1
|
Acosta-Zaldívar M, Qi W, Mishra A, Roy U, King WR, Li Y, Patton-Vogt J, Anderson MZ, Köhler JR. Candida albicans' inorganic phosphate transport and evolutionary adaptation to phosphate scarcity. PLoS Genet 2024; 20:e1011156. [PMID: 39137212 PMCID: PMC11343460 DOI: 10.1371/journal.pgen.1011156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/23/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024] Open
Abstract
Phosphorus is essential in all cells' structural, metabolic and regulatory functions. For fungal cells that import inorganic phosphate (Pi) up a steep concentration gradient, surface Pi transporters are critical capacitators of growth. Fungi must deploy Pi transporters that enable optimal Pi uptake in pH and Pi concentration ranges prevalent in their environments. Single, triple and quadruple mutants were used to characterize the four Pi transporters we identified for the human fungal pathogen Candida albicans, which must adapt to alkaline conditions during invasion of the host bloodstream and deep organs. A high-affinity Pi transporter, Pho84, was most efficient across the widest pH range while another, Pho89, showed high-affinity characteristics only within one pH unit of neutral. Two low-affinity Pi transporters, Pho87 and Fgr2, were active only in acidic conditions. Only Pho84 among the Pi transporters was clearly required in previously identified Pi-related functions including Target of Rapamycin Complex 1 signaling, oxidative stress resistance and hyphal growth. We used in vitro evolution and whole genome sequencing as an unbiased forward genetic approach to probe adaptation to prolonged Pi scarcity of two quadruple mutant lineages lacking all 4 Pi transporters. Lineage-specific genomic changes corresponded to divergent success of the two lineages in fitness recovery during Pi limitation. Initial, large-scale genomic alterations like aneuploidies and loss of heterozygosity eventually resolved, as populations gained small-scale mutations. Severity of some phenotypes linked to Pi starvation, like cell wall stress hypersensitivity, decreased in parallel to evolving populations' fitness recovery in Pi scarcity, while severity of others like membrane stress responses diverged from Pi scarcity fitness. Among preliminary candidate genes for contributors to fitness recovery, those with links to TORC1 were overrepresented. Since Pi homeostasis differs substantially between fungi and humans, adaptive processes to Pi deprivation may harbor small-molecule targets that impact fungal growth, stress resistance and virulence.
Collapse
Affiliation(s)
- Maikel Acosta-Zaldívar
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | - Wanjun Qi
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | - Abhishek Mishra
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Udita Roy
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | - William R. King
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Yuping Li
- Department of Microbiology and Immunology, University of California, San Francisco, California, United States of America
| | - Jana Patton-Vogt
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Matthew Z. Anderson
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medical Genetics, Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Julia R. Köhler
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
2
|
Acosta-Zaldívar M, Qi W, Mishra A, Roy U, King WR, Patton-Vogt J, Anderson MZ, Köhler JR. Candida albicans' inorganic phosphate transport and evolutionary adaptation to phosphate scarcity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577887. [PMID: 38352318 PMCID: PMC10862840 DOI: 10.1101/2024.01.29.577887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Phosphorus is essential in all cells' structural, metabolic and regulatory functions. For fungal cells that import inorganic phosphate (Pi) up a steep concentration gradient, surface Pi transporters are critical capacitators of growth. Fungi must deploy Pi transporters that enable optimal Pi uptake in pH and Pi concentration ranges prevalent in their environments. Single, triple and quadruple mutants were used to characterize the four Pi transporters we identified for the human fungal pathogen Candida albicans, which must adapt to alkaline conditions during invasion of the host bloodstream and deep organs. A high-affinity Pi transporter, Pho84, was most efficient across the widest pH range while another, Pho89, showed high-affinity characteristics only within one pH unit of neutral. Two low-affinity Pi transporters, Pho87 and Fgr2, were active only in acidic conditions. Only Pho84 among the Pi transporters was clearly required in previously identified Pi-related functions including Target of Rapamycin Complex 1 signaling and hyphal growth. We used in vitro evolution and whole genome sequencing as an unbiased forward genetic approach to probe adaptation to prolonged Pi scarcity of two quadruple mutant lineages lacking all 4 Pi transporters. Lineage-specific genomic changes corresponded to divergent success of the two lineages in fitness recovery during Pi limitation. In this process, initial, large-scale genomic alterations like aneuploidies and loss of heterozygosity were eventually lost as populations presumably gained small-scale mutations. Severity of some phenotypes linked to Pi starvation, like cell wall stress hypersensitivity, decreased in parallel to evolving populations' fitness recovery in Pi scarcity, while that of others like membrane stress responses diverged from these fitness phenotypes. C. albicans therefore has diverse options to reconfigure Pi management during prolonged scarcity. Since Pi homeostasis differs substantially between fungi and humans, adaptive processes to Pi deprivation may harbor small-molecule targets that impact fungal growth and virulence.
Collapse
Affiliation(s)
- Maikel Acosta-Zaldívar
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, MA 02115, USA
- Current affiliation: Planasa, Valladolid, Spain
| | - Wanjun Qi
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, MA 02115, USA
| | - Abhishek Mishra
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI
| | - Udita Roy
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, MA 02115, USA
| | - William R. King
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Jana Patton-Vogt
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Matthew Z. Anderson
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI
- Department of Medical Genetics, Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI
| | - Julia R. Köhler
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
King WR, Acosta-Zaldívar M, Qi W, Cherico N, Cooke L, Köhler JR, Patton-Vogt J. Glycerophosphocholine provision rescues Candida albicans growth and signaling phenotypes associated with phosphate limitation. mSphere 2023; 8:e0023123. [PMID: 37843297 PMCID: PMC10732039 DOI: 10.1128/msphere.00231-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023] Open
Abstract
IMPORTANCE Candida albicans is the most commonly isolated species from patients suffering from invasive fungal disease. C. albicans is most commonly a commensal organism colonizing a variety of niches in the human host. The fungus must compete for resources with the host flora to acquire essential nutrients such as phosphate. Phosphate acquisition and homeostasis have been shown to play a key role in C. albicans virulence, with several genes involved in these processes being required for normal virulence and several being upregulated during infection. In addition to inorganic phosphate (Pi), C. albicans can utilize the lipid-derived metabolite glycerophosphocholine (GPC) as a phosphate source. As GPC is available within the human host, we examined the role of GPC in phosphate homeostasis in C. albicans. We find that GPC can substitute for Pi by many though not all criteria and is likely a relevant physiological phosphate source for C. albicans.
Collapse
Affiliation(s)
- William R. King
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Maikel Acosta-Zaldívar
- Department of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Wanjun Qi
- Department of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Nicholas Cherico
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Lauren Cooke
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Julia R. Köhler
- Department of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Jana Patton-Vogt
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Bohner F, Papp C, Takacs T, Varga M, Szekeres A, Nosanchuk JD, Vágvölgyi C, Tóth R, Gacser A. Acquired Triazole Resistance Alters Pathogenicity-Associated Features in Candida auris in an Isolate-Dependent Manner. J Fungi (Basel) 2023; 9:1148. [PMID: 38132749 PMCID: PMC10744493 DOI: 10.3390/jof9121148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Fluconazole resistance is commonly encountered in Candida auris, and the yeast frequently displays resistance to other standard drugs, which severely limits the number of effective therapeutic agents against this emerging pathogen. In this study, we aimed to investigate the effect of acquired azole resistance on the viability, stress response, and virulence of this species. Fluconazole-, posaconazole-, and voriconazole- resistant strains were generated from two susceptible C. auris clinical isolates (0381, 0387) and compared under various conditions. Several evolved strains became pan-azole-resistant, as well as echinocandin-cross-resistant. While being pan-azole-resistant, the 0381-derived posaconazole-evolved strain colonized brain tissue more efficiently than any other strain, suggesting that fitness cost is not necessarily a consequence of resistance development in C. auris. All 0387-derived evolved strains carried a loss of function mutation (R160S) in BCY1, an inhibitor of the PKA pathway. Sequencing data also revealed that posaconazole treatment can result in ERG3 mutation in C. auris. Despite using the same mechanisms to generate the evolved strains, both genotype and phenotype analysis highlighted that the development of resistance was unique for each strain. Our data suggest that C. auris triazole resistance development is a highly complex process, initiated by several pleiotropic factors.
