1
|
Rivera-Flores I, Wang E, Murphy K. Mycobacterium smegmatis NucS-promoted DNA mismatch repair involves limited resection by a 5'-3' exonuclease and is independent of homologous recombination and NHEJ. Nucleic Acids Res 2024; 52:12308-12323. [PMID: 39417425 PMCID: PMC11551767 DOI: 10.1093/nar/gkae895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 09/07/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
The MutSL mismatch repair (MMR) systems in bacteria and eukaryotes correct mismatches made at the replication fork to maintain genome stability. A novel MMR system is represented by the EndoMS/NucS endonuclease from Actinobacterium Corynebacterium glutamicum, which recognizes mismatched substrates in vitro and creates dsDNA breaks at the mismatch. In this report, a genetic analysis shows that an M. smegmatis ΔnucS strain could be complemented by expression of wild type NucS protein, but not by one deleted of its last five amino acids, a region predicted to be critical for binding to the β-clamp at the replication fork. Oligo-recombineering was then leveraged to deliver defined mismatches to a defective hygromycin resistance gene on the M. smegmatis chromosome. We find that NucS recognizes and repairs G-G, G-T, and T-T mismatches in vivo, consistent with the recognition of these same mismatches in C. glutamicum in vitro, as well as mutation accumulation studies done in M. smegmatis. Finally, an assay that employs an oligo that promotes the generation of two mismatches in close proximity on the chromosome shows that a NucS-promoted cut is processed by a 5'-3' exonuclease (or 5'-Flap endonuclease) and that NucS-promoted MMR is independent of both homologous recombination and non-homologous end-joining.
Collapse
Affiliation(s)
- Iris V Rivera-Flores
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Emily X Wang
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Kenan C Murphy
- Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
2
|
Bonde NJ, Wood EA, Myers KS, Place M, Keck JL, Cox MM. Identification of recG genetic interactions in Escherichia coli by transposon sequencing. J Bacteriol 2023; 205:e0018423. [PMID: 38019006 PMCID: PMC10870727 DOI: 10.1128/jb.00184-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/07/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE DNA damage and subsequent DNA repair processes are mutagenic in nature and an important driver of evolution in prokaryotes, including antibiotic resistance development. Genetic screening approaches, such as transposon sequencing (Tn-seq), have provided important new insights into gene function and genetic relationships. Here, we employed Tn-seq to gain insight into the function of the recG gene, which renders Escherichia coli cells moderately sensitive to a variety of DNA-damaging agents when they are absent. The reported recG genetic interactions can be used in combination with future screens to aid in a more complete reconstruction of DNA repair pathways in bacteria.
Collapse
Affiliation(s)
- Nina J. Bonde
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Elizabeth A. Wood
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kevin S. Myers
- Great Lakes Bioenergy Research Center and the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michael Place
- Great Lakes Bioenergy Research Center and the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - James L. Keck
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Buckley RJ, Lou‐Hing A, Hanson KM, Ahmed NR, Cooper CDO, Bolt EL. Escherichia coli DNA repair helicase Lhr is also a uracil-DNA glycosylase. Mol Microbiol 2023; 120:298-306. [PMID: 37452011 PMCID: PMC10953399 DOI: 10.1111/mmi.15123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
DNA glycosylases protect genetic fidelity during DNA replication by removing potentially mutagenic chemically damaged DNA bases. Bacterial Lhr proteins are well-characterized DNA repair helicases that are fused to additional 600-700 amino acids of unknown function, but with structural homology to SecB chaperones and AlkZ DNA glycosylases. Here, we identify that Escherichia coli Lhr is a uracil-DNA glycosylase (UDG) that depends on an active site aspartic acid residue. We show that the Lhr DNA helicase activity is functionally independent of the UDG activity, but that the helicase domains are required for fully active UDG activity. Consistent with UDG activity, deletion of lhr from the E. coli chromosome sensitized cells to oxidative stress that triggers cytosine deamination to uracil. The ability of Lhr to translocate single-stranded DNA and remove uracil bases suggests a surveillance role to seek and remove potentially mutagenic base changes during replication stress.
Collapse
Affiliation(s)
| | - Anna Lou‐Hing
- School of Life SciencesUniversity of NottinghamNottinghamUK
| | - Karl M. Hanson
- School of Biological and Geographical Sciences, School of Applied SciencesUniversity of HuddersfieldHuddersfieldUK
| | - Nadia R. Ahmed
- School of Biological and Geographical Sciences, School of Applied SciencesUniversity of HuddersfieldHuddersfieldUK
| | - Christopher D. O. Cooper
- School of Biological and Geographical Sciences, School of Applied SciencesUniversity of HuddersfieldHuddersfieldUK
- CHARM Therapeutics LtdB900 Babraham Research CampusCambridgeUK
| | - Edward L. Bolt
- School of Life SciencesUniversity of NottinghamNottinghamUK
| |
Collapse
|
4
|
Cox MM, Goodman MF, Keck JL, van Oijen A, Lovett ST, Robinson A. Generation and Repair of Postreplication Gaps in Escherichia coli. Microbiol Mol Biol Rev 2023; 87:e0007822. [PMID: 37212693 PMCID: PMC10304936 DOI: 10.1128/mmbr.00078-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
When replication forks encounter template lesions, one result is lesion skipping, where the stalled DNA polymerase transiently stalls, disengages, and then reinitiates downstream to leave the lesion behind in a postreplication gap. Despite considerable attention in the 6 decades since postreplication gaps were discovered, the mechanisms by which postreplication gaps are generated and repaired remain highly enigmatic. This review focuses on postreplication gap generation and repair in the bacterium Escherichia coli. New information to address the frequency and mechanism of gap generation and new mechanisms for their resolution are described. There are a few instances where the formation of postreplication gaps appears to be programmed into particular genomic locations, where they are triggered by novel genomic elements.
Collapse
Affiliation(s)
- Michael M. Cox
- Department of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Myron F. Goodman
- Department of Biological Sciences, University of Southern California, University Park, Los Angeles, California, USA
- Department of Chemistry, University of Southern California, University Park, Los Angeles, California, USA
| | - James L. Keck
- Department of Biological Chemistry, University of Wisconsin—Madison School of Medicine, Madison, Wisconsin, USA
| | - Antoine van Oijen
- Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Susan T. Lovett
- Department of Biology, Brandeis University, Waltham, Massachusetts, USA
| | - Andrew Robinson
- Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
5
|
Pham P, Wood EA, Cox MM, Goodman MF. RecA and SSB genome-wide distribution in ssDNA gaps and ends in Escherichia coli. Nucleic Acids Res 2023; 51:5527-5546. [PMID: 37070184 PMCID: PMC10287960 DOI: 10.1093/nar/gkad263] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023] Open
Abstract
Single-stranded DNA (ssDNA) gapped regions are common intermediates in DNA transactions. Using a new non-denaturing bisulfite treatment combined with ChIP-seq, abbreviated 'ssGap-seq', we explore RecA and SSB binding to ssDNA on a genomic scale in E. coli in a wide range of genetic backgrounds. Some results are expected. During log phase growth, RecA and SSB assembly profiles coincide globally, concentrated on the lagging strand and enhanced after UV irradiation. Unexpected results also abound. Near the terminus, RecA binding is favored over SSB, binding patterns change in the absence of RecG, and the absence of XerD results in massive RecA assembly. RecA may substitute for the absence of XerCD to resolve chromosome dimers. A RecA loading pathway may exist that is independent of RecBCD and RecFOR. Two prominent and focused peaks of RecA binding revealed a pair of 222 bp and GC-rich repeats, equidistant from dif and flanking the Ter domain. The repeats, here named RRS for replication risk sequence, trigger a genomically programmed generation of post-replication gaps that may play a special role in relieving topological stress during replication termination and chromosome segregation. As demonstrated here, ssGap-seq provides a new window on previously inaccessible aspects of ssDNA metabolism.
