1
|
Boorman J, Zeng X, Lin J, van den Akker F. Structural insights into peptidoglycan glycosidase EtgA binding to the inner rod protein EscI of the type III secretion system via a designed EscI-EtgA fusion protein. Protein Sci 2024; 33:e4930. [PMID: 38380768 PMCID: PMC10880428 DOI: 10.1002/pro.4930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/22/2024]
Abstract
Bacteria express lytic enzymes such as glycosidases, which have potentially self-destructive peptidoglycan (PG)-degrading activity and, therefore, require careful regulation in bacteria. The PG glycosidase EtgA is regulated by localization to the assembling type III secretion system (T3SS), generating a hole in the PG layer for the T3SS to reach the outer membrane. The EtgA localization was found to be mediated via EtgA interacting with the T3SS inner rod protein EscI. To gain structural insights into the EtgA recognition of EscI, we determined the 2.01 Å resolution structure of an EscI (51-87)-linker-EtgA fusion protein designed based on AlphaFold2 predictions. The structure revealed EscI residues 72-87 forming an α-helix interacting with the backside of EtgA, distant from the active site. EscI residues 56-71 also were found to interact with EtgA, with these residues stretching across the EtgA surface. The ability of the EscI to interact with EtgA was also probed using an EscI peptide. The EscI peptide comprising residues 66-87, slightly larger than the observed EscI α-helix, was shown to bind to EtgA using microscale thermophoresis and thermal shift differential scanning fluorimetry. The EscI peptide also had a two-fold activity-enhancing effect on EtgA, whereas the EscI-EtgA fusion protein enhanced activity over four-fold compared to EtgA. Our studies suggest that EtgA regulation by EscI could be trifold involving protein localization, protein activation, and protein stabilization components. Analysis of the sequence conservation of the EscI EtgA interface residues suggested a possible conservation of such regulation for related proteins from different bacteria.
Collapse
Affiliation(s)
- J. Boorman
- Department of BiochemistryCase Western Reserve UniversityClevelandOhioUSA
| | - X. Zeng
- Department of Animal ScienceUniversity of TennesseeKnoxvilleTennesseeUSA
| | - J. Lin
- Department of Animal ScienceUniversity of TennesseeKnoxvilleTennesseeUSA
| | - F. van den Akker
- Department of BiochemistryCase Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
2
|
Bcr4 Is a Chaperone for the Inner Rod Protein in the Bordetella Type III Secretion System. Microbiol Spectr 2022; 10:e0144322. [PMID: 36040173 PMCID: PMC9603008 DOI: 10.1128/spectrum.01443-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bordetella bronchiseptica injects virulence proteins called effectors into host cells via a type III secretion system (T3SS) conserved among many Gram-negative bacteria. Small proteins called chaperones are required to stabilize some T3SS components or localize them to the T3SS machinery. In a previous study, we identified a chaperone-like protein named Bcr4 that regulates T3SS activity in B. bronchiseptica. Bcr4 does not show strong sequence similarity to well-studied T3SS proteins of other bacteria, and its function remains to be elucidated. Here, we investigated the mechanism by which Bcr4 controls T3SS activity. A pulldown assay revealed that Bcr4 interacts with BscI, based on its homology to other bacterial proteins, to be an inner rod protein of the T3SS machinery. An additional pulldown assay using truncated Bcr4 derivatives and secretion profiles of B. bronchiseptica producing truncated Bcr4 derivatives showed that the Bcr4 C-terminal region is necessary for the interaction with BscI and activation of the T3SS. Moreover, the deletion of BscI abolished the secretion of type III secreted proteins from B. bronchiseptica and the translocation of a cytotoxic effector into cultured mammalian cells. Finally, we show that BscI is unstable in the absence of Bcr4. These results suggest that Bcr4 supports the construction of the T3SS machinery by stabilizing BscI. This is the first demonstration of a chaperone for the T3SS inner rod protein among the virulence bacteria possessing the T3SS. IMPORTANCE The type III secretion system (T3SS) is a needle-like complex that projects outward from bacterial cells. Bordetella bronchiseptica uses the T3SS to inject virulence proteins into host cells. Our previous study reported that a protein named Bcr4 is essential for the secretion of virulence proteins from B. bronchiseptica bacterial cells and delivery through the T3SS. Because other bacteria lack a Bcr4 homologue, the function of Bcr4 has not been elucidated. In this study, we discovered that Bcr4 interacts with BscI, a component of the T3SS machinery. We show that a B. bronchiseptica BscI-deficient strain was unable to secrete type III secreted proteins. Furthermore, in a B. bronchiseptica strain that overproduces T3SS component proteins, Bcr4 is required to maintain BscI in bacterial cells. These results suggest that Bcr4 stabilizes BscI to allow construction of the T3SS in B. bronchiseptica.