Collapse
Affiliation(s)
- Flora Bohner
- Department of Microbiology, University of Szeged, 6726 Szeged, Hungary; (F.B.); (C.P.); (T.T.); (M.V.); (A.S.); (C.V.)
| | - Csaba Papp
- Department of Microbiology, University of Szeged, 6726 Szeged, Hungary; (F.B.); (C.P.); (T.T.); (M.V.); (A.S.); (C.V.)
| | - Tamas Takacs
- Department of Microbiology, University of Szeged, 6726 Szeged, Hungary; (F.B.); (C.P.); (T.T.); (M.V.); (A.S.); (C.V.)
| | - Mónika Varga
- Department of Microbiology, University of Szeged, 6726 Szeged, Hungary; (F.B.); (C.P.); (T.T.); (M.V.); (A.S.); (C.V.)
| | - András Szekeres
- Department of Microbiology, University of Szeged, 6726 Szeged, Hungary; (F.B.); (C.P.); (T.T.); (M.V.); (A.S.); (C.V.)
| | - Joshua D. Nosanchuk
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA;
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Csaba Vágvölgyi
- Department of Microbiology, University of Szeged, 6726 Szeged, Hungary; (F.B.); (C.P.); (T.T.); (M.V.); (A.S.); (C.V.)
| | - Renáta Tóth
- Department of Microbiology, University of Szeged, 6726 Szeged, Hungary; (F.B.); (C.P.); (T.T.); (M.V.); (A.S.); (C.V.)
| | - Attila Gacser
- Department of Microbiology, University of Szeged, 6726 Szeged, Hungary; (F.B.); (C.P.); (T.T.); (M.V.); (A.S.); (C.V.)
- HCEMM-USZ Fungal Pathogens Research Group, Department of Microbiology, University of Szeged, 6726 Szeged, Hungary
- HUN-REN-USZ Pathomechanisms of Fungal Infections Research Group, University of Szeged, 6726 Szeged, Hungary
| |
Collapse
|
5
|
Khari A, Biswas B, Gangwar G, Thakur A, Puria R. Candida auris biofilm: a review on model to mechanism conservation. Expert Rev Anti Infect Ther 2023; 21:295-308. [PMID: 36755419 DOI: 10.1080/14787210.2023.2179036] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
INTRODUCTION Candida auris is included in the fungal infection category 'critical' by WHO because of associated high drug tolerance and spread at an alarming rate which if remains untouched may result in serious outbreaks. Since its discovery in 2009, several assiduous efforts by mycologists across the world have deciphered its biology including growth physiology, drug tolerance, biofilm formation, etc. The differential response of various strains from different clades poses a hurdle in drawing a final conclusion. AREAS COVERED This review provides brief insights into the understanding of C. auris biofilm. It includes information on various models developed to understand the biofilms and conservation of different signaling pathways. Significant development has been made in the recent past with the generation of relevant in vivo and ex vivo models. The role of signaling pathways in the development of biofilm is largely unknown. EXPERT OPINION The selection of an appropriate model system is a must for the accuracy and reproducibility of results. The conservation of major signaling pathways in C. auris with respect to C. albicans and S. cerevisiae highlights that initial inputs acquired from orthologs will be valuable in getting insights into the mechanism of biofilm formation and associated pathogenesis.
Collapse
Affiliation(s)
- Arsha Khari
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | | | | | - Anil Thakur
- Regional Centre for Biotechnology, Faridabad, India
| | - Rekha Puria
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| |
Collapse
|
6
|
Ménoret A, Agliano F, Karginov TA, Karlinsey KS, Zhou B, Vella AT. Antigen-specific downregulation of miR-150 in CD4 T cells promotes cell survival. Front Immunol 2023; 14:1102403. [PMID: 36817480 PMCID: PMC9936563 DOI: 10.3389/fimmu.2023.1102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
MicroRNA-150 (miR-150) has been shown to play a general role in the immune system, but very little is known about its role on CD4+ T cell responses. During T cell responses against superantigen Staphylococcal Enterotoxin A, miR-150 expression was down-regulated in antigen-specific CD4+ T cells but up-regulated in CD8+ T cells. CD4+ and CD8+ T cell clonal expansion was greater in miR-150-KO mice than in WT mice, but miR-150 selectively repressed IL-2 production in CD4+ T cells. Transcriptome analysis of CD4+ T cells demonstrated that apoptosis and mTOR pathways were highly enriched in the absence of miR-150. Mechanistic studies confirmed that miR-150 promoted apoptosis specifically in antigen-specific CD4+ T cells, but not in bystander CD4+ nor in CD8+ T cells. Furthermore, inhibition of mTOR-linked mitochondrial superoxidedismutase-2 increased apoptosis in miR-150-/- antigen-specific CD4+ T. Thus, miR-150 impacts CD4+ T cell helper activity by attenuating IL-2 production along with clonal expansion, and suppresses superoxidedismutase to promote apoptosis.
Collapse
Affiliation(s)
- Antoine Ménoret
- Department of Immunology, UConn Health, Farmington, CT, United States
| | | | | | | | | | - Anthony T. Vella
- Department of Immunology, UConn Health, Farmington, CT, United States
| |
Collapse
|
7
|
Transcriptomic changes in autophagy-related genes are inversely correlated with inflammation and are associated with multiple sclerosis lesion pathology. Brain Behav Immun Health 2022; 25:100510. [PMID: 36120103 PMCID: PMC9478930 DOI: 10.1016/j.bbih.2022.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/22/2022] [Accepted: 09/04/2022] [Indexed: 01/18/2023] Open
Abstract
Autophagy is a lysosomal degradative pathway essential for maintaining cellular homeostasis and is also implicated in multiple aspects of both innate and adaptive immunity. Neuroinflammation, along with demyelination and axonal loss, is an important component of multiple sclerosis (MS). Induction of autophagy ameliorated disease progression in experimental autoimmune encephalomyelitis (EAE), a mouse model for MS, underlying a possible link between autophagy and MS pathology. However, it is still unclear how autophagy is affected during different stages of MS. Here, we show a decreased expression of the autophagy-related (ATG) genes during the acute phase of EAE development in mice as well as in mixed active/inactive lesions of post-mortem human MS brain tissues. Using spatial transcriptomics, we observed that this decreased ATG gene expression is most prominent in the core of mixed active/inactive lesions. Furthermore, we observed a hyper-activation of the mammalian target of rapamycin complex 1 (mTORC1) in lesions, which could inhibit both the initiation of autophagy and the transcription factors that regulate the expression of the ATG genes. Thus, based on our data, we propose a negative regulation of autophagy in MS, possibly through persistent mTORC1 activation, which depends on the lesion stage. Our results contribute to the understanding of the role of autophagy in different stages of MS pathology and point to the mTORC1 pathway as a potential modulator that likely regulates central nervous system (CNS) homeostasis and neuroinflammation in MS. Autophagy is differently regulated in various EAE and MS stages. Expression of ATG genes inversely correlates with inflammation in EAE mice. ATG gene expression is decreased in mixed active/inactive brain lesions. Targeting mTORC1 may be a promising therapeutic target in MS pathology.
