1
|
Zheng Y, Zhao Y, Dong K, Miao L, Zhou X, Gong Y, Zhang L. A novel Mre11 protein from the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5 possesses 5'-3' exonuclease and endonuclease activities. Int J Biol Macromol 2024; 272:132654. [PMID: 38810854 DOI: 10.1016/j.ijbiomac.2024.132654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Mre11 is one of important proteins that are involved in DNA repair and recombination by processing DNA ends to produce 3'-single stranded DNA, thus providing a platform for other DNA repair and recombination proteins. In this work, we characterized the Mre11 protein from the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5 (Tba-Mre11) biochemically and dissected the roles of its four conserved residues, which is the first report on Mre11 proteins from Thermococcus. Tba-Mre11 possesses exonuclease activity for degrading ssDNA and dsDNA in the 5'-3' direction, which contrasts with other reported Mre11 homologs. Maximum degradation efficiency was observed with Mn2+ at 80 °C and at pH 7.5-9.5. In addition to possessing 5'-3' exonuclease activity, Tba-Mre11 has endonuclease activity that nicks plasmid DNA and circular ssDNA. Mutational data show that residues D10, D51 and N86 in Tba-Mre11 are essential for DNA degradation since almost no activity was observed for the D10A, D51A and N86A mutants. By comparison, residue D44 in Tba-Mre11 is not responsible for DNA degradation since the D44A mutant possessed the similar WT protein activity. Notably, the D44A mutant almost completely abolished the ability to bind DNA, suggesting that residue D44 is essential for binding DNA.
Collapse
Affiliation(s)
- Yaqi Zheng
- College of Environmental Science and Engineering, Yangzhou University, China
| | - Yang Zhao
- College of Environmental Science and Engineering, Yangzhou University, China
| | - Kunming Dong
- College of Environmental Science and Engineering, Yangzhou University, China
| | - Li Miao
- College of Environmental Science and Engineering, Yangzhou University, China
| | - Xiaojian Zhou
- College of Environmental Science and Engineering, Yangzhou University, China
| | - Yong Gong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, China
| | - Likui Zhang
- College of Environmental Science and Engineering, Yangzhou University, China.
| |
Collapse
|
2
|
Tan J, Sun X, Zhao H, Guan H, Gao S, Zhou P. Double-strand DNA break repair: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2023; 4:e388. [PMID: 37808268 PMCID: PMC10556206 DOI: 10.1002/mco2.388] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Double-strand break (DSB), a significant DNA damage brought on by ionizing radiation, acts as an initiating signal in tumor radiotherapy, causing cancer cells death. The two primary pathways for DNA DSB repair in mammalian cells are nonhomologous end joining (NHEJ) and homologous recombination (HR), which cooperate and compete with one another to achieve effective repair. The DSB repair mechanism depends on numerous regulatory variables. DSB recognition and the recruitment of DNA repair components, for instance, depend on the MRE11-RAD50-NBS1 (MRN) complex and the Ku70/80 heterodimer/DNA-PKcs (DNA-PK) complex, whose control is crucial in determining the DSB repair pathway choice and efficiency of HR and NHEJ. In-depth elucidation on the DSB repair pathway's molecular mechanisms has greatly facilitated for creation of repair proteins or pathways-specific inhibitors to advance precise cancer therapy and boost the effectiveness of cancer radiotherapy. The architectures, roles, molecular processes, and inhibitors of significant target proteins in the DSB repair pathways are reviewed in this article. The strategy and application in cancer therapy are also discussed based on the advancement of inhibitors targeted DSB damage response and repair proteins.
Collapse
Affiliation(s)
- Jinpeng Tan
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunan ProvinceChina
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Xingyao Sun
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunan ProvinceChina
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Hongling Zhao
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Hua Guan
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Shanshan Gao
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Ping‐Kun Zhou
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunan ProvinceChina
- Department of Radiation BiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| |
Collapse
|
3
|
De Falco M, De Felice M. Take a Break to Repair: A Dip in the World of Double-Strand Break Repair Mechanisms Pointing the Gaze on Archaea. Int J Mol Sci 2021; 22:ijms222413296. [PMID: 34948099 PMCID: PMC8708640 DOI: 10.3390/ijms222413296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022] Open
Abstract
All organisms have evolved many DNA repair pathways to counteract the different types of DNA damages. The detection of DNA damage leads to distinct cellular responses that bring about cell cycle arrest and the induction of DNA repair mechanisms. In particular, DNA double-strand breaks (DSBs) are extremely toxic for cell survival, that is why cells use specific mechanisms of DNA repair in order to maintain genome stability. The choice among the repair pathways is mainly linked to the cell cycle phases. Indeed, if it occurs in an inappropriate cellular context, it may cause genome rearrangements, giving rise to many types of human diseases, from developmental disorders to cancer. Here, we analyze the most recent remarks about the main pathways of DSB repair with the focus on homologous recombination. A thorough knowledge in DNA repair mechanisms is pivotal for identifying the most accurate treatments in human diseases.
Collapse
|
4
|
Lu R, Zhang H, Jiang YN, Wang ZQ, Sun L, Zhou ZW. Post-Translational Modification of MRE11: Its Implication in DDR and Diseases. Genes (Basel) 2021; 12:1158. [PMID: 34440334 PMCID: PMC8392716 DOI: 10.3390/genes12081158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/15/2022] Open
Abstract
Maintaining genomic stability is vital for cells as well as individual organisms. The meiotic recombination-related gene MRE11 (meiotic recombination 11) is essential for preserving genomic stability through its important roles in the resection of broken DNA ends, DNA damage response (DDR), DNA double-strand breaks (DSBs) repair, and telomere maintenance. The post-translational modifications (PTMs), such as phosphorylation, ubiquitination, and methylation, regulate directly the function of MRE11 and endow MRE11 with capabilities to respond to cellular processes in promptly, precisely, and with more diversified manners. Here in this paper, we focus primarily on the PTMs of MRE11 and their roles in DNA response and repair, maintenance of genomic stability, as well as their association with diseases such as cancer.
