyl Reductase InhA. J Med Chem 2016; 59:10917-10928. [DOI: 10.1021/acs.jmedchem.5b01620] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Liudas Slepikas
- School
of Pharmaceutical Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 30 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
- Faculty
of Pharmacy, Lithuanian University of Health Sciences, LT 44307 Kaunas, Lithuania
| | - Gianpaolo Chiriano
- School
of Pharmaceutical Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 30 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| | - Remo Perozzo
- School
of Pharmaceutical Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 30 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| | - Sébastien Tardy
- School
of Pharmaceutical Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 30 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| | - Agata Kranjc
- School
of Pharmaceutical Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 30 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| | - Ophélie Patthey-Vuadens
- School
of Pharmaceutical Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 30 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| | - Hajer Ouertatani-Sakouhi
- Department
of Cell Physiology and Metabolism, CMU, Rue Michel-Servet 1 CH-1211 Geneva, Switzerland
| | - Sébastien Kicka
- Department
of Biochemistry, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| | - Christopher F. Harrison
- Max
von Pettenkofer Institute, Department of Medicine, Ludwig-Maximilians University Munich, 80336 Munich, Germany
| | - Tiziana Scrignari
- Microbiology
Unit, Department of Botany and Plant Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Karl Perron
- Microbiology
Unit, Department of Botany and Plant Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Hubert Hilbi
- Max
von Pettenkofer Institute, Department of Medicine, Ludwig-Maximilians University Munich, 80336 Munich, Germany
- Institute
of Medical Microbiology, Department of Medicine, University of Zürich, Gloriastrasse 30/32, CH-8006 Zürich, Switzerland
| | - Thierry Soldati
- Department
of Biochemistry, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| | - Pierre Cosson
- Department
of Cell Physiology and Metabolism, CMU, Rue Michel-Servet 1 CH-1211 Geneva, Switzerland
| | - Eduardas Tarasevicius
- Faculty
of Pharmacy, Lithuanian University of Health Sciences, LT 44307 Kaunas, Lithuania
| | - Leonardo Scapozza
- School
of Pharmaceutical Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 30 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| |
Collapse
|
39
|
Overview on mechanisms of isoniazid action and resistance in Mycobacterium tuberculosis. INFECTION GENETICS AND EVOLUTION 2016; 45:474-492. [DOI: 10.1016/j.meegid.2016.09.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 09/02/2016] [Accepted: 09/03/2016] [Indexed: 12/17/2022]
|
40
|
A Synonymous Mutation Upstream of the Gene Encoding a Weak-Link Enzyme Causes an Ultrasensitive Response in Growth Rate. J Bacteriol 2016; 198:2853-63. [PMID: 27501982 DOI: 10.1128/jb.00262-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/22/2016] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED When microbes are faced with an environmental challenge or opportunity, preexisting enzymes with promiscuous secondary activities can be recruited to provide newly important functions. Mutations that increase the efficiency of a new activity often compromise the original activity, resulting in an inefficient bifunctional enzyme. We have investigated the mechanisms by which growth of Escherichia coli can be improved when fitness is limited by such an enzyme, E383A ProA (ProA*). ProA* can serve the functions of both ProA (required for synthesis of proline) and ArgC (required for synthesis of arginine), albeit poorly. We identified four genetic changes that improve the growth rate by up to 6.2-fold. Two point mutations in the promoter of the proBA* operon increase expression of the entire operon. Massive amplification of a genomic segment around the proBA* operon also increases expression of the entire operon. Finally, a synonymous point mutation in the coding region of proB creates a new promoter for proA* This synonymous mutation increases the level of ProA* by 2-fold but increases the growth rate by 5-fold, an ultrasensitive response likely arising from competition between two substrates for the active site of the inefficient bifunctional ProA*. IMPORTANCE The high-impact synonymous mutation we discovered in proB is remarkable for two reasons. First, most polar effects documented in the literature are detrimental. This finding demonstrates that polar effect mutations can have strongly beneficial effects, especially when an organism is facing a difficult environmental challenge for which it is poorly adapted. Furthermore, the consequence of the synonymous mutation in proB is a 2-fold increase in the level of ProA* but a disproportionately large 5.1-fold increase in growth rate. While ultrasensitive responses are often found in signaling networks and genetic circuits, an ultrasensitive response to an adaptive mutation has not been previously reported.