Collapse
|
8
|
Liu NN, Zhou J, Jiang T, Tarsio M, Yu F, Zheng X, Qi W, Liu L, Tan JC, Wei L, Ding J, Li J, Zeng L, Ren B, Huang X, Peng Y, Cao YB, Zhao Y, Zhang XY, Kane PM, Chen C, Wang H. A dual action small molecule enhances azoles and overcomes resistance through co-targeting Pdr5 and Vma1. Transl Res 2022; 247:39-57. [PMID: 35452875 DOI: 10.1016/j.trsl.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/26/2022] [Accepted: 04/12/2022] [Indexed: 11/19/2022]
Abstract
Fungal infection threatens human health worldwide due to the limited arsenal of antifungals and the rapid emergence of resistance. Epidermal growth factor receptor (EGFR) is demonstrated to mediate epithelial cell endocytosis of the leading human fungal pathogen, Candida albicans. However, whether EGFR inhibitors act on fungal cells remains unknown. Here, we discovered that the specific EGFR inhibitor osimertinib mesylate (OSI) potentiates azole efficacy against diverse fungal pathogens and overcomes azole resistance. Mechanistic investigation revealed a conserved activity of OSI by promoting intracellular fluconazole accumulation via inhibiting Pdr5 and disrupting V-ATPase function via targeting Vma1 at serine 274, eventually leading to inactivation of the global regulator TOR. Evaluation of the in vivo efficacy and toxicity of OSI demonstrated its potential clinical application in impeding fluconazole resistance. Thus, the identification of OSI as a dual action antifungal with co-targeting activity proposes a potentially effective therapeutic strategy to treat life-threatening fungal infection and overcome antifungal resistance.
Collapse
Affiliation(s)
- Ning-Ning Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jia Zhou
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tong Jiang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Maureen Tarsio
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Feifei Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Xuehan Zheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wanjun Qi
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA
| | - Lin Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-Cong Tan
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luqi Wei
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Ding
- Computational biology department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jingquan Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingbing Zeng
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, Sichuan, China
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Yibing Peng
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Faculty of Medical Laboratory Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong-Bing Cao
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai TCM-Integrated Institute of Vascular Disease, Shanghai, China
| | - Yanbin Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Xin-Yu Zhang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Changbin Chen
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Xu H, Fang B, Bao C, Mao X, Zhu C, Ye L, Liu Q, Li Y, Du C, Qi H, Zhang X, Guan Y. The Prostaglandin E2 Receptor EP4 Promotes Vascular Neointimal Hyperplasia through Translational Control of Tenascin C via the cAPM/PKA/mTORC1/rpS6 Pathway. Cells 2022; 11:cells11172720. [PMID: 36078128 PMCID: PMC9454981 DOI: 10.3390/cells11172720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/05/2022] Open
Abstract
Prostaglandin E2 (PGE2) is an important metabolite of arachidonic acid which plays a crucial role in vascular physiology and pathophysiology via its four receptors (EP1-4). However, the role of vascular smooth muscle cell (VSMC) EP4 in neointimal hyperplasia is largely unknown. Here we showed that VSMC-specific deletion of EP4 (VSMC-EP4) ameliorated, while VSMC-specific overexpression of human EP4 promoted, neointimal hyperplasia in mice subjected to femoral artery wire injury or carotid artery ligation. In vitro studies revealed that pharmacological activation of EP4 promoted, whereas inhibition of EP4 suppressed, proliferation and migration of primary-cultured VSMCs. Mechanically, EP4 significantly increased the protein expression of tenascin C (TN-C), a pro-proliferative and pro-migratory extracellular matrix protein, at the translational level. Knockdown of TN-C markedly suppressed EP4 agonist-induced VSMC proliferation and migration. Further studies uncovered that EP4 upregulated TN-C protein expression via the PKA/mTORC1/Ribosomal protein S6 (rpS6) pathway. Together, our findings demonstrate that VSMC EP4 increases TN-C protein expression to promote neointimal hyperplasia via the PKA-mTORC1-rpS6 pathway. Therefore, VSMC EP4 may represent a potential therapeutic target for vascular restenosis.
Collapse
Affiliation(s)
- Hu Xu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
| | - Bingying Fang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
| | - Chengzhen Bao
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
| | - Xiuhui Mao
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
| | - Chunhua Zhu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
| | - Lan Ye
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
| | - Qian Liu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
| | - Yaqing Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
| | - Chunxiu Du
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
| | - Hang Qi
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
| | - Xiaoyan Zhang
- Health Science Center, East China Normal University, Shanghai 200241, China
- Correspondence: (X.Z.); (Y.G.)
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116041, China
- Correspondence: (X.Z.); (Y.G.)
| |
Collapse
|
10
|
Chaillot J, Mallick J, Sellam A. The transcription factor Ahr1 links cell size control to amino acid metabolism in the opportunistic yeast Candida albicans. Biochem Biophys Res Commun 2022; 616:63-69. [DOI: 10.1016/j.bbrc.2022.05.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/21/2022] [Indexed: 11/17/2022]
|
11
|
Stress- and metabolic responses of Candida albicans require Tor1 kinase N-terminal HEAT repeats. PLoS Pathog 2022; 18:e1010089. [PMID: 35687592 PMCID: PMC9223334 DOI: 10.1371/journal.ppat.1010089] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 06/23/2022] [Accepted: 05/12/2022] [Indexed: 11/19/2022] Open
Abstract
Whether to commit limited cellular resources toward growth and proliferation, or toward survival and stress responses, is an essential determination made by Target of Rapamycin Complex 1 (TORC1) for a eukaryotic cell in response to favorable or adverse conditions. Loss of TORC1 function is lethal. The TORC1 inhibitor rapamycin that targets the highly conserved Tor kinase domain kills fungal pathogens like Candida albicans, but is also severely toxic to human cells. The least conserved region of fungal and human Tor kinases are the N-terminal HEAT domains. We examined the role of the 8 most N-terminal HEAT repeats of C. albicans Tor1. We compared nutritional- and stress responses of cells that express a message for N-terminally truncated Tor1 from repressible tetO, with cells expressing wild type TOR1 from tetO or from the native promoter. Some but not all stress responses were significantly impaired by loss of Tor1 N-terminal HEAT repeats, including those to oxidative-, cell wall-, and heat stress; in contrast, plasma membrane stress and antifungal agents that disrupt plasma membrane function were tolerated by cells lacking this Tor1 region. Translation was inappropriately upregulated during oxidative stress in cells lacking N-terminal Tor1 HEAT repeats despite simultaneously elevated Gcn2 activity, while activation of the oxidative stress response MAP kinase Hog1 was weak. Conversely, these cells were unable to take advantage of favorable nutritional conditions by accelerating their growth. Consuming oxygen more slowly than cells containing wild type TOR1 alleles during growth in glucose, cells lacking N-terminal Tor1 HEAT repeats additionally were incapable of utilizing non-fermentable carbon sources. They were also hypersensitive to inhibitors of specific complexes within the respiratory electron transport chain, suggesting that inefficient ATP generation and a resulting dearth of nucleotide sugar building blocks for cell wall polysaccharides causes cell wall integrity defects in these mutants. Genome-wide expression analysis of cells lacking N-terminal HEAT repeats showed dysregulation of carbon metabolism, cell wall biosynthetic enzymes, translational machinery biosynthesis, oxidative stress responses, and hyphal- as well as white-opaque cell type-associated genes. Targeting fungal-specific Tor1 N-terminal HEAT repeats with small molecules might selectively abrogate fungal viability, especially when during infection multiple stresses are imposed by the host immune system. Whether growing harmlessly on our mucous membranes in competition with bacterial multitudes, or invading our tissues and bloodstream, the fungus Candida albicans must be capable of rapid growth when it finds abundant nutrients and favorable conditions. It must also be able to switch to stress- and survival mode when encountering host immune cells and when starving for nutrients. Tor1 kinase is the central regulator at the heart of these cellular decisions. As an essential protein, it is an attractive drug target. But the Tor1 kinase domain is very similar to its human counterpart, rendering its inhibitors like rapamycin toxic for humans. We identified a region of helical protein-protein interaction domains, the N-terminal HEAT repeats, as the least conserved part of C. albicans Tor1. Using genetic- and genome-wide expression analysis, we found that 8 N-terminal HEAT repeats are required for growth acceleration in nutrient-rich environments and for decreased translation in starvation- and stress conditions. This Tor1 region contributes to oxidative-, cell wall- and heat stress reponses, to hyphal growth and to respiration, but apparently not to plasma membrane stress endurance or fermentation. Small molecules that disrupt the protein-protein interactions mediated by this region could become fungal-selective inhibitors of Tor kinase.