Collapse
Affiliation(s)
- Phuong Pham
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089-2910, USA
| | - Elizabeth A Wood
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544, USA
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544, USA
| | - Myron F Goodman
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089-2910, USA
| |
Collapse
|
6
|
Weeks-Pollenz SJ, Ali Y, Morris LA, Sutera VA, Dudenhausen EE, Hibnick M, Lovett ST, Bloom LB. Characterization of the Escherichia coli XPD/Rad3 iron-sulfur helicase YoaA in complex with the DNA polymerase III clamp loader subunit chi (χ). J Biol Chem 2023; 299:102786. [PMID: 36509145 PMCID: PMC9826845 DOI: 10.1016/j.jbc.2022.102786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Escherichia coli YoaA aids in the resolution of DNA damage that halts DNA synthesis in vivo in conjunction with χ, an accessory subunit of DNA polymerase III. YoaA and χ form a discrete complex separate from the DNA polymerase III holoenzyme, but little is known about how YoaA and χ work together to help the replication fork overcome damage. Although YoaA is predicted to be an iron-sulfur helicase in the XPD/Rad3 helicase family based on sequence analysis, the biochemical activities of YoaA have not been described. Here, we characterize YoaA and show that purified YoaA contains iron. YoaA and χ form a complex that is stable through three chromatographic steps, including gel filtration chromatography. When overexpressed in the absence of χ, YoaA is mostly insoluble. In addition, we show the YoaA-χ complex has DNA-dependent ATPase activity. Our measurement of the YoaA-χ helicase activity illustrates for the first time YoaA-χ translocates on ssDNA in the 5' to 3' direction and requires a 5' single-stranded overhang, or ssDNA gap, for DNA/DNA unwinding. Furthermore, YoaA-χ preferentially unwinds forked duplex DNA that contains both 3' and 5' single-stranded overhangs versus duplex DNA with only a 5' overhang. Finally, we demonstrate YoaA-χ can unwind damaged DNA that contains an abasic site or damage on 3' ends that stall replication extension. These results are the first biochemical evidence demonstrating YoaA is a bona fide iron-sulfur helicase, and we further propose the physiologically relevant form of the helicase is YoaA-χ.
Collapse
Affiliation(s)
- Savannah J Weeks-Pollenz
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Yasmin Ali
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Leslie A Morris
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Vincent A Sutera
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - Elizabeth E Dudenhausen
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Margaret Hibnick
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Susan T Lovett
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - Linda B Bloom
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
7
|
Li Y, Ruan S, Lu F, Xie P, Liu X, Ma H. Studies on ultrasound-mediated insertion-deletion polymorphisms of DNA and underlying mechanisms based on Ames tester strains. ULTRASONICS SONOCHEMISTRY 2023; 92:106270. [PMID: 36543046 PMCID: PMC9794972 DOI: 10.1016/j.ultsonch.2022.106270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Low-lethality ultrasound technology has received more and more attention in regulating microorganisms of fermentation industry. Herein, two representative Ames tester strains TA97a and TA98 as model organisms were used to explore the effects of ultrasound on insertion-deletion (InDel) polymorphisms of microbial DNA and its underlying mechanisms. Results revealed that a promotion was observed in the reversion mutation of TA98 upon sonication. Sequencing results from 1752 TA98 revertants showed that there was a total of 127 InDels, of which the InDels unique to ultrasound were 36 more than that of the control. Compared with the control, ultrasound-mediated InDels of DNA displayed additional -29 bp deletion and +7 ∼ +43 bp insertions of direct repeat sequences. Combined with the analysis of transcriptomics and prediction of secondary structure of single-stranded DNA from InDels core region (No. 832 ∼ 915 bp) in hisD3052 gene of TA98 strain, ultrasound-mediated "thermal breathing" mechanism was proposed based on the formation of DNA hairpin structure with micro-homologous sequence. This finding implied that low-intensity ultrasound is expected to be developed a new low-lethal mutagenic technology for continuous mutagenesis.
Collapse
Affiliation(s)
- Yunliang Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Siyu Ruan
- College of Tea and Food Science Technology, Jiangsu Polytechnic College of Agriculture and Forestry, 19 Wenchangdong Road, Jurong, Jiangsu 212400, PR China.
| | - Feng Lu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Pengfei Xie
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Xiaoshuang Liu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
8
|
Chevigny N, Weber-Lotfi F, Le Blevenec A, Nadiras C, Fertet A, Bichara M, Erhardt M, Dietrich A, Raynaud C, Gualberto JM. RADA-dependent branch migration has a predominant role in plant mitochondria and its defect leads to mtDNA instability and cell cycle arrest. PLoS Genet 2022; 18:e1010202. [PMID: 35550632 PMCID: PMC9129000 DOI: 10.1371/journal.pgen.1010202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/24/2022] [Accepted: 04/14/2022] [Indexed: 12/21/2022] Open
Abstract
Mitochondria of flowering plants have large genomes whose structure and segregation are modulated by recombination activities. The post-synaptic late steps of mitochondrial DNA (mtDNA) recombination are still poorly characterized. Here we show that RADA, a plant ortholog of bacterial RadA/Sms, is an organellar protein that drives the major branch-migration pathway of plant mitochondria. While RadA/Sms is dispensable in bacteria, RADA-deficient Arabidopsis plants are severely impacted in their development and fertility, correlating with increased mtDNA recombination across intermediate-size repeats and accumulation of recombination-generated mitochondrial subgenomes. The radA mutation is epistatic to recG1 that affects the additional branch migration activity. In contrast, the double mutation radA recA3 is lethal, underlining the importance of an alternative RECA3-dependent pathway. The physical interaction of RADA with RECA2 but not with RECA3 further indicated that RADA is required for the processing of recombination intermediates in the RECA2-depedent recombination pathway of plant mitochondria. Although RADA is dually targeted to mitochondria and chloroplasts we found little to no effects of the radA mutation on the stability of the plastidial genome. Finally, we found that the deficient maintenance of the mtDNA in radA apparently triggers a retrograde signal that activates nuclear genes repressing cell cycle progression. In flowering plants, the mitochondrial genome is very large and dynamic, and its stability influences plant fitness and development. Rearrangements by recombination drive its very rapid evolution and can lead to valuable agronomic traits such as cytoplasmic sterility, used by breeders for the production of hybrid seeds. Here we describe RADA, a DNA helicase essential for the stability of the mitochondrial DNA in Arabidopsis. We demonstrate that RADA has branch migrating activity, accelerating the processing of recombination intermediates. radA mutants are severely affected in development and fertility. They display mitochondrial genome instability that results in uncoordinated replication of subgenomes created by recombination. Furthermore, we found that an important component of the growth defects of radA mutants is apparently a cellular response triggered by the sensing of damages to the mitochondrial genome, resulting in the activation of genes that suppress the progression of the cell cycle. Our results underline the importance of better understanding the plant mitochondrial recombination pathways and their cross-talk with nuclear gene expression.