Collapse
|
3
|
Horna G, Ruiz J. Type 3 secretion system of Pseudomonas aeruginosa. Microbiol Res 2021; 246:126719. [PMID: 33582609 DOI: 10.1016/j.micres.2021.126719] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 12/27/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen, mainly affecting severe patients, such as those in intensive care units (ICUs). High levels of antibiotic resistance and a long battery of virulence factors characterise this pathogen. Among virulence factors, the T3SS (Type 3 Secretion Systems) are especially relevant, being one of the most important virulence factors in P. aeruginosa. T3SS are a complex "molecular syringe" able to inject different effectors in host cells, subverting cell machinery influencing immune responses, and increasing bacterial survival rates. While T3SS have been largely studied and the molecular structure and main effector functions have been established, a series of questions and further points remain to be clarified or established. The key role of T3SS in P. aeruginosa virulence has resulted in the search for T3SS-targeting molecules able to impair their functions and subsequently improve patient outcomes. This review aims to summarise the most relevant features of the P. aeruginosa T3SS.
Collapse
Affiliation(s)
- Gertrudis Horna
- Universidad Catolica Los Angeles de Chimbote, Instituto de Investigación, Chimbote, Peru.
| | - Joaquim Ruiz
- Laboratorio de Microbiología Molecular y Genómica Bacteriana, Universidad Científica del Sur, Panamericana Sur, Km 19, Lima, Peru.
| |
Collapse
|
4
|
Torres‐Vargas CE, Kronenberger T, Roos N, Dietsche T, Poso A, Wagner S. The inner rod of virulence‐associated type III secretion systems constitutes a needle adapter of one helical turn that is deeply integrated into the system's export apparatus. Mol Microbiol 2019; 112:918-931. [DOI: 10.1111/mmi.14327] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Claudia E. Torres‐Vargas
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT) University of Tübingen Elfriede‐Aulhorn‐Str. 6Tübingen 72076Germany
| | - Thales Kronenberger
- Department of Internal Medicine VIII University Hospital Tübingen Otfried‐Müller‐Str. 14Tübingen 72076Germany
- School of Pharmacy University of Eastern Finland P.O. Box 1627Kuopio 70211Finland
| | - Nora Roos
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT) University of Tübingen Elfriede‐Aulhorn‐Str. 6Tübingen 72076Germany
| | - Tobias Dietsche
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT) University of Tübingen Elfriede‐Aulhorn‐Str. 6Tübingen 72076Germany
| | - Antti Poso
- Department of Internal Medicine VIII University Hospital Tübingen Otfried‐Müller‐Str. 14Tübingen 72076Germany
- School of Pharmacy University of Eastern Finland P.O. Box 1627Kuopio 70211Finland
| | - Samuel Wagner
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT) University of Tübingen Elfriede‐Aulhorn‐Str. 6Tübingen 72076Germany
- Partner‐Site Tübingen German Center for Infection Research (DZIF) Elfriede‐Aulhorn‐Str. 6Tübingen 72076Germany
| |
Collapse
|
5
|
Grandjean T, Boucher A, Thepaut M, Monlezun L, Guery B, Faudry E, Kipnis E, Dessein R. The human NAIP-NLRC4-inflammasome senses the Pseudomonas aeruginosa T3SS inner-rod protein. Int Immunol 2018; 29:377-384. [PMID: 28992059 DOI: 10.1093/intimm/dxx047] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 08/26/2017] [Indexed: 12/12/2022] Open
Abstract
While NLRC4-dependent sensing of intracellular Gram-negative pathogens such as Salmonella enterica serovar typhimurium is a beneficial host response, NLRC4-dependent sensing of the Pseudomonas aeruginosa type 3 secretion system (T3SS) has been shown to be involved in pathogenicity. In mice, different pathogen-associated microbial patterns are sensed by the combination of the NLRC4-inflammasome with different neuronal apoptosis inhibitory proteins (NAIPs). NAIP2 is involved in sensing PscI, an inner-rod protein of the P. aeruginosa T3SS. Surprisingly, only a single human NAIP (hNAIP) has been found. Moreover, there is no description of hNAIP-NLRC4 inflammasome recognition of T3SS inner-rod proteins in humans. Here, we show that the P. aeruginosa T3SS inner-rod protein PscI and needle protein PscF are both sensed by the hNAIP-NLRC4 inflammasome in human macrophages and PBMCs from healthy donors, allowing caspase-1 and IL-1β maturation and resulting in a robust inflammatory response. TLR4 and TLR2 are involved in redundantly sensing these two T3SS components.