Collapse
|
12
|
Segreto R, Bazafkan H, Millinger J, Schenk M, Atanasova L, Doppler M, Büschl C, Boeckstaens M, Soto Diaz S, Schreiner U, Sillo F, Balestrini R, Schuhmacher R, Zeilinger S. The TOR kinase pathway is relevant for nitrogen signaling and antagonism of the mycoparasite Trichoderma atroviride. PLoS One 2022; 16:e0262180. [PMID: 34972198 PMCID: PMC8719763 DOI: 10.1371/journal.pone.0262180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/18/2021] [Indexed: 01/14/2023] Open
Abstract
Trichoderma atroviride (Ascomycota, Sordariomycetes) is a well-known mycoparasite applied for protecting plants against fungal pathogens. Its mycoparasitic activity involves processes shared with plant and human pathogenic fungi such as the production of cell wall degrading enzymes and secondary metabolites and is tightly regulated by environmental cues. In eukaryotes, the conserved Target of Rapamycin (TOR) kinase serves as a central regulator of cellular growth in response to nutrient availability. Here we describe how alteration of the activity of TOR1, the single and essential TOR kinase of T. atroviride, by treatment with chemical TOR inhibitors or by genetic manipulation of selected TOR pathway components affected various cellular functions. Loss of TSC1 and TSC2, that are negative regulators of TOR complex 1 (TORC1) in mammalian cells, resulted in altered nitrogen source-dependent growth of T. atroviride, reduced mycoparasitic overgrowth and, in the case of Δtsc1, a diminished production of numerous secondary metabolites. Deletion of the gene encoding the GTPase RHE2, whose mammalian orthologue activates mTORC1, led to rapamycin hypersensitivity and altered secondary metabolism, but had an only minor effect on vegetative growth and mycoparasitic overgrowth. The latter also applied to mutants missing the npr1-1 gene that encodes a fungus-specific kinase known as TOR target in yeast. Genome-wide transcriptome analysis confirmed TOR1 as a regulatory hub that governs T. atroviride metabolism and processes associated to ribosome biogenesis, gene expression and translation. In addition, mycoparasitism-relevant genes encoding terpenoid and polyketide synthases, peptidases, glycoside hydrolases, small secreted cysteine-rich proteins, and G protein coupled receptors emerged as TOR1 targets. Our results provide the first in-depth insights into TOR signaling in a fungal mycoparasite and emphasize its importance in the regulation of processes that critically contribute to the antagonistic activity of T. atroviride.
Collapse
Affiliation(s)
- Rossana Segreto
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Hoda Bazafkan
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Julia Millinger
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Martina Schenk
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Lea Atanasova
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Maria Doppler
- Department of Agrobiotechnology IFA-Tulln, Center for Analytical Chemistry, University of Natural, Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Christoph Büschl
- Department of Agrobiotechnology IFA-Tulln, Center for Analytical Chemistry, University of Natural, Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Mélanie Boeckstaens
- Département de Biologie Moléculaire, Laboratory of Biology of Membrane Transport, Université Libre de Bruxelles, Gosselies, Belgium
| | - Silvia Soto Diaz
- Département de Biologie Moléculaire, Laboratory of Biology of Membrane Transport, Université Libre de Bruxelles, Gosselies, Belgium
| | - Ulrike Schreiner
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | | | | | - Rainer Schuhmacher
- Department of Agrobiotechnology IFA-Tulln, Center for Analytical Chemistry, University of Natural, Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Susanne Zeilinger
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
- * E-mail:
| |
Collapse
|
13
|
Wei LQ, Tan JC, Wang Y, Mei YK, Xue JY, Tian L, Song KY, Han L, Cui YC, Peng YB, Li JQ, Liu NN, Wang H. Fingolimod Potentiates the Antifungal Activity of Amphotericin B. Front Cell Infect Microbiol 2021; 11:627917. [PMID: 33968796 PMCID: PMC8102868 DOI: 10.3389/fcimb.2021.627917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/09/2021] [Indexed: 12/30/2022] Open
Abstract
Candida albicans (C. albicans) is an opportunistic human fungal pathogen that can cause severe infection in clinic. Its incidence and mortality rate has been increasing rapidly. Amphotericin B (AMB), the clinical golden standard antifungal agent, has severe side effects that limit its clinical application. Thus, lowering the concentration and increasing the efficacy of AMB in a combinatorial antifungal therapy have been pursued by both industry and academia. Here we identify that fingolimod (FTY720), an immunomodulatory drug used for oral treatment of relapsing-remitting multiple sclerosis, can potentiate the efficacy of AMB against C. albicans growth synergistically. Furthermore, we observe an antifungal efficacy of FTY720 in combination with AMB against diverse fungal pathogens. Intriguingly, cells treated with both drugs are hypersensitive to endothelial endocytosis and macrophage killing. This is later found to be due to the hyperaccumulation of reactive oxygen species and the corresponding increase in activities of superoxide dismutase and catalase in the cells that received combinatorial treatment. Therefore, the combination of AMB and FTY720 provides a promising antifungal strategy.