Collapse
Affiliation(s)
- Nicolas Chevigny
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Frédérique Weber-Lotfi
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Anaïs Le Blevenec
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Cédric Nadiras
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Arnaud Fertet
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Marc Bichara
- Biotechnologie et Signalisation Cellulaire, CNRS, Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Mathieu Erhardt
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - André Dietrich
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Cécile Raynaud
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - José M. Gualberto
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
- * E-mail:
| |
Collapse
|
9
|
Zaworski J, Dagva O, Brandt J, Baum C, Ettwiller L, Fomenkov A, Raleigh EA. Reassembling a cannon in the DNA defense arsenal: Genetics of StySA, a BREX phage exclusion system in Salmonella lab strains. PLoS Genet 2022; 18:e1009943. [PMID: 35377874 PMCID: PMC9009780 DOI: 10.1371/journal.pgen.1009943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/14/2022] [Accepted: 03/01/2022] [Indexed: 11/18/2022] Open
Abstract
Understanding mechanisms that shape horizontal exchange in prokaryotes is a key problem in biology. A major limit on DNA entry is imposed by restriction-modification (RM) processes that depend on the pattern of DNA modification at host-specified sites. In classical RM, endonucleolytic DNA cleavage follows detection of unprotected sites on entering DNA. Recent investigation has uncovered BREX (BacteRiophage EXclusion) systems. These RM-like activities employ host protection by DNA modification, but immediate replication arrest occurs without evident of nuclease action on unmodified phage DNA. Here we show that the historical stySA RM locus of Salmonella enterica sv Typhimurium is a variant BREX system. A laboratory strain disabled for both the restriction and methylation activity of StySA nevertheless has wild type sequence in pglX, the modification gene homolog. Instead, flanking genes pglZ and brxC each carry multiple mutations (μ) in their C-terminal domains. We further investigate this system in situ, replacing the mutated pglZμ and brxCμ genes with the WT counterpart. PglZ-WT supports methylation in the presence of either BrxCμ or BrxC-WT but not in the presence of a deletion/insertion allele, ΔbrxC::cat. Restriction requires both BrxC-WT and PglZ-WT, implicating the BrxC C-terminus specifically in restriction activity. These results suggests that while BrxC, PglZ and PglX are principal components of the BREX modification activity, BrxL is required for restriction only. Furthermore, we show that a partial disruption of brxL disrupts transcription globally. Horizontal gene transfer is a major driver of evolution and adaptation in bacteria. Genes from outside may be beneficial or dangerous to the receiving cell. Benefits include new food sources such as sugars, or new homes by adhesion, or new resistances, as to antibiotics. Dangers are posed by bacteriophages--viruses that take over the cell machinery, multiply, and release progeny to kill sister cells. Host-dependent restriction-modification systems enable defense that distinguishes relatives from strangers: using a modification pattern (M) carried by DNA bases added by the host cell to prevent restriction (R). Sisters and cousin cells will have the same protective pattern on DNA, while DNA of foreign origin will have the wrong M pattern and be restricted (R, rejected). Typically, restriction involves nuclease digestion. Here we address the enigmatic StySA RM system, one of the earliest to be genetically characterized. It is a variant of the newly recognized defense mechanism, BREX. BREX systems also track DNA history via modification pattern, but restrict by a novel, uncharacterized mechanism. Like other BREX family systems, StySA-BREX modification requires multiple components. When StySA-BREX transcription is unbalanced, we find global disruption of gene transcription. The disruption pattern does not suggest SOS-inducing damage to DNA.
Collapse
Affiliation(s)
- Julie Zaworski
- Research Department, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Oyut Dagva
- Research Department, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Julius Brandt
- Research Department, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Chloé Baum
- Research Department, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Laurence Ettwiller
- Research Department, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Alexey Fomenkov
- Research Department, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Elisabeth A. Raleigh
- Research Department, New England Biolabs, Ipswich, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
10
|
Bonde NJ, Romero ZJ, Chitteni-Pattu S, Cox MM. RadD is a RecA-dependent accessory protein that accelerates DNA strand exchange. Nucleic Acids Res 2022; 50:2201-2210. [PMID: 35150260 PMCID: PMC8887467 DOI: 10.1093/nar/gkac041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/11/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023] Open
Abstract
In rapidly growing cells, with recombinational DNA repair required often and a new replication fork passing every 20 min, the pace of RecA-mediated DNA strand exchange is potentially much too slow for bacterial DNA metabolism. The enigmatic RadD protein, a putative SF2 family helicase, exhibits no independent helicase activity on branched DNAs. Instead, RadD greatly accelerates RecA-mediated DNA strand exchange, functioning only when RecA protein is present. The RadD reaction requires the RadD ATPase activity, does not require an interaction with SSB, and may disassemble RecA filaments as it functions. We present RadD as a new class of enzyme, an accessory protein that accelerates DNA strand exchange, possibly with a helicase-like action, in a reaction that is entirely RecA-dependent. RadD is thus a DNA strand exchange (recombination) synergist whose primary function is to coordinate closely with and accelerate the DNA strand exchange reactions promoted by the RecA recombinase. Multiple observations indicate a uniquely close coordination of RadD with RecA function.
Collapse
Affiliation(s)
- Nina J Bonde
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Zachary J Romero
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
11
|
The rarA gene as part of an expanded RecFOR recombination pathway: Negative epistasis and synthetic lethality with ruvB, recG, and recQ. PLoS Genet 2021; 17:e1009972. [PMID: 34936656 PMCID: PMC8735627 DOI: 10.1371/journal.pgen.1009972] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/06/2022] [Accepted: 12/01/2021] [Indexed: 11/19/2022] Open
Abstract
The RarA protein, homologous to human WRNIP1 and yeast MgsA, is a AAA+ ATPase and one of the most highly conserved DNA repair proteins. With an apparent role in the repair of stalled or collapsed replication forks, the molecular function of this protein family remains obscure. Here, we demonstrate that RarA acts in late stages of recombinational DNA repair of post-replication gaps. A deletion of most of the rarA gene, when paired with a deletion of ruvB or ruvC, produces a growth defect, a strong synergistic increase in sensitivity to DNA damaging agents, cell elongation, and an increase in SOS induction. Except for SOS induction, these effects are all suppressed by inactivating recF, recO, or recJ, indicating that RarA, along with RuvB, acts downstream of RecA. SOS induction increases dramatically in a rarA ruvB recF/O triple mutant, suggesting the generation of large amounts of unrepaired ssDNA. The rarA ruvB defects are not suppressed (and in fact slightly increased) by recB inactivation, suggesting RarA acts primarily downstream of RecA in post-replication gaps rather than in double strand break repair. Inactivating rarA, ruvB and recG together is synthetically lethal, an outcome again suppressed by inactivation of recF, recO, or recJ. A rarA ruvB recQ triple deletion mutant is also inviable. Together, the results suggest the existence of multiple pathways, perhaps overlapping, for the resolution or reversal of recombination intermediates created by RecA protein in post-replication gaps within the broader RecF pathway. One of these paths involves RarA.