Collapse
Affiliation(s)
- Teddy Grandjean
- EA 7366, Host-Pathogens Translational Research Group, Faculty of Medicine of Lille, University of Lille Nord de France, F-59000 Lille, France
| | - Anne Boucher
- EA 7366, Host-Pathogens Translational Research Group, Faculty of Medicine of Lille, University of Lille Nord de France, F-59000 Lille, France
| | - Marion Thepaut
- EA 7366, Host-Pathogens Translational Research Group, Faculty of Medicine of Lille, University of Lille Nord de France, F-59000 Lille, France
| | - Laura Monlezun
- Université Grenoble Alpes, F-38041 Grenoble, France.,CNRS, Bacterial Pathogenesis and Cellular Responses, ERL 5261, F-38054 Grenoble, France.,INSERM, UMR-S 1036, Biology of Cancer and Infection, F-38054 Grenoble, France.,CEA, DSV/iRTSV, F-38054 Grenoble, France
| | - Benoit Guery
- EA 7366, Host-Pathogens Translational Research Group, Faculty of Medicine of Lille, University of Lille Nord de France, F-59000 Lille, France.,Infectious Diseases Service, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Eric Faudry
- Université Grenoble Alpes, F-38041 Grenoble, France.,CNRS, Bacterial Pathogenesis and Cellular Responses, ERL 5261, F-38054 Grenoble, France.,INSERM, UMR-S 1036, Biology of Cancer and Infection, F-38054 Grenoble, France.,CEA, DSV/iRTSV, F-38054 Grenoble, France
| | - Eric Kipnis
- EA 7366, Host-Pathogens Translational Research Group, Faculty of Medicine of Lille, University of Lille Nord de France, F-59000 Lille, France
| | - Rodrigue Dessein
- EA 7366, Host-Pathogens Translational Research Group, Faculty of Medicine of Lille, University of Lille Nord de France, F-59000 Lille, France.,Microbiological Institute, Center of Biology and Pathology, Teaching University Hospital of Lille, Univ Lille Nord de France, F-59000 Lille, France
| |
Collapse
|
6
|
A Naturally Occurring Deletion in FliE from Salmonella enterica Serovar Dublin Results in an Aflagellate Phenotype and Defective Proinflammatory Properties. Infect Immun 2017; 86:IAI.00517-17. [PMID: 29061704 DOI: 10.1128/iai.00517-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/10/2017] [Indexed: 01/28/2023] Open
Abstract
Salmonella enterica serovar Dublin is adapted to cattle but is able to infect humans with high invasiveness. An acute inflammatory response at the intestine helps to prevent Salmonella dissemination to systemic sites. Flagella contribute to this response by providing motility and FliC-mediated signaling through pattern recognition receptors. In a previous work, we reported a high frequency (11 out of 25) of S Dublin isolates lacking flagella in a collection obtained from humans and cattle. The aflagellate strains were impaired in their proinflammatory properties in vitro and in vivo The aim of this work was to elucidate the underlying cause of the absence of flagella in S Dublin isolates. We report here that class 3 flagellar genes are repressed in the human aflagellate isolates, due to impaired secretion of FliA anti-sigma factor FlgM. This phenotype is due to an in-frame 42-nucleotide deletion in the fliE gene, which codes for a protein located in the flagellar basal body. The deletion is predicted to produce a protein lacking amino acids 18 to 31. The aflagellate phenotype was highly stable; revertants were obtained only when fliA was artificially overexpressed combined with several successive passages in motility agar. DNA sequence analysis revealed that motile revertants resulted from duplications of DNA sequences in fliE adjacent to the deleted region. These duplications produced a FliE protein of similar length to the wild type and demonstrate that amino acids 18 to 31 of FliE are not essential. The same deletion was detected in S Dublin isolates obtained from cattle, indicating that this mutation circulates in nature.