Collapse
Affiliation(s)
- Lu-Qi Wei
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-Cong Tan
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Kun Mei
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia-Yu Xue
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Tian
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke-Yu Song
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Han
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying-Chao Cui
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Bing Peng
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Faculty of Medical Laboratory Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-Quan Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning-Ning Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Pszczolkowski VL, Zhang J, Pignato KA, Meyer EJ, Kurth MM, Lin A, Arriola Apelo SI. Insulin potentiates essential amino acids effects on mechanistic target of rapamycin complex 1 signaling in MAC-T cells. J Dairy Sci 2020; 103:11988-12002. [PMID: 33222863 DOI: 10.3168/jds.2020-18920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/06/2020] [Indexed: 01/05/2023]
Abstract
Different models of lactation offer conflicting evidence as to whether insulin signaling is required for AA to stimulate mechanistic target of rapamycin complex 1 (mTORC1) activity. We hypothesized that insulin potentiates essential AA stimulation of mTORC1 activity in the MAC-T mammary epithelial cell line. Here, our objective was to assess mTORC1 signaling activity in response to insulin and individual or grouped essential AA. Insulin and essential AA concentrations in the treatment medium ranged from normo- to supraphysiological, with insulin at 0, 1, 10, or 100 nmol/L and essential AA at approximately 0, 0.01, 0.05, 0.1, 1, or 3× reference plasma levels. Effects and interaction of insulin and total essential AA were tested in a 3 × 5 factorial design (n = 3 replicates/treatment); insulin and the individual AA Leu, Met, Ile, and Arg were likewise tested in 3 × 4 factorials (n = 4). As the remaining individual AA His, Lys, Phe, Thr, Trp, and Val were expected to not affect mTORC1, these were tested only at the highest insulin level, 100 nmol/L (n = 4). For all of these, linear and quadratic effects of total and individual AA were evaluated. Essential AA were subsequently grouped by their positive (Leu, Met, Ile, Arg, and Thr; TOR-AA) or absent-to-negative effects (His, Lys, Phe, Trp, and Val; NTOR-AA), and tested for interaction in a 2 × 2 factorial design (n = 4), with each AA at its respective 1× plasma level, and insulin held at 100 nmol/L. All experiments consisted of 1 h treatment incubation, followed by Western blotting of cell lysates to measure phosphorylation and abundance of the mTORC1 pathway proteins Akt (Ser473); ribosomal protein S6 kinase p70 (S6K1, Thr389); eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1, Ser65); and ribosomal protein S6 (S6, Ser240/244). The Akt phosphorylation was overall increased by insulin, with a possible negative interaction with both total essential AA and the individual AA Leu. Total essential AA also increased S6K1 and 4E-BP1 phosphorylation in an insulin-dependent manner. The individual AA Leu, Met, Ile, and Arg increased S6K1 phosphorylation in an insulin-dependent manner. Similarly, Met and Arg increased 4E-BP1 phosphorylation in an insulin-dependent manner. Histidine, Lys, Trp, and Val did not affect S6K1 phosphorylation. However, S6K1 phosphorylation was linearly increased by Thr and quadratically decreased by Phe. Relative to the phosphorylation of S6K1 when cells were incubated with no essential AA, the NTOR-AA group had no effect, whereas the TOR-AA increased phosphorylation to the same degree observed with all 10 essential AA. Overall, we have found that insulin is required for essential AA to stimulate mTORC1 activity in MAC-T cells. In addition, the AA responsible for the bulk of mTORC1 activation in MAC-T are limited to Leu, Met, Ile, Arg, and Thr.
Collapse
Affiliation(s)
- Virginia L Pszczolkowski
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 53706; Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, 53706
| | - Jun Zhang
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 53706; State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China 100083
| | - Kayleigh A Pignato
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 53706
| | - Emma J Meyer
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 53706
| | - Madison M Kurth
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 53706
| | - Amy Lin
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 53706
| | - Sebastian I Arriola Apelo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 53706; Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, 53706.
| |
Collapse
|
15
|
Martinez-Seidel F, Beine-Golovchuk O, Hsieh YC, Kopka J. Systematic Review of Plant Ribosome Heterogeneity and Specialization. FRONTIERS IN PLANT SCIENCE 2020; 11:948. [PMID: 32670337 PMCID: PMC7332886 DOI: 10.3389/fpls.2020.00948] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 06/10/2020] [Indexed: 05/25/2023]
Abstract
Plants dedicate a high amount of energy and resources to the production of ribosomes. Historically, these multi-protein ribosome complexes have been considered static protein synthesis machines that are not subject to extensive regulation but only read mRNA and produce polypeptides accordingly. New and increasing evidence across various model organisms demonstrated the heterogeneous nature of ribosomes. This heterogeneity can constitute specialized ribosomes that regulate mRNA translation and control protein synthesis. A prominent example of ribosome heterogeneity is seen in the model plant, Arabidopsis thaliana, which, due to genome duplications, has multiple paralogs of each ribosomal protein (RP) gene. We support the notion of plant evolution directing high RP paralog divergence toward functional heterogeneity, underpinned in part by a vast resource of ribosome mutants that suggest specialization extends beyond the pleiotropic effects of single structural RPs or RP paralogs. Thus, Arabidopsis is a highly suitable model to study this phenomenon. Arabidopsis enables reverse genetics approaches that could provide evidence of ribosome specialization. In this review, we critically assess evidence of plant ribosome specialization and highlight steps along ribosome biogenesis in which heterogeneity may arise, filling the knowledge gaps in plant science by providing advanced insights from the human or yeast fields. We propose a data analysis pipeline that infers the heterogeneity of ribosome complexes and deviations from canonical structural compositions linked to stress events. This analysis pipeline can be extrapolated and enhanced by combination with other high-throughput methodologies, such as proteomics. Technologies, such as kinetic mass spectrometry and ribosome profiling, will be necessary to resolve the temporal and spatial aspects of translational regulation while the functional features of ribosomal subpopulations will become clear with the combination of reverse genetics and systems biology approaches.
Collapse
Affiliation(s)
- Federico Martinez-Seidel
- Willmitzer Department, Max Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | | | - Yin-Chen Hsieh
- Bioinformatics Subdivision, Wageningen University, Wageningen, Netherlands
| | - Joachim Kopka
- Willmitzer Department, Max Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| |
Collapse
|
16
|
Fujiki M, Yee KM, Steward O. Non-invasive High Frequency Repetitive Transcranial Magnetic Stimulation (hfrTMS) Robustly Activates Molecular Pathways Implicated in Neuronal Growth and Synaptic Plasticity in Select Populations of Neurons. Front Neurosci 2020; 14:558. [PMID: 32612497 PMCID: PMC7308563 DOI: 10.3389/fnins.2020.00558] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/06/2020] [Indexed: 12/21/2022] Open
Abstract
Patterns of neuronal activity that induce synaptic plasticity and memory storage activate kinase cascades in neurons that are thought to be part of the mechanism for synaptic modification. One such cascade involves induction of phosphorylation of ribosomal protein S6 in neurons due to synaptic activation of AKT/mTOR and via a different pathway, activation of MAP kinase/ERK1/2. Here, we show that phosphorylation of ribosomal protein S6 can also be strongly activated by high frequency repetitive transcranial magnetic stimulation (hfrTMS). HfrTMS was delivered to lightly anesthetized rats using a stimulation protocol that is a standard for inducing LTP in the perforant path in vivo (trains of 8 pulses at 400 Hz repeated at intervals of 1/10 s). Stimulation produced stimulus-locked motor responses but did not elicit behavioral seizures either during or after stimulation. After as little as 10 min of hfrTMS, immunostaining using phospho-specific antibodies for the phosphorylated form of ribosomal protein S6 (rpS6) revealed robust induction of rpS6 phosphorylation in large numbers of neurons in the cortex, especially the piriform cortex, and also in thalamic relay nuclei. Quantification revealed that the extent of the increased immunostaining depended on the number of trains and stimulus intensity. Of note, immunostaining for the immediate early genes Arc and c-fos revealed strong induction of IEG expression in many of the same populations of neurons throughout the cortex, but not the thalamus. These results indicate that hfrTMS can robustly activate molecular pathways critical for plasticity, which may contribute to the beneficial effects of TMS on recovery following brain and spinal cord injury and symptom amelioration in human psychiatric disorders. These molecular processes may be a useful surrogate marker to allow optimization of TMS parameters for maximal therapeutic benefit.