Collapse
|
12
|
Phylogenetic Diversity of Lhr Proteins and Biochemical Activities of the Thermococcales aLhr2 DNA/RNA Helicase. Biomolecules 2021; 11:biom11070950. [PMID: 34206878 PMCID: PMC8301817 DOI: 10.3390/biom11070950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Helicase proteins are known to use the energy of ATP to unwind nucleic acids and to remodel protein-nucleic acid complexes. They are involved in almost every aspect of DNA and RNA metabolisms and participate in numerous repair mechanisms that maintain cellular integrity. The archaeal Lhr-type proteins are SF2 helicases that are mostly uncharacterized. They have been proposed to be DNA helicases that act in DNA recombination and repair processes in Sulfolobales and Methanothermobacter. In Thermococcales, a protein annotated as an Lhr2 protein was found in the network of proteins involved in RNA metabolism. To investigate this, we performed in-depth phylogenomic analyses to report the classification and taxonomic distribution of Lhr-type proteins in Archaea, and to better understand their relationship with bacterial Lhr. Furthermore, with the goal of envisioning the role(s) of aLhr2 in Thermococcales cells, we deciphered the enzymatic activities of aLhr2 from Thermococcus barophilus (Tbar). We showed that Tbar-aLhr2 is a DNA/RNA helicase with a significant annealing activity that is involved in processes dependent on DNA and RNA transactions.
Collapse
|
13
|
Mechanistic insights into Lhr helicase function in DNA repair. Biochem J 2021; 477:2935-2947. [PMID: 32706021 PMCID: PMC7437997 DOI: 10.1042/bcj20200379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022]
Abstract
The DNA helicase Large helicase-related (Lhr) is present throughout archaea, including in the Asgard and Nanoarchaea, and has homologues in bacteria and eukaryotes. It is thought to function in DNA repair but in a context that is not known. Our data show that archaeal Lhr preferentially targets DNA replication fork structures. In a genetic assay, expression of archaeal Lhr gave a phenotype identical to the replication-coupled DNA repair enzymes Hel308 and RecQ. Purified archaeal Lhr preferentially unwound model forked DNA substrates compared with DNA duplexes, flaps and Holliday junctions, and unwound them with directionality. Single-molecule FRET measurements showed that binding of Lhr to a DNA fork causes ATP-independent distortion and base-pair melting at, or close to, the fork branchpoint. ATP-dependent directional translocation of Lhr resulted in fork DNA unwinding through the ‘parental’ DNA strands. Interaction of Lhr with replication forks in vivo and in vitro suggests that it contributes to DNA repair at stalled or broken DNA replication.
Collapse
|
14
|
Torres R, Serrano E, Alonso JC. Bacillus subtilis RecA interacts with and loads RadA/Sms to unwind recombination intermediates during natural chromosomal transformation. Nucleic Acids Res 2019; 47:9198-9215. [PMID: 31350886 PMCID: PMC6755099 DOI: 10.1093/nar/gkz647] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/03/2019] [Accepted: 07/15/2019] [Indexed: 02/01/2023] Open
Abstract
During natural transformation Bacillus subtilis RecA, polymerized onto the incoming single-stranded (ss) DNA, catalyses DNA strand invasion resulting in a displacement loop (D-loop) intermediate. A null radA mutation impairs chromosomal transformation, and RadA/Sms unwinds forked DNA in the 5′→3′ direction. We show that in the absence of RadA/Sms competent cells require the RecG translocase for natural chromosomal transformation. RadA/Sms tetracysteine motif (C13A and C13R) variants, which fail to interact with RecA, are also deficient in plasmid transformation, but this defect is suppressed by inactivating recA. The RadA/Sms C13A and C13R variants bind ssDNA, and this interaction stimulates their ATPase activity. Wild-type (wt) RadA/Sms interacts with and inhibits the ATPase activity of RecA, but RadA/Sms C13A fails to do it. RadA/Sms and its variants, C13A and C13R, bound to the 5′-tail of a DNA substrate, unwind DNA in the 5′→3′ direction. RecA interacts with and loads wt RadA/Sms to promote unwinding of a non-cognate 3′-tailed or 5′-fork DNA substrate, but RadA/Sms C13A or C13R fail to do it. We propose that wt RadA/Sms interaction with RecA is crucial to recruit the former onto D-loop DNA, and both proteins in concert catalyse D-loop extension to favour integration of ssDNA during chromosomal transformation.
Collapse
Affiliation(s)
- Rubén Torres
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 28049 Madrid, Spain
| | - Ester Serrano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 28049 Madrid, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 28049 Madrid, Spain
- To whom correspondence should be addressed. Tel: +34 91585 4546; Fax: +34 91585 4506;
| |
Collapse
|
15
|
Buljubašić M, Hlevnjak A, Repar J, Đermić D, Filić V, Weber I, Zahradka K, Zahradka D. RecBCD- RecFOR-independent pathway of homologous recombination in Escherichia coli. DNA Repair (Amst) 2019; 83:102670. [PMID: 31378505 DOI: 10.1016/j.dnarep.2019.102670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 10/26/2022]
Abstract
The RecA protein is a key bacterial recombination enzyme that catalyzes pairing and strand exchange between homologous DNA duplexes. In Escherichia coli, RecA protein assembly on DNA is mediated either by the RecBCD or RecFOR protein complexes. Correspondingly, two recombination pathways, RecBCD and RecF (or RecFOR), are distinguished in E. coli. Inactivation of both pathways in recB(CD) recF(OR) mutants results in severe recombination deficiency. Here we describe a novel, RecBCD- RecFOR-independent (RecBFI) recombination pathway that is active in ΔrecBCD sbcB15 sbcC(D) ΔrecF(OR) mutants of E. coli. In transductional crosses, these mutants show only four-fold decrease of recombination frequency relative to the wild-type strain. At the same time they recombine 40- to 90-fold better than their sbcB+ sbcC+ and ΔsbcB sbcC counterparts. The RecBFI pathway strongly depends on recA, recJ and recQ gene functions, and moderately depends on recG and lexA functions. Inactivation of dinI, helD, recX, recN, radA, ruvABC and uvrD genes has a slight effect on RecBFI recombination. After exposure to UV and gamma irradiation, the ΔrecBCD sbcB15 sbcC ΔrecF mutants show moderately increased DNA repair proficiency relative to their sbcB+ sbcC+ and ΔsbcB sbcC counterparts. However, introduction of recA730 allele (encoding RecA protein with enhanced DNA binding properties) completely restores repair proficiency to ΔrecBCD sbcB15 sbcC ΔrecF mutants, but not to their sbcB+ sbcC+ and ΔsbcB sbcC derivatives. Fluorescence microscopy with UV-irradiated recA-gfp fusion mutants suggests that the kinetics of RecA filament formation might be slowed down in the RecBFI pathway. Inactivation of 3'-5' exonucleases ExoVII, ExoIX and ExoX cannot activate the RecBFI pathway in ΔrecBCD ΔsbcB sbcC ΔrecF mutants. Taken together, our results show that the product of the sbcB15 allele is crucial for RecBFI pathway. Besides protecting 3' overhangs, SbcB15 protein might play an additional, more active role in formation of the RecA filament.