Collapse
|
7
|
Basso P, Wallet P, Elsen S, Soleilhac E, Henry T, Faudry E, Attrée I. Multiple Pseudomonas species secrete exolysin-like toxins and provoke Caspase-1-dependent macrophage death. Environ Microbiol 2017; 19:4045-4064. [PMID: 28654176 DOI: 10.1111/1462-2920.13841] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/02/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022]
Abstract
Pathogenic bacteria secrete protein toxins that provoke apoptosis or necrosis of eukaryotic cells. Here, we developed a live-imaging method, based on incorporation of a DNA-intercalating dye into membrane-damaged host cells, to study the kinetics of primary bone marrow-derived macrophages (BMDMs) mortality induced by opportunistic pathogen Pseudomonas aeruginosa expressing either Type III Secretion System (T3SS) toxins or the pore-forming toxin, Exolysin (ExlA). We found that ExlA promotes the activation of Caspase-1 and maturation of interleukin-1β. BMDMs deficient for Caspase-1 and Caspase-11 were resistant to ExlA-induced death. Furthermore, by using KO BMDMs, we determined that the upstream NLRP3/ASC complex leads to the Caspase-1 activation. We also demonstrated that Pseudomonas putida and Pseudomonas protegens and the Drosophila pathogen Pseudomonas entomophila, which naturally express ExlA-like toxins, are cytotoxic toward macrophages and provoke the same type of pro-inflammatory death as does ExlA+ P. aeruginosa. These results demonstrate that ExlA-like toxins of two-partner secretion systems from diverse Pseudomonas species activate the NLRP3 inflammasome and provoke inflammatory pyroptotic death of macrophages.
Collapse
Affiliation(s)
- Pauline Basso
- CNRS-ERL5261, INSERM, U1036, CEA, Bacterial Pathogenesis and Cellular Responses, Biosciences and Biotechnology Institute of Grenoble, University Grenoble Alpes, France
| | - Pierre Wallet
- CIRI, Centre International de Recherche en Infectiologie, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, F-69007, France
| | - Sylvie Elsen
- CNRS-ERL5261, INSERM, U1036, CEA, Bacterial Pathogenesis and Cellular Responses, Biosciences and Biotechnology Institute of Grenoble, University Grenoble Alpes, France
| | - Emmanuelle Soleilhac
- CMBA Platform, Biosciences and Biotechnology Institute of Grenoble, University Grenoble Alpes, CEA, INSERM; Genetics & Chemogenomics, France
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, F-69007, France
| | - Eric Faudry
- CNRS-ERL5261, INSERM, U1036, CEA, Bacterial Pathogenesis and Cellular Responses, Biosciences and Biotechnology Institute of Grenoble, University Grenoble Alpes, France
| | - Ina Attrée
- CNRS-ERL5261, INSERM, U1036, CEA, Bacterial Pathogenesis and Cellular Responses, Biosciences and Biotechnology Institute of Grenoble, University Grenoble Alpes, France
| |
Collapse
|
8
|
Cao SY, Liu WB, Tan YF, Yang HY, Zhang TT, Wang T, Wang XY, Song YJ, Yang RF, Du ZM. An Interaction between the Inner Rod Protein YscI and the Needle Protein YscF Is Required to Assemble the Needle Structure of the Yersinia Type Three Secretion System. J Biol Chem 2017; 292:5488-5498. [PMID: 28196868 DOI: 10.1074/jbc.m116.743591] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 02/09/2017] [Indexed: 11/06/2022] Open
Abstract