Collapse
Affiliation(s)
- Minoru Fujiki
- Department of Neurosurgery, School of Medicine, Oita University, Oita, Japan
| | - Kelly Matsudaira Yee
- Reeve-Irvine Research Center, University of California, Irvine, Irvine, CA, United States.,Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, United States.,Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Oswald Steward
- Reeve-Irvine Research Center, University of California, Irvine, Irvine, CA, United States.,Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, United States.,Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
17
|
Phosphate in Virulence of Candida albicans and Candida glabrata. J Fungi (Basel) 2020; 6:jof6020040. [PMID: 32224872 PMCID: PMC7344514 DOI: 10.3390/jof6020040] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/21/2020] [Accepted: 03/22/2020] [Indexed: 12/22/2022] Open
Abstract
Candida species are the most commonly isolated invasive human fungal pathogens. A role for phosphate acquisition in their growth, resistance against host immune cells, and tolerance of important antifungal medications is becoming apparent. Phosphorus is an essential element in vital components of the cell, including chromosomes and ribosomes. Producing the energy currency of the cell, ATP, requires abundant inorganic phosphate. A comparison of the network of regulators and effectors that controls phosphate acquisition and intracellular distribution, the PHO regulon, between the model yeast Saccharomyces cerevisiae, a plant saprobe, its evolutionarily close relative C. glabrata, and the more distantly related C. albicans, highlights the need to coordinate phosphate homeostasis with adenylate biosynthesis for ATP production. It also suggests that fungi that cope with phosphate starvation as they invade host tissues, may link phosphate acquisition to stress responses as an efficient mechanism of anticipatory regulation. Recent work indicates that connections among the PHO regulon, Target of Rapamycin Complex 1 signaling, oxidative stress management, and cell wall construction are based both in direct signaling links, and in the provision of phosphate for sufficient metabolic intermediates that are substrates in these processes. Fundamental differences in fungal and human phosphate homeostasis may offer novel drug targets.
Collapse
|
18
|
Phosphoric Metabolites Link Phosphate Import and Polysaccharide Biosynthesis for Candida albicans Cell Wall Maintenance. mBio 2020; 11:mBio.03225-19. [PMID: 32184254 PMCID: PMC7078483 DOI: 10.1128/mbio.03225-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Candida species cause hundreds of thousands of invasive infections with high mortality each year. Developing novel antifungal agents is challenging due to the many similarities between fungal and human cells. Maintaining phosphate balance is essential for all organisms but is achieved completely differently by fungi and humans. A protein that imports phosphate into fungal cells, Pho84, is not present in humans and is required for normal cell wall stress resistance and cell wall integrity signaling in C. albicans. Nucleotide sugars, which are phosphate-containing building block molecules for construction of the cell wall, are diminished in cells lacking Pho84. Cell wall-constructing enzymes may be slowed by lack of these building blocks, in addition to being inhibited by drugs. Combined targeting of Pho84 and cell wall-constructing enzymes may provide a strategy for antifungal therapy by which two sequential steps of cell wall maintenance are blocked for greater potency. The Candida albicans high-affinity phosphate transporter Pho84 is required for normal Target of Rapamycin (TOR) signaling, oxidative stress resistance, and virulence of this fungal pathogen. It also contributes to C. albicans’ tolerance of two antifungal drug classes, polyenes and echinocandins. Echinocandins inhibit biosynthesis of a major cell wall component, beta-1,3-glucan. Cells lacking Pho84 were hypersensitive to other forms of cell wall stress beyond echinocandin exposure, while their cell wall integrity signaling response was weak. Metabolomics experiments showed that levels of phosphoric intermediates, including nucleotides like ATP and nucleotide sugars, were low in pho84 mutant compared to wild-type cells recovering from phosphate starvation. Nonphosphoric precursors like nucleobases and nucleosides were elevated. Outer cell wall phosphomannan biosynthesis requires a nucleotide sugar, GDP-mannose. The nucleotide sugar UDP-glucose is the substrate of enzymes that synthesize two major structural cell wall polysaccharides, beta-1,3- and beta-1,6-glucan. Another nucleotide sugar, UDP-N-acetylglucosamine, is the substrate of chitin synthases which produce a stabilizing component of the intercellular septum and of lateral cell walls. Lack of Pho84 activity, and phosphate starvation, potentiated pharmacological or genetic perturbation of these enzymes. We posit that low substrate concentrations of beta-d-glucan- and chitin synthases, together with pharmacologic inhibition of their activity, diminish enzymatic reaction rates as well as the yield of their cell wall-stabilizing products. Phosphate import is not conserved between fungal and human cells, and humans do not synthesize beta-d-glucans or chitin. Hence, inhibiting these processes simultaneously could yield potent antifungal effects with low toxicity to humans.
Collapse
|
19
|
Kim SW, Joo YJ, Chun YJ, Park YK, Kim J. Cross‐talk between Tor1 and Sch9 regulates hyphae‐specific genes or ribosomal protein genes in a mutually exclusive manner inCandida albicans. Mol Microbiol 2019; 112:1041-1057. [DOI: 10.1111/mmi.14346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Se Woong Kim
- Laboratory of Biochemistry, Division of Life Sciences Korea University Seoul 02841Republic of Korea
- HAEL Lab, TechnoComplex Korea University 145Seoul 02841Republic of Korea
| | - Yoo Jin Joo
- Laboratory of Biochemistry, Division of Life Sciences Korea University Seoul 02841Republic of Korea
| | - Yu Jin Chun
- Laboratory of Biochemistry, Division of Life Sciences Korea University Seoul 02841Republic of Korea
| | - Young Kwang Park
- Laboratory of Biochemistry, Division of Life Sciences Korea University Seoul 02841Republic of Korea
| | - Joon Kim
- Laboratory of Biochemistry, Division of Life Sciences Korea University Seoul 02841Republic of Korea
- HAEL Lab, TechnoComplex Korea University 145Seoul 02841Republic of Korea
| |
Collapse
|
20
|
Intersection of phosphate transport, oxidative stress and TOR signalling in Candida albicans virulence. PLoS Pathog 2018; 14:e1007076. [PMID: 30059535 PMCID: PMC6085062 DOI: 10.1371/journal.ppat.1007076] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/09/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022] Open
Abstract
Phosphate is an essential macronutrient required for cell growth and division. Pho84 is the major high-affinity cell-surface phosphate importer of Saccharomyces cerevisiae and a crucial element in the phosphate homeostatic system of this model yeast. We found that loss of Candida albicans Pho84 attenuated virulence in Drosophila and murine oropharyngeal and disseminated models of invasive infection, and conferred hypersensitivity to neutrophil killing. Susceptibility of cells lacking Pho84 to neutrophil attack depended on reactive oxygen species (ROS): pho84-/- cells were no more susceptible than wild type C. albicans to neutrophils from a patient with chronic granulomatous disease, or to those whose oxidative burst was pharmacologically inhibited or neutralized. pho84-/- mutants hyperactivated oxidative stress signalling. They accumulated intracellular ROS in the absence of extrinsic oxidative stress, in high as well as low ambient phosphate conditions. ROS accumulation correlated with diminished levels of the unique superoxide dismutase Sod3 in pho84-/- cells, while SOD3 overexpression from a conditional promoter substantially restored these cells’ oxidative stress resistance in vitro. Repression of SOD3 expression sharply increased their oxidative stress hypersensitivity. Neither of these oxidative stress management effects of manipulating SOD3 transcription was observed in PHO84 wild type cells. Sod3 levels were not the only factor driving oxidative stress effects on pho84-/- cells, though, because overexpressing SOD3 did not ameliorate these cells’ hypersensitivity to neutrophil killing ex vivo, indicating Pho84 has further roles in oxidative stress resistance and virulence. Measurement of cellular metal concentrations demonstrated that diminished Sod3 expression was not due to decreased import of its metal cofactor manganese, as predicted from the function of S. cerevisiae Pho84 as a low-affinity manganese transporter. Instead of a role of Pho84 in metal transport, we found its role in TORC1 activation to impact oxidative stress management: overexpression of the TORC1-activating GTPase Gtr1 relieved the Sod3 deficit and ROS excess in pho84-/- null mutant cells, though it did not suppress their hypersensitivity to neutrophil killing or hyphal growth defect. Pharmacologic inhibition of Pho84 by small molecules including the FDA-approved drug foscarnet also induced ROS accumulation. Inhibiting Pho84 could hence support host defenses by sensitizing C. albicans to oxidative stress. Candida albicans is the species most often isolated from patients with invasive fungal disease, and is also a common colonizer of healthy people. It is well equipped to compete for nutrients with bacteria co-inhabiting human gastrointestinal mucous membranes, since it possesses multiple transporters to internalize important nutrients like sugars, nitrogen sources, and phosphate. During infection, the fungus needs to withstand human defense cells that attack it with noxious chemicals, among which reactive oxygen species (ROS) are critical. We found that a high-affinity phosphate transporter, Pho84, is required for C. albicans’ ability to successfully invade animal hosts and to eliminate ROS. Levels of a fungal enzyme that breaks down ROS, Sod3, were decreased in cells lacking Pho84. A connection between this phosphate transporter and the ROS-detoxifying enzyme was identified in the Target of Rapamycin (TOR) pathway, to which Pho84 is known to provide activating signals when phosphate is abundant. Small molecules that block Pho84 activity impair the ability of C. albicans to detoxify ROS. Since humans manage phosphate differently than fungi and have no Pho84 homolog, a drug that inhibits Pho84 could disable the defense of the fungus against the host.