Collapse
|
41
|
A Mutation in the 16S rRNA Decoding Region Attenuates the Virulence of Mycobacterium tuberculosis. Infect Immun 2016; 84:2264-2273. [PMID: 27245411 DOI: 10.1128/iai.00417-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 01/15/2023] Open
Abstract
Mycobacterium tuberculosis contains a single rRNA operon that encodes targets for antituberculosis agents, including kanamycin. To date, only four mutations in the kanamycin binding sites of 16S rRNA have been reported in kanamycin-resistant clinical isolates. We hypothesized that another mutation(s) in the region may dramatically decrease M. tuberculosis viability and virulence. Here, we describe an rRNA mutation, U1406A, which was generated in vitro and confers resistance to kanamycin while highly attenuating M. tuberculosis virulence. The mutant showed decreased expression of 20% (n = 361) of mycobacterial proteins, including central metabolic enzymes, mycolic acid biosynthesis enzymes, and virulence factors such as antigen 85 complexes and ESAT-6. The mutation also induced three proteins, including KsgA (Rv1010; 16S rRNA adenine dimethyltransferase), which closely bind to the U1406A mutation site on the ribosome; these proteins were associated with ribosome maturation and translation initiation processes. The mutant showed an increase in 17S rRNA (precursor 16S rRNA) and a decrease in the ratio of 30S subunits to the 70S ribosomes, suggesting that the U1406A mutation in 16S rRNA attenuated M. tuberculosis virulence by affecting these processes.
Collapse
|
42
|
Novel katG mutations causing isoniazid resistance in clinical M. tuberculosis isolates. Emerg Microbes Infect 2015; 4:e42. [PMID: 26251830 PMCID: PMC4522615 DOI: 10.1038/emi.2015.42] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 04/08/2015] [Accepted: 05/19/2015] [Indexed: 12/16/2022]
Abstract
We report the discovery and confirmation of 23 novel mutations with previously undocumented role in isoniazid (INH) drug resistance, in catalase-peroxidase (katG) gene of Mycobacterium tuberculosis (Mtb) isolates. With these mutations, a synonymous mutation in fabG1g609a, and two canonical mutations, we were able to explain 98% of the phenotypic resistance observed in 366 clinical Mtb isolates collected from four high tuberculosis (TB)-burden countries: India, Moldova, Philippines, and South Africa. We conducted overlapping targeted and whole-genome sequencing for variant discovery in all clinical isolates with a variety of INH-resistant phenotypes. Our analysis showed that just two canonical mutations (katG 315AGC-ACC and inhA promoter-15C-T) identified 89.5% of resistance phenotypes in our collection. Inclusion of the 23 novel mutations reported here, and the previously documented point mutation in fabG1, increased the sensitivity of these mutations as markers of INH resistance to 98%. Only six (2%) of the 332 resistant isolates in our collection did not harbor one or more of these mutations. The third most prevalent substitution, at inhA promoter position -8, present in 39 resistant isolates, was of no diagnostic significance since it always co-occurred with katG 315. 79% of our isolates harboring novel mutations belong to genetic group 1 indicating a higher tendency for this group to go down an uncommon evolutionary path and evade molecular diagnostics. The results of this study contribute to our understanding of the mechanisms of INH resistance in Mtb isolates that lack the canonical mutations and could improve the sensitivity of next generation molecular diagnostics.
Collapse
|
43
|
O'Malley T, Melief E. Isolation and characterization of compound-resistant isolates of Mycobacterium tuberculosis. Methods Mol Biol 2015; 1285:317-328. [PMID: 25779325 DOI: 10.1007/978-1-4939-2450-9_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This chapter describes the isolation and characterization of spontaneous resistant mutants of Mycobacterium tuberculosis. The overall objective of resistant mutant isolation is to determine the mode of action and/or cellular targets of new antimycobacterial agents. Whole-genome sequencing of resistant mutants can identify targets of antimycobacterial drugs and mechanisms of resistance, such as efflux, changes in drug permeability, or drug recognition. Mutants allow insight into in vivo biological processes and can help elucidate the number and identity of genes in a given pathway. Resistant mutant characterization can also lay the groundwork for structure/function studies, especially in conjunction with binding studies and X-ray crystallography.