The type III secretion system is a highly conserved virulence mechanism that is widely distributed in Gram-negative bacteria. It has a syringe-like structure composed of a multi-ring basal body that spans the bacterial envelope and a projecting needle that delivers virulence effectors into host cells. Here, we showed that the Yersinia inner rod protein YscI directly interacts with the needle protein YscF inside the bacterial cells and that this interaction depends on amino acid residues 83-102 in the carboxyl terminus of YscI. Alanine substitution of Trp-85 or Ser-86 abrogated the binding of YscI to YscF as well as needle assembly and the secretion of effectors (Yops) and the needle tip protein LcrV. However, yscI null mutants that were trans-complemented with YscI mutants that bind YscF still assembled the needle and secreted Yops, demonstrating that a direct interaction between YscF and YscI is critical for these processes. Consistently, YscI mutants that did not bind YscF resulted in greatly decreased HeLa cell cytotoxicity. Together, these results show that YscI participates in needle assembly by directly interacting with YscF.
Collapse
Affiliation(s)
- Shi-Yang Cao
- From the State Key laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Wan-Bin Liu
- From the State Key laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Ya-Fang Tan
- From the State Key laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Hui-Ying Yang
- From the State Key laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Ting-Ting Zhang
- From the State Key laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Tong Wang
- From the State Key laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiao-Yi Wang
- From the State Key laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Ya-Jun Song
- From the State Key laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Rui-Fu Yang
- From the State Key laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Zong-Min Du
- From the State Key laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| |
Collapse
|
9
|
Portaliou AG, Tsolis KC, Loos MS, Zorzini V, Economou A. Type III Secretion: Building and Operating a Remarkable Nanomachine. Trends Biochem Sci 2016; 41:175-189. [DOI: 10.1016/j.tibs.2015.09.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 12/21/2022]
|
10
|
Biochemical Characterization of the Flagellar Rod Components of Rhodobacter sphaeroides: Properties and Interactions. J Bacteriol 2015; 198:544-52. [PMID: 26574514 DOI: 10.1128/jb.00836-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/12/2015] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED The flagellar basal body is a rotary motor that spans the cytoplasmic and outer membranes. The rod is a drive shaft that transmits torque generated by the motor through the hook to the filament that propels the bacterial cell. The assembly and structure of the rod are poorly understood. In a first attempt to characterize this structure in the alphaproteobacterium Rhodobacter sphaeroides, we overexpressed and purified FliE and the four related rod proteins (FlgB, FlgC, FlgF, and FlgG), and we analyzed their ability to form homo-oligomers. We found that highly purified preparations of these proteins formed high-molecular-mass oligomers that tended to dissociate in the presence of NaCl. As predicted by in silico modeling, the four rod proteins share architectural features. Using affinity blotting, we detected the heteromeric interactions between these proteins. In addition, we observed that deletion of the N- and C-terminal regions of FlgF and FlgG severely affected heteromeric but not homomeric interactions. On the basis of our findings, we propose a model of rod assembly in this bacterium. IMPORTANCE Despite the considerable amount of research on the structure and assembly of other flagellar axial structures that has been conducted, the rod has been barely studied. An analysis of the biochemical characteristics of the flagellar rod components of the Fla1 system of R. sphaeroides is presented in this work. We also analyze the interactions of these proteins with each other and with their neighbors, and we propose a model for the order in which they are assembled.
Collapse
|