Collapse
|
21
|
Gene Expression of Pneumocystis murina after Treatment with Anidulafungin Results in Strong Signals for Sexual Reproduction, Cell Wall Integrity, and Cell Cycle Arrest, Indicating a Requirement for Ascus Formation for Proliferation. Antimicrob Agents Chemother 2018; 62:AAC.02513-17. [PMID: 29463544 PMCID: PMC5923105 DOI: 10.1128/aac.02513-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/10/2018] [Indexed: 01/03/2023] Open
Abstract
The echinocandins are a class of antifungal agents that target β-1,3-d-glucan (BG) biosynthesis. In the ascigerous Pneumocystis species, treatment with these drugs depletes the ascus life cycle stage, which contains BG, but large numbers of forms which do not express BG remain in the infected lungs. In the present study, the gene expression profiles of Pneumocystis murina were compared between infected, untreated mice and mice treated with anidulafungin for 2 weeks to understand the metabolism of the persisting forms. Almost 80 genes were significantly up- or downregulated. Like other fungi exposed to echinocandins, genes associated with sexual replication, cell wall integrity, cell cycle arrest, and stress comprised the strongest upregulated signals in P. murina from the treated mice. The upregulation of the P. murina β-1,3-d-glucan endohydrolase and endo-1,3-glucanase was notable and may explain the disappearance of the existing asci in the lungs of treated mice since both enzymes can degrade BG. The biochemical measurement of BG in the lungs of treated mice and fluorescence microscopy with an anti-BG antibody supported the loss of BG. Downregulated signals included genes involved in cell replication, genome stability, and ribosomal biogenesis and function and the Pneumocystis-specific genes encoding the major surface glycoproteins (Msg). These studies suggest that P. murina attempted to undergo sexual replication in response to a stressed environment and was halted in any type of proliferative cycle, likely due to a lack of BG. Asci appear to be a required part of the life cycle stage of Pneumocystis, and BG may be needed to facilitate progression through the life cycle via sexual replication.
Collapse
|
22
|
The Human Gut Microbial Metabolome Modulates Fungal Growth via the TOR Signaling Pathway. mSphere 2017; 2:mSphere00555-17. [PMID: 29242837 PMCID: PMC5729221 DOI: 10.1128/msphere.00555-17] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023] Open
Abstract
Candida albicans is a natural component of the human microbiota but also an opportunistic pathogen that causes life-threatening infections. The human gastrointestinal tract is the main reservoir of C. albicans, from where systemic infections originate as a consequence of the disruption of the intestinal mucosal barrier. Recent studies provided convincing evidence that overgrowth of C. albicans and other related species in the gut is predominantly associated with chronic intestinal inflammatory bowel diseases. Here, we showed, for the first time, the antagonistic interkingdom interactions between C. albicans and common intestinal commensal bacteria. From a therapeutic perspective, administering a defined bacterial community, such as the one described here with anti-Candida activity, could provide potential therapeutic protection against gastrointestinal inflammatory diseases. Candida albicans is well known as a major human fungal pathogen, but it is also a permanent resident of healthy gastrointestinal tracts. Recent studies have shown that the human gut microbial metabolome represents an interesting source of bioactive molecules with a significant degree of chemical diversity. Some of these bioactive molecules may have useful antivirulence activities. For instance, intestinal bacterial species belonging to the Lachnospiraceae family were found to secrete molecules that attenuate Salmonella pathogenicity and repress the expression of virulence genes. Here, we have investigated whether the microbial gut metabolome (GM) contains molecules that might promote the commensal lifestyle and/or inhibit the expression of virulence of C. albicans in the intestine. We found that metabolites from human feces inhibited the growth of C. albicans and other opportunistic yeasts. A genetic screen in C. albicans suggested that TOR is the molecular target of the antifungal molecule(s) of the GM. In addition, we found that the GM metabolites inhibit both C. albicans hyphal growth and the invasion of human enterocytes. The antigrowth and antivirulence activities were partially recapitulated by secretions from Roseburia spp. and Bacteroides ovatus strains, respectively. This study demonstrates that the antimicrobial activity of the GM can be extended to a eukaryotic pathogen, C. albicans, illuminating the antagonistic interkingdom interactions between a fungus and intestinal commensal bacteria. IMPORTANCECandida albicans is a natural component of the human microbiota but also an opportunistic pathogen that causes life-threatening infections. The human gastrointestinal tract is the main reservoir of C. albicans, from where systemic infections originate as a consequence of the disruption of the intestinal mucosal barrier. Recent studies provided convincing evidence that overgrowth of C. albicans and other related species in the gut is predominantly associated with chronic intestinal inflammatory bowel diseases. Here, we showed, for the first time, the antagonistic interkingdom interactions between C. albicans and common intestinal commensal bacteria. From a therapeutic perspective, administering a defined bacterial community, such as the one described here with anti-Candida activity, could provide potential therapeutic protection against gastrointestinal inflammatory diseases.