Collapse
Affiliation(s)
- Maja Buljubašić
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ana Hlevnjak
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Jelena Repar
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Damir Đermić
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Vedrana Filić
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ksenija Zahradka
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Davor Zahradka
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.
| |
Collapse
|
16
|
Abstract
Bacteria frequently encounter low concentrations of antibiotics. Active antibiotics are commonly detected in soil and water at concentrations much below lethal concentration. Although sub-MICs of antibiotics do not kill bacteria, they can have a major impact on bacterial populations by contributing to the development of antibiotic resistance through mutations in originally sensitive bacteria or acquisition of DNA from resistant bacteria. It was shown that concentrations as low as 100-fold below the MIC can actually lead to the selection of antibiotic-resistant cells. We seek to understand how bacterial cells react to such antibiotic concentrations using E. coli, the Gram-negative bacterial paradigm, and V. cholerae, the causative agent of cholera. Our findings shed light on the processes triggered at the DNA level by antibiotics targeting translation, how damage occurs, and what the bacterial strategies are to respond to such DNA damage. We have previously identified Vibrio cholerae mutants in which the stress response to subinhibitory concentrations of aminoglycoside is altered. One gene identified, VC1636, encodes a putative DNA/RNA helicase, recently named RadD in Escherichia coli. Here we combined extensive genetic characterization and high-throughput approaches in order to identify partners and molecular mechanisms involving RadD. We show that double-strand DNA breaks (DSBs) are formed upon subinhibitory tobramycin treatment in the absence of radD and recBCD and that formation of these DSBs can be overcome by RNase H1 overexpression. Loss of RNase H1, or of the transcription-translation coupling factor EF-P, is lethal in the radD deletion mutant. We propose that R-loops are formed upon sublethal aminoglycoside treatment, leading to the formation of DSBs that can be repaired by the RecBCD homologous recombination pathway, and that RadD counteracts such R-loop accumulation. We discuss how R-loops that can occur upon translation-transcription uncoupling could be the link between tobramycin treatment and DNA break formation.
Collapse
|
17
|
Torres R, Serrano E, Tramm K, Alonso JC. Bacillus subtilis RadA/Sms contributes to chromosomal transformation and DNA repair in concert with RecA and circumvents replicative stress in concert with DisA. DNA Repair (Amst) 2019; 77:45-57. [PMID: 30877841 DOI: 10.1016/j.dnarep.2019.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/15/2019] [Accepted: 03/03/2019] [Indexed: 01/01/2023]
Abstract
Bacillus subtilis radA is epistatic to disA and recA genes in response to methyl methane sulfonate- and 4-nitroquinoline-1-oxide-induced DNA damage. We show that ΔradA cells were sensitive to mitomycin C- and H2O2-induced damage and impaired in natural chromosomal transformation, whereas cells lacking DisA were not. RadA/Sms mutants in the conserved H1 (K104A and K104R) or KNRFG (K255A and K255R) motifs fail to rescue the sensitivity of ΔradA in response to the four different DNA damaging agents. A RadA/Sms H1 or KNRFG mutation impairs both chromosomal and plasmid transformation, but the latter defect was suppressed by inactivating RecA. RadA/Sms K255A, K255R and wild type RadA/Sms reduced the diadenylate cyclase activity of DisA, whereas RadA/Sms K104A and K104R blocked it. Single-stranded and Holliday junction DNA are preferentially bound over double-stranded DNA by RadA/Sms and its variants. Moreover, RadA/Sms ATPase activity was neither stimulated by a variety of DNA substrates nor by DisA. RadA/Sms possesses a 5´→3´ DNA helicase activity. The RadA/Sms mutants neither hydrolyze ATP nor unwind DNA. Thus, we propose that RadA/Sms has two activities: to modulate DisA and to promote RecA-mediated DNA strand exchange. Both activities are required to coordinate responses to replicative stress and genetic recombination.
Collapse
Affiliation(s)
- Rubén Torres
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Darwin Str. 3, 28049 Madrid, Spain
| | - Ester Serrano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Darwin Str. 3, 28049 Madrid, Spain
| | - Kristina Tramm
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Darwin Str. 3, 28049 Madrid, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Darwin Str. 3, 28049 Madrid, Spain.
| |
Collapse
|
18
|
Wang H, Zhang X, Wang X, Zhang B, Wang M, Yang X, Han X, Wang R, Ren S, Hu Y, Liu J. Comprehensive Analysis of the Global Protein Changes That Occur During Salivary Gland Degeneration in Female Ixodid Ticks Haemaphysalis longicornis. Front Physiol 2019; 9:1943. [PMID: 30723423 PMCID: PMC6349780 DOI: 10.3389/fphys.2018.01943] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/22/2018] [Indexed: 01/07/2023] Open
Abstract
Ticks are notorious blood-sucking arthropods that can spread a variety of pathogens and cause great harm to the health of humans, wildlife and domestic animals. The salivary glands of female ticks degenerate rapidly when the ticks reach critical weight or become engorged, which can be caused by hormones and by the synergistic effects of multiple proteins. To explore the complex molecular mechanisms of salivary gland degeneration in ticks, this study applies iTRAQ quantitative proteomic technology for the first time to study changes in protein expression in the salivary glands of female Haemaphysalis longicornis during the process of degeneration and to search for proteins that play an important role in salivary gland degeneration. It was found that the expression of some proteins associated with energy production was continuously down-regulated during salivary gland degeneration, while some proteins associated with DNA or protein degradation were consistently up-regulated. Furthermore, the expression of some proteins related to cell apoptosis or autophagy was also changed. These proteins were knocked down by RNAi to observe the phenotypic and physiological changes in female ticks. The results showed that the time required for engorgement and the mortality rates of the female ticks increased after RNAi of F0F1-type ATP synthase, NADH-ubiquinone oxidoreductase, cytochrome C, or apoptosis-inducing factor (AIF). The corresponding engorged weights, oviposition amounts, and egg hatching rates of the female ticks decreased after RNAi. Interference of the expression of AIF in engorged ticks by RNAi showed that the degeneration of salivary glands of female ticks was slowed down.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiaoli Zhang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiao Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Baowen Zhang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Minjing Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiaolong Yang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xuying Han
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Rui Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Shuguang Ren
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuhong Hu
- Instrumental Analysis Center, Hebei Normal University, Shijiazhuang, China
| | - Jingze Liu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
19
|
Hutinet G, Besle A, Son O, McGovern S, Guerois R, Petit MA, Ochsenbein F, Lecointe F. Sak4 of Phage HK620 Is a RecA Remote Homolog With Single-Strand Annealing Activity Stimulated by Its Cognate SSB Protein. Front Microbiol 2018; 9:743. [PMID: 29740405 PMCID: PMC5928155 DOI: 10.3389/fmicb.2018.00743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/29/2018] [Indexed: 12/19/2022] Open
Abstract
Bacteriophages are remarkable for the wide diversity of proteins they encode to perform DNA replication and homologous recombination. Looking back at these ancestral forms of life may help understanding how similar proteins work in more sophisticated organisms. For instance, the Sak4 family is composed of proteins similar to the archaeal RadB protein, a Rad51 paralog. We have previously shown that Sak4 allowed single-strand annealing in vivo, but only weakly compared to the phage λ Redβ protein, highlighting putatively that Sak4 requires partners to be efficient. Here, we report that the purified Sak4 of phage HK620 infecting Escherichia coli is a poorly efficient annealase on its own. A distant homolog of SSB, which gene is usually next to the sak4 gene in various species of phages, highly stimulates its recombineering activity in vivo. In vitro, Sak4 binds single-stranded DNA and performs single-strand annealing in an ATP-dependent way. Remarkably, the single-strand annealing activity of Sak4 is stimulated by its cognate SSB. The last six C-terminal amino acids of this SSB are essential for the binding of Sak4 to SSB-covered single-stranded DNA, as well as for the stimulation of its annealase activity. Finally, expression of sak4 and ssb from HK620 can promote low-level of recombination in vivo, though Sak4 and its SSB are unable to promote strand exchange in vitro. Regarding its homology with RecA, Sak4 could represent a link between two previously distinct types of recombinases, i.e., annealases that help strand exchange proteins and strand exchange proteins themselves.