Collapse
Affiliation(s)
- Theresa O'Malley
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Avenue East, Suite 400, Seattle, WA, 98102, USA
| | | |
Collapse
|
44
|
Coscolla M, Gagneux S. Consequences of genomic diversity in Mycobacterium tuberculosis. Semin Immunol 2014; 26:431-44. [PMID: 25453224 PMCID: PMC4314449 DOI: 10.1016/j.smim.2014.09.012] [Citation(s) in RCA: 295] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 11/29/2022]
Abstract
The causative agent of human tuberculosis, Mycobacterium tuberculosis complex (MTBC), comprises seven phylogenetically distinct lineages associated with different geographical regions. Here we review the latest findings on the nature and amount of genomic diversity within and between MTBC lineages. We then review recent evidence for the effect of this genomic diversity on mycobacterial phenotypes measured experimentally and in clinical settings. We conclude that overall, the most geographically widespread Lineage 2 (includes Beijing) and Lineage 4 (also known as Euro-American) are more virulent than other lineages that are more geographically restricted. This increased virulence is associated with delayed or reduced pro-inflammatory host immune responses, greater severity of disease, and enhanced transmission. Future work should focus on the interaction between MTBC and human genetic diversity, as well as on the environmental factors that modulate these interactions.
Collapse
Affiliation(s)
- Mireia Coscolla
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland; University of Basel, Petersplatz 1, Basel 4003, Switzerland
| | - Sebastien Gagneux
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland; University of Basel, Petersplatz 1, Basel 4003, Switzerland.
| |
Collapse
|
45
|
Köser CU, Ellington MJ, Peacock SJ. Whole-genome sequencing to control antimicrobial resistance. Trends Genet 2014; 30:401-7. [PMID: 25096945 PMCID: PMC4156311 DOI: 10.1016/j.tig.2014.07.003] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/10/2014] [Accepted: 07/14/2014] [Indexed: 11/18/2022]
Abstract
Following recent improvements in sequencing technologies, whole-genome sequencing (WGS) is positioned to become an essential tool in the control of antibiotic resistance, a major threat in modern healthcare. WGS has already found numerous applications in this area, ranging from the development of novel antibiotics and diagnostic tests through to antibiotic stewardship of currently available drugs via surveillance and the elucidation of the factors that allow the emergence and persistence of resistance. Numerous proof-of-principle studies have also highlighted the value of WGS as a tool for day-to-day infection control and, for some pathogens, as a primary diagnostic tool to detect antibiotic resistance. However, appropriate data analysis platforms will need to be developed before routine WGS can be introduced on a large scale.
Collapse
Affiliation(s)
- Claudio U Köser
- Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Matthew J Ellington
- Clinical Microbiology and Public Health Laboratory, Public Health England, Cambridge, UK
| | - Sharon J Peacock
- Department of Medicine, University of Cambridge, Cambridge, UK; Clinical Microbiology and Public Health Laboratory, Public Health England, Cambridge, UK; Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| |
Collapse
|
46
|
Drug Resistance Mechanisms in Mycobacterium tuberculosis. Antibiotics (Basel) 2014; 3:317-40. [PMID: 27025748 PMCID: PMC4790366 DOI: 10.3390/antibiotics3030317] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/20/2014] [Accepted: 06/23/2014] [Indexed: 01/16/2023] Open
Abstract
Tuberculosis (TB) is a serious public health problem worldwide. Its situation is worsened by the presence of multidrug resistant (MDR) strains of Mycobacterium tuberculosis, the causative agent of the disease. In recent years, even more serious forms of drug resistance have been reported. A better knowledge of the mechanisms of drug resistance of M. tuberculosis and the relevant molecular mechanisms involved will improve the available techniques for rapid drug resistance detection and will help to explore new targets for drug activity and development. This review article discusses the mechanisms of action of anti-tuberculosis drugs and the molecular basis of drug resistance in M. tuberculosis.
Collapse
|
47
|
Abstract
Determining the molecular changes that give rise to functional innovations is a major unresolved problem in biology. The paucity of examples has served as a significant hindrance in furthering our understanding of this process. Here we used experimental evolution with the bacterium Escherichia coli to quantify the molecular changes underlying functional innovation in 68 independent instances ranging over 22 different metabolic functions. Using whole-genome sequencing, we show that the relative contribution of regulatory and structural mutations depends on the cellular context of the metabolic function. In addition, we find that regulatory mutations affect genes that act in pathways relevant to the novel function, whereas structural mutations affect genes that act in unrelated pathways. Finally, we use population genetic modeling to show that the relative contributions of regulatory and structural mutations during functional innovation may be affected by population size. These results provide a predictive framework for the molecular basis of evolutionary innovation, which is essential for anticipating future evolutionary trajectories in the face of rapid environmental change.
Collapse
|