Collapse
|
23
|
The Candida albicans TOR-Activating GTPases Gtr1 and Rhb1 Coregulate Starvation Responses and Biofilm Formation. mSphere 2017; 2:mSphere00477-17. [PMID: 29152581 PMCID: PMC5687921 DOI: 10.1128/msphere.00477-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/20/2017] [Indexed: 01/09/2023] Open
Abstract
Candida albicans is the major fungal pathogen of humans and is responsible for a wide range of infections, including life-threatening systemic infections in susceptible hosts. Target of rapamycin complex 1 (TORC1) is an essential regulator of metabolism in this fungus, and components of this complex are under increased investigation as targets for new antifungal drugs. The present study characterized the role of GTR1, encoding a putative GTPase, in TORC1 activation. This study shows that GTR1 encodes a protein required for activation of TORC1 activity in response to amino acids and regulation of nitrogen starvation responses. GTR1 mutants show increased cell-cell adhesion and biofilm formation and increased expression of genes involved in these processes. This study demonstrates that starvation responses and biofilm formation are coregulated by GTR1 and suggests that these responses are linked to compete with the microbiome for space and nutrients. Target of rapamycin complex 1 (TORC1) is an essential regulator of metabolism in eukaryotic cells and in the fungal pathogen Candida albicans regulates morphogenesis and nitrogen acquisition. Gtr1 encodes a highly conserved GTPase that in Saccharomyces cerevisiae regulates nitrogen sensing and TORC1 activation. Here, we characterize the role of C. albicans GTR1 in TORC1 activation and compare it with the previously characterized GTPase Rhb1. A homozygous gtr1/gtr1 mutant exhibited impaired TORC1-mediated phosphorylation of ribosomal protein S6 and increased susceptibility to rapamycin. Overexpression of GTR1 impaired nitrogen starvation-induced filamentous growth, MEP2 expression, and growth in bovine serum albumin as the sole nitrogen source. Both GTR1 and RHB1 were shown to regulate genes involved in ribosome biogenesis, amino acid biosynthesis, and expression of biofilm growth-induced genes. The rhb1/rhb1 mutant exhibited a different pattern of expression of Sko1-regulated genes and increased susceptibility to Congo red and calcofluor white. The homozygous gtr1/gtr1 mutant exhibited enhanced flocculation phenotypes and, similar to the rhb1/rhb1 mutant, exhibited enhanced biofilm formation on plastic surfaces. In summary, Gtr1 and Rhb1 link nutrient sensing and biofilm formation and this connectivity may have evolved to enhance the competitiveness of C. albicans in niches where there is intense competition with other microbes for space and nutrients. IMPORTANCECandida albicans is the major fungal pathogen of humans and is responsible for a wide range of infections, including life-threatening systemic infections in susceptible hosts. Target of rapamycin complex 1 (TORC1) is an essential regulator of metabolism in this fungus, and components of this complex are under increased investigation as targets for new antifungal drugs. The present study characterized the role of GTR1, encoding a putative GTPase, in TORC1 activation. This study shows that GTR1 encodes a protein required for activation of TORC1 activity in response to amino acids and regulation of nitrogen starvation responses. GTR1 mutants show increased cell-cell adhesion and biofilm formation and increased expression of genes involved in these processes. This study demonstrates that starvation responses and biofilm formation are coregulated by GTR1 and suggests that these responses are linked to compete with the microbiome for space and nutrients.
Collapse
|
24
|
Abstract
All organisms can respond to the availability of nutrients by regulating their metabolism, growth, and cell division. Central to the regulation of growth in response to nutrient availability is the target of rapamycin (TOR) signaling that is composed of two structurally distinct complexes: TOR complex 1 (TORC1) and TOR complex 2 (TORC2). The TOR genes were first identified in yeast as target of rapamycin, a natural product of a soil bacterium, which proved beneficial as an immunosuppressive and anticancer drug and is currently being tested for a handful of other pathological conditions including diabetes, neurodegeneration, and age-related diseases. Studies of the TOR pathway unraveled a complex growth-regulating network. TOR regulates nutrient uptake, transcription, protein synthesis and degradation, as well as metabolic pathways, in a coordinated manner that ensures that cells grow or cease growth in response to nutrient availability. The identification of specific signals and mechanisms that stimulate TOR signaling is an active and exciting field of research that has already identified nitrogen and amino acids as key regulators of TORC1 activity. The signals, as well as the cellular functions of TORC2, are far less well understood. Additional open questions in the field concern the relationships between TORC1 and TORC2, as well as the links with other nutrient-responsive pathways. Here I review the main features of TORC1 and TORC2, with a particular focus on yeasts as model organisms.
Collapse
|
25
|
Phosphate is the third nutrient monitored by TOR in Candida albicans and provides a target for fungal-specific indirect TOR inhibition. Proc Natl Acad Sci U S A 2017; 114:6346-6351. [PMID: 28566496 DOI: 10.1073/pnas.1617799114] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Target of Rapamycin (TOR) pathway regulates morphogenesis and responses to host cells in the fungal pathogen Candida albicans Eukaryotic Target of Rapamycin complex 1 (TORC1) induces growth and proliferation in response to nitrogen and carbon source availability. Our unbiased genetic approach seeking unknown components of TORC1 signaling in C. albicans revealed that the phosphate transporter Pho84 is required for normal TORC1 activity. We found that mutants in PHO84 are hypersensitive to rapamycin and in response to phosphate feeding, generate less phosphorylated ribosomal protein S6 (P-S6) than the WT. The small GTPase Gtr1, a component of the TORC1-activating EGO complex, links Pho84 to TORC1. Mutants in Gtr1 but not in another TORC1-activating GTPase, Rhb1, are defective in the P-S6 response to phosphate. Overexpression of Gtr1 and a constitutively active Gtr1Q67L mutant suppresses TORC1-related defects. In Saccharomyces cerevisiae pho84 mutants, constitutively active Gtr1 suppresses a TORC1 signaling defect but does not rescue rapamycin hypersensitivity. Hence, connections from phosphate homeostasis (PHO) to TORC1 may differ between C. albicans and S. cerevisiae The converse direction of signaling from TORC1 to the PHO regulon previously observed in S. cerevisiae was genetically shown in C. albicans using conditional TOR1 alleles. A small molecule inhibitor of Pho84, a Food and Drug Administration-approved drug, inhibits TORC1 signaling and potentiates the activity of the antifungals amphotericin B and micafungin. Anabolic TORC1-dependent processes require significant amounts of phosphate. Our study shows that phosphate availability is monitored and also controlled by TORC1 and that TORC1 can be indirectly targeted by inhibiting Pho84.
Collapse
|
26
|
Beauvericin Potentiates Azole Activity via Inhibition of Multidrug Efflux, Blocks Candida albicans Morphogenesis, and Is Effluxed via Yor1 and Circuitry Controlled by Zcf29. Antimicrob Agents Chemother 2016; 60:7468-7480. [PMID: 27736764 DOI: 10.1128/aac.01959-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 10/04/2016] [Indexed: 01/09/2023] Open
Abstract
Invasive fungal infections are a leading cause of human mortality. Effective treatment is hindered by the rapid emergence of resistance to the limited number of antifungal drugs, demanding new strategies to treat life-threatening fungal infections. Here, we explore a powerful strategy to enhance antifungal efficacy against leading human fungal pathogens by using the natural product beauvericin. We found that beauvericin potentiates the activity of azole antifungals against azole-resistant Candida isolates via inhibition of multidrug efflux and that beauvericin itself is effluxed via Yor1. As observed in Saccharomyces cerevisiae, we determined that beauvericin inhibits TOR signaling in Candida albicans To further characterize beauvericin activity in C. albicans, we leveraged genome sequencing of beauvericin-resistant mutants. Resistance was conferred by mutations in transcription factor genes TAC1, a key regulator of multidrug efflux, and ZCF29, which was uncharacterized. Transcriptional profiling and chromatin immunoprecipitation coupled to microarray analyses revealed that Zcf29 binds to and regulates the expression of multidrug transporter genes. Beyond drug resistance, we also discovered that beauvericin blocks the C. albicans morphogenetic transition from yeast to filamentous growth in response to diverse cues. We found that beauvericin represses the expression of many filament-specific genes, including the transcription factor BRG1 Thus, we illuminate novel circuitry regulating multidrug efflux and establish that simultaneously targeting drug resistance and morphogenesis provides a promising strategy to combat life-threatening fungal infections.
Collapse
|