Collapse
Affiliation(s)
- Geoffrey Hutinet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Arthur Besle
- Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Olivier Son
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Stephen McGovern
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Raphaël Guerois
- Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Marie-Agnès Petit
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Françoise Ochsenbein
- Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - François Lecointe
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
20
|
Stuart MK, Hudman DA, Nachtrab SN, Hiatt JL, Seo J, Pullen SJ, Sargentini NJ. Fine Epitope Mapping of Monoclonal Antibodies to the DNA Repair Protein, RadA. Monoclon Antib Immunodiagn Immunother 2017; 36:83-94. [PMID: 28581365 DOI: 10.1089/mab.2017.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Repair of DNA damage is vital to the health and survival of all organisms. In Escherichia coli, a protein known as RadA (or Sms) participates in recombinational repair, a process that uses an undamaged DNA strand in one DNA duplex to fill a gap in a homologous DNA strand in a sister DNA duplex. In a prior report, we described the production of monoclonal antibodies (MAbs) specific for RadA. Here, we investigated the epitopes recognized by two of the antibodies, MAbs 6F5 and 2A2. Premature stop codons (ochre mutations) were introduced into the radA gene at selected sites, and the truncated RadA proteins were probed by western blotting. Deletion of as few as four amino acids (457-460) from the C-terminus of RadA significantly increased the sensitivity of E. coli to ultraviolet (UV) radiation and abolished recognition of RadA by MAb 6F5. Single alanine substitutions made between positions 443-460 also adversely affected the ability of MAb 6F5 to bind to RadA, further supporting the idea that MAb 6F5 is specific for the RadA C-terminus. An ochre mutation at position 258 abolished the recognition of RadA by MAb 2A2, whereas an ochre mutation at position 279 did not, suggesting that MAb 2A2 binds to an epitope between residues 258 and 279. MAb 2A2 recognition of RadA was destroyed by endoproteinase glu-C cleavage of RadA at position 266, and by a single alanine substitution at position 265. In a competitive enzyme-linked immunosorbent assay (ELISA), a synthetic peptide comprising residues 263-273 of RadA blocked MAb 2A2 recognition of immobilized full-length RadA by more than 97%. We infer from our results that MAb 6F5 binds to the extreme C-terminus of RadA and that MAb 2A2 is specific for an epitope within positions 263-273.
Collapse
Affiliation(s)
- Melissa K Stuart
- 1 Department of Microbiology/Immunology, Kirksville College of Osteopathic Medicine, A.T. Still University , Kirksville, Missouri
| | - Deborah A Hudman
- 1 Department of Microbiology/Immunology, Kirksville College of Osteopathic Medicine, A.T. Still University , Kirksville, Missouri
| | - Stephanie N Nachtrab
- 1 Department of Microbiology/Immunology, Kirksville College of Osteopathic Medicine, A.T. Still University , Kirksville, Missouri
| | - Jacob L Hiatt
- 2 Lakeland Regional Medical Center , Saint Joseph, Michigan
| | - Jin Seo
- 3 Truman State University , Kirksville, Missouri
| | | | - Neil J Sargentini
- 1 Department of Microbiology/Immunology, Kirksville College of Osteopathic Medicine, A.T. Still University , Kirksville, Missouri
| |
Collapse
|
21
|
Bacterial RadA is a DnaB-type helicase interacting with RecA to promote bidirectional D-loop extension. Nat Commun 2017; 8:15638. [PMID: 28561029 PMCID: PMC5512693 DOI: 10.1038/ncomms15638] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/11/2017] [Indexed: 12/19/2022] Open
Abstract
Homologous recombination (HR) is a central process of genome biology driven by a conserved recombinase, which catalyses the pairing of single-stranded DNA (ssDNA) with double-stranded DNA to generate a D-loop intermediate. Bacterial RadA is a conserved HR effector acting with RecA recombinase to promote ssDNA integration. The mechanism of this RadA-mediated assistance to RecA is unknown. Here, we report functional and structural analyses of RadA from the human pathogen Streptococcus pneumoniae. RadA is found to facilitate RecA-driven ssDNA recombination over long genomic distances during natural transformation. RadA is revealed as a hexameric DnaB-type helicase, which interacts with RecA to promote orientated unwinding of branched DNA molecules mimicking D-loop boundaries. These findings support a model of DNA branch migration in HR, relying on RecA-mediated loading of RadA hexamers on each strand of the recipient dsDNA in the D-loop, from which they migrate divergently to facilitate incorporation of invading ssDNA. Bacterial homologous recombination involves the actions of RadA and RecA to promote single-stranded DNA integration. Here the authors report the structure of RadA from Streptococcus pneumoniae and demonstrate that it acts as a hexameric DnaB-type helicase.
Collapse
|
22
|
Inoue M, Fukui K, Fujii Y, Nakagawa N, Yano T, Kuramitsu S, Masui R. The Lon protease-like domain in the bacterial RecA paralog RadA is required for DNA binding and repair. J Biol Chem 2017; 292:9801-9814. [PMID: 28432121 DOI: 10.1074/jbc.m116.770180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/16/2017] [Indexed: 11/06/2022] Open
Abstract
Homologous recombination (HR) plays an essential role in the maintenance of genome integrity. RecA/Rad51 paralogs have been recognized as an important factor of HR. Among them, only one bacterial RecA/Rad51 paralog, RadA, is involved in HR as an accessory factor of RecA recombinase. RadA has a unique Lon protease-like domain (LonC) at its C terminus, in addition to a RecA-like ATPase domain. Unlike Lon protease, RadA's LonC domain does not show protease activity but is still essential for RadA-mediated DNA repair. Reconciling these two facts has been difficult because RadA's tertiary structure and molecular function are unknown. Here, we describe the hexameric ring structure of RadA's LonC domain, as determined by X-ray crystallography. The structure revealed the two positively charged regions unique to the LonC domain of RadA are located at the intersubunit cleft and the central hole of a hexameric ring. Surprisingly, a functional domain analysis demonstrated the LonC domain of RadA binds DNA, with site-directed mutagenesis showing that the two positively charged regions are critical for this DNA-binding activity. Interestingly, only the intersubunit cleft was required for the DNA-dependent stimulation of ATPase activity of RadA, and at least the central hole was essential for DNA repair function. Our data provide the structural and functional features of the LonC domain and their function in RadA-mediated DNA repair.
Collapse
Affiliation(s)
- Masao Inoue
- From the Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043
| | - Kenji Fukui
- the Department of Biochemistry, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686
| | - Yuki Fujii
- the Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, and
| | - Noriko Nakagawa
- From the Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043
| | - Takato Yano
- the Department of Biochemistry, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686
| | - Seiki Kuramitsu
- From the Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043
| | - Ryoji Masui
- the Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
23
|
Nisa-Martínez R, Molina-Sánchez MD, Toro N. Host Factors Influencing the Retrohoming Pathway of Group II Intron RmInt1, Which Has an Intron-Encoded Protein Naturally Devoid of Endonuclease Activity. PLoS One 2016; 11:e0162275. [PMID: 27588750 PMCID: PMC5010178 DOI: 10.1371/journal.pone.0162275] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 08/21/2016] [Indexed: 11/21/2022] Open
Abstract
Bacterial group II introns are self-splicing catalytic RNAs and mobile retroelements that have an open reading frame encoding an intron-encoded protein (IEP) with reverse transcriptase (RT) and RNA splicing or maturase activity. Some IEPs carry a DNA endonuclease (En) domain, which is required to cleave the bottom strand downstream from the intron-insertion site for target DNA-primed reverse transcription (TPRT) of the inserted intron RNA. Host factors complete the insertion of the intron. By contrast, the major retrohoming pathway of introns with IEPs naturally lacking endonuclease activity, like the Sinorhizobium meliloti intron RmInt1, is thought to involve insertion of the intron RNA into the template for lagging strand DNA synthesis ahead of the replication fork, with possible use of the nascent strand to prime reverse transcription of the intron RNA. The host factors influencing the retrohoming pathway of such introns have not yet been described. Here, we identify key candidates likely to be involved in early and late steps of RmInt1 retrohoming. Some of these host factors are common to En+ group II intron retrohoming, but some have different functions. Our results also suggest that the retrohoming process of RmInt1 may be less dependent on the intracellular free Mg2+ concentration than those of other group II introns.
Collapse
Affiliation(s)
- Rafael Nisa-Martínez
- Structure, Dynamics and Function of Rhizobacterial Genomes, Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Calle Profesor Albareda 1, 18008, Granada, Spain
| | - María Dolores Molina-Sánchez
- Structure, Dynamics and Function of Rhizobacterial Genomes, Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Calle Profesor Albareda 1, 18008, Granada, Spain
| | - Nicolás Toro
- Structure, Dynamics and Function of Rhizobacterial Genomes, Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Calle Profesor Albareda 1, 18008, Granada, Spain
- * E-mail:
| |
Collapse
|
24
|
De Novo Characterization of Genes That Contribute to High-Level Ciprofloxacin Resistance in Escherichia coli. Antimicrob Agents Chemother 2016; 60:6353-5. [PMID: 27431218 DOI: 10.1128/aac.00889-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/06/2016] [Indexed: 01/07/2023] Open
Abstract
Sensitization of resistant bacteria to existing antibiotics depends on the identification of candidate targets whose activities contribute to resistance. Using a transposon insertion library in an Escherichia coli mutant that was 2,000 times less susceptible to ciprofloxacin than its parent and the relative fitness scores, we identified 19 genes that contributed to the acquired ciprofloxacin resistance and mapped the shortest genetic path that increased the antibiotic susceptibility of the resistant bacteria back to a near wild-type level.
Collapse
|
25
|
Hoff G, Bertrand C, Piotrowski E, Thibessard A, Leblond P. Implication of RuvABC and RecG in homologous recombination in Streptomyces ambofaciens. Res Microbiol 2016; 168:26-35. [PMID: 27424811 DOI: 10.1016/j.resmic.2016.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/04/2016] [Accepted: 07/04/2016] [Indexed: 10/21/2022]
Abstract
Most bacterial organisms rely on homologous recombination to repair DNA double-strand breaks and for the post-replicative repair of DNA single-strand gaps. Homologous recombination can be divided into three steps: (i) a pre-synaptic step in which the DNA 3'-OH ends are processed, (ii) a recA-dependent synaptic step allowing the invasion of an intact copy and the formation of Holliday junctions, and (iii) a post-synaptic step consisting of migration and resolution of these junctions. Currently, little is known about factors involved in homologous recombination, especially for the post-synaptic step. In Escherichia coli, branch migration and resolution are performed by the RuvABC complex, but could also rely on the RecG helicase in a redundant manner. In this study, we show that recG and ruvABC are well-conserved among Streptomyces. ΔruvABC, ΔrecG and ΔruvABC ΔrecG mutant strains were constructed. ΔruvABC ΔrecG is only slightly affected by exposure to DNA damage (UV). We also show that conjugational recombination decreases in the absence of RuvABC and RecG, but that intra-chromosomal recombination is not affected. These data suggest that RuvABC and RecG are indeed involved in homologous recombination in Streptomyces ambofaciens and that alternative factors are able to take over Holliday junction in Streptomyces.
Collapse
Affiliation(s)
- Grégory Hoff
- Université de Lorraine, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France; INRA, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France.
| | - Claire Bertrand
- Université de Lorraine, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France; INRA, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France.
| | - Emilie Piotrowski
- Université de Lorraine, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France; INRA, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France.
| | - Annabelle Thibessard
- Université de Lorraine, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France; INRA, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France.
| | - Pierre Leblond
- Université de Lorraine, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France; INRA, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France.
| |
Collapse
|
26
|
Lloyd RG, Rudolph CJ. 25 years on and no end in sight: a perspective on the role of RecG protein. Curr Genet 2016; 62:827-840. [PMID: 27038615 PMCID: PMC5055574 DOI: 10.1007/s00294-016-0589-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/02/2016] [Indexed: 11/27/2022]
Abstract
The RecG protein of Escherichia coli is a double-stranded DNA translocase that unwinds a variety of branched substrates in vitro. Although initially associated with homologous recombination and DNA repair, studies of cells lacking RecG over the past 25 years have led to the suggestion that the protein might be multi-functional and associated with a number of additional cellular processes, including initiation of origin-independent DNA replication, the rescue of stalled or damaged replication forks, replication restart, stationary phase or stress-induced 'adaptive' mutations and most recently, naïve adaptation in CRISPR-Cas immunity. Here we discuss the possibility that many of the phenotypes of recG mutant cells that have led to this conclusion may stem from a single defect, namely the failure to prevent re-replication of the chromosome. We also present data indicating that this failure does indeed contribute substantially to the much-reduced recovery of recombinants in conjugational crosses with strains lacking both RecG and the RuvABC Holliday junction resolvase.
Collapse
Affiliation(s)
- Robert G Lloyd
- Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Christian J Rudolph
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK.
| |
Collapse
|
27
|
Ezraty B, Barras F. The ‘liaisons dangereuses’ between iron and antibiotics. FEMS Microbiol Rev 2016; 40:418-35. [DOI: 10.1093/femsre/fuw004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2016] [Indexed: 12/15/2022] Open
|
28
|
Cooper DL, Lovett ST. Recombinational branch migration by the RadA/Sms paralog of RecA in Escherichia coli. eLife 2016; 5. [PMID: 26845522 PMCID: PMC4786428 DOI: 10.7554/elife.10807] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/03/2016] [Indexed: 12/31/2022] Open
Abstract
RadA (also known as 'Sms') is a highly conserved protein, found in almost all eubacteria and plants, with sequence similarity to the RecA strand exchange protein and a role in homologous recombination. We investigate here the biochemical properties of the E. coli RadA protein and several mutant forms. RadA is a DNA-dependent ATPase, a DNA-binding protein and can stimulate the branch migration phase of RecA-mediated strand transfer reactions. RadA cannot mediate synaptic pairing between homologous DNA molecules but can drive branch migration to extend the region of heteroduplex DNA, even without RecA. Unlike other branch migration factors RecG and RuvAB, RadA stimulates branch migration within the context of the RecA filament, in the direction of RecA-mediated strand exchange. We propose that RadA-mediated branch migration aids recombination by allowing the 3’ invading strand to be incorporated into heteroduplex DNA and to be extended by DNA polymerases. DOI:http://dx.doi.org/10.7554/eLife.10807.001 Damage to the DNA of a cell can cause serious harm, and so cells have several ways in which they can repair DNA. Most of these processes rely on the fact that each of the two strands that make up a DNA molecule can be used as a template to build the other strand. However, this is not possible if both strands of the DNA break in the same place. This form of damage can be repaired in a process called homologous recombination, which uses an identical copy of the broken DNA molecule to repair the broken strands. As a result, this process can only occur during cell division shortly after a cell has duplicated its DNA. One important step of homologous recombination is called strand exchange. This involves one of the broken strands swapping places with part of the equivalent strand in the intact DNA molecule. To do so, the strands of the intact DNA molecule separate in the region that will be used for the repair, and the broken strand can then use the other non-broken DNA strand as a template to replace any missing sections of DNA. The region of the intact DNA molecule where the strands need to separate often grows during this process: this is known as branch migration. In bacteria, a protein called RecA plays a fundamental role in controlling strand exchange, but there are other, similar proteins whose roles in homologous recombination are less well known. Cooper and Lovett have now purified one of these proteins, called RadA, from the Escherichia coli species of bacteriato study how it affects homologous recombination. This revealed that RadA can bind to single-stranded DNA and stimulate branch migration to increase the rate of homologous recombination. Further investigation revealed that RadA allows branch migration to occur even when RecA is missing, but that RadA is unable to begin strand exchange if RecA is not present. The process of branch migration stabilizes the DNA molecules during homologous recombination and may also allow the repaired DNA strand to engage the machinery that copies DNA. Cooper and Lovett also used genetic techniques to alter the structure of specific regions of RadA and found out which parts of the protein affect the ability of RadA to stimulate branch migration. Future challenges are to find out what effect RadA has on the structure of RecA and how RadA promotes branch migration. DOI:http://dx.doi.org/10.7554/eLife.10807.002
Collapse
Affiliation(s)
- Deani L Cooper
- Department of Biology, Brandeis University, Waltham, United States.,Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, United States
| | - Susan T Lovett
- Department of Biology, Brandeis University, Waltham, United States.,Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, United States
| |
Collapse
|
29
|
Watanabe K, Tominaga K, Kitamura M, Kato JI. Systematic identification of synthetic lethal mutations with reduced-genome Escherichia coli: synthetic genetic interactions among yoaA, xthA and holC related to survival from MMS exposure. Genes Genet Syst 2016; 91:183-188. [DOI: 10.1266/ggs.15-00068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Keisuke Watanabe
- Department of Biological Sciences, Graduate Schools of Science and Engineering, Tokyo Metropolitan University
| | - Kento Tominaga
- Department of Biological Sciences, Graduate Schools of Science and Engineering, Tokyo Metropolitan University
| | - Maiko Kitamura
- Department of Biological Sciences, Graduate Schools of Science and Engineering, Tokyo Metropolitan University
| | - Jun-ichi Kato
- Department of Biological Sciences, Graduate Schools of Science and Engineering, Tokyo Metropolitan University
| |
Collapse
|
30
|
Ithurbide S, Bentchikou E, Coste G, Bost B, Servant P, Sommer S. Single Strand Annealing Plays a Major Role in RecA-Independent Recombination between Repeated Sequences in the Radioresistant Deinococcus radiodurans Bacterium. PLoS Genet 2015; 11:e1005636. [PMID: 26517555 PMCID: PMC4627823 DOI: 10.1371/journal.pgen.1005636] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/08/2015] [Indexed: 11/18/2022] Open
Abstract
The bacterium Deinococcus radiodurans is one of the most radioresistant organisms known. It is able to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Our work aims to highlight the genes involved in recombination between 438 bp direct repeats separated by intervening sequences of various lengths ranging from 1,479 bp to 10,500 bp to restore a functional tetA gene in the presence or absence of radiation-induced DNA double strand breaks. The frequency of spontaneous deletion events between the chromosomal direct repeats were the same in recA+ and in ΔrecA, ΔrecF, and ΔrecO bacteria, whereas recombination between chromosomal and plasmid DNA was shown to be strictly dependent on the RecA and RecF proteins. The presence of mutations in one of the repeated sequence reduced, in a MutS-dependent manner, the frequency of the deletion events. The distance between the repeats did not influence the frequencies of deletion events in recA+ as well in ΔrecA bacteria. The absence of the UvrD protein stimulated the recombination between the direct repeats whereas the absence of the DdrB protein, previously shown to be involved in DNA double strand break repair through a single strand annealing (SSA) pathway, strongly reduces the frequency of RecA- (and RecO-) independent deletions events. The absence of the DdrB protein also increased the lethal sectoring of cells devoid of RecA or RecO protein. γ-irradiation of recA+ cells increased about 10-fold the frequencies of the deletion events, but at a lesser extend in cells devoid of the DdrB protein. Altogether, our results suggest a major role of single strand annealing in DNA repeat deletion events in bacteria devoid of the RecA protein, and also in recA+ bacteria exposed to ionizing radiation. Deinococcus radiodurans is known for its exceptional ability to tolerate exposure to DNA damaging agents and, in particular, to very high doses of ionizing radiation. This exceptional radioresistance results from many features including efficient DNA double strand break repair. Here, we examine genome stability in D. radiodurans before and after exposure to ionizing radiation. Rearrangements between repeated sequences are a major source of genome instability and can be deleterious to the organism. Thus, we measured the frequency of recombination between direct repeats separated by intervening sequences of various lengths in the presence or absence of radiation-induced DNA double strand breaks. Strikingly, we showed that the frequency of deletions was as high in strains devoid of the RecA, RecF or RecO proteins as in wild type bacteria, suggesting a very efficient RecA-independent process able to generate genome rearrangements. Our results suggest that single strand annealing may play a major role in genome instability in the absence of homologous recombination.
Collapse
Affiliation(s)
- Solenne Ithurbide
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette, France
| | - Esma Bentchikou
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette, France
| | - Geneviève Coste
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette, France
| | - Bruno Bost
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette, France
| | - Pascale Servant
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette, France
| | - Suzanne Sommer
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette, France
- * E-mail:
| |
Collapse
|