Collapse
Affiliation(s)
- Ruiqing Lu
- School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; (R.L.); (Y.-N.J.)
| | - Han Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College; Kunming 650118, China;
| | - Yi-Nan Jiang
- School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; (R.L.); (Y.-N.J.)
| | - Zhao-Qi Wang
- Leibniz Institute on Aging–Fritz Lipmann Institute (FLI), 07745 Jena, Germany;
- Faculty of Biological Sciences, Friedrich-Schiller-University of Jena, 07745 Jena, Germany
| | - Litao Sun
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China
| | - Zhong-Wei Zhou
- School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; (R.L.); (Y.-N.J.)
| |
Collapse
|
5
|
Garnier F, Couturier M, Débat H, Nadal M. Archaea: A Gold Mine for Topoisomerase Diversity. Front Microbiol 2021; 12:661411. [PMID: 34113328 PMCID: PMC8185306 DOI: 10.3389/fmicb.2021.661411] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/12/2021] [Indexed: 11/17/2022] Open
Abstract
The control of DNA topology is a prerequisite for all the DNA transactions such as DNA replication, repair, recombination, and transcription. This global control is carried out by essential enzymes, named DNA-topoisomerases, that are mandatory for the genome stability. Since many decades, the Archaea provide a significant panel of new types of topoisomerases such as the reverse gyrase, the type IIB or the type IC. These more or less recent discoveries largely contributed to change the understanding of the role of the DNA topoisomerases in all the living world. Despite their very different life styles, Archaea share a quasi-homogeneous set of DNA-topoisomerases, except thermophilic organisms that possess at least one reverse gyrase that is considered a marker of the thermophily. Here, we discuss the effect of the life style of Archaea on DNA structure and topology and then we review the content of these essential enzymes within all the archaeal diversity based on complete sequenced genomes available. Finally, we discuss their roles, in particular in the processes involved in both the archaeal adaptation and the preservation of the genome stability.
Collapse
Affiliation(s)
- Florence Garnier
- Département de biologie, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France.,Université Paris-Saclay, UVSQ, Versailles, France
| | - Mohea Couturier
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Hélène Débat
- Département de biologie, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France.,Université Paris-Saclay, UVSQ, Versailles, France
| | - Marc Nadal
- Département de biologie, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France.,Université de Paris, Paris, France
| |
Collapse
|
6
|
Marshall CJ, Santangelo TJ. Archaeal DNA Repair Mechanisms. Biomolecules 2020; 10:E1472. [PMID: 33113933 PMCID: PMC7690668 DOI: 10.3390/biom10111472] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/29/2022] Open
Abstract
Archaea often thrive in environmental extremes, enduring levels of heat, pressure, salinity, pH, and radiation that prove intolerable to most life. Many environmental extremes raise the propensity for DNA damaging events and thus, impact DNA stability, placing greater reliance on molecular mechanisms that recognize DNA damage and initiate accurate repair. Archaea can presumably prosper in harsh and DNA-damaging environments in part due to robust DNA repair pathways but surprisingly, no DNA repair pathways unique to Archaea have been described. Here, we review the most recent advances in our understanding of archaeal DNA repair. We summarize DNA damage types and their consequences, their recognition by host enzymes, and how the collective activities of many DNA repair pathways maintain archaeal genomic integrity.
Collapse
Affiliation(s)
| | - Thomas J. Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA;
| |
Collapse
|
7
|
Gong P, Lei P, Wang S, Zeng A, Lou H. Post-Translational Modifications Aid Archaeal Survival. Biomolecules 2020; 10:biom10040584. [PMID: 32290118 PMCID: PMC7226565 DOI: 10.3390/biom10040584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 12/22/2022] Open
Abstract
Since the pioneering work of Carl Woese, Archaea have fascinated biologists of almost all areas given their unique evolutionary status, wide distribution, high diversity, and ability to grow in special environments. Archaea often thrive in extreme conditions such as high temperature, high/low pH, high salinity, and anoxic ecosystems. All of these are threats to the stability and proper functioning of biological molecules, especially proteins and nucleic acids. Post-translational modifications (PTMs), such as phosphorylation, methylation, acetylation, and glycosylation, are reportedly widespread in Archaea and represent a critical adaptive mechanism to extreme habitats. Here, we summarize our current understanding of the contributions of PTMs to aid in extremophile survival, with a particular focus on the maintenance of genome stability.
Collapse
Affiliation(s)
- Ping Gong
- Hunan Institute of Microbiology, Changsha 410009, China; (P.L.); (S.W.); (A.Z.)
- Correspondence: (P.G.); (H.L.)
| | - Ping Lei
- Hunan Institute of Microbiology, Changsha 410009, China; (P.L.); (S.W.); (A.Z.)
| | - Shengping Wang
- Hunan Institute of Microbiology, Changsha 410009, China; (P.L.); (S.W.); (A.Z.)
| | - Ao Zeng
- Hunan Institute of Microbiology, Changsha 410009, China; (P.L.); (S.W.); (A.Z.)
| | - Huiqiang Lou
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, No.2 Yuan-Ming-Yuan West Road, Beijing 100193, China
- Correspondence: (P.G.); (H.L.)
| |
Collapse
|
8
|
Eichler J. Modifying Post‐Translational Modifications: A Strategy Used by Archaea for Adapting to Changing Environments? Bioessays 2020; 42:e1900207. [DOI: 10.1002/bies.201900207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/15/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Jerry Eichler
- Department of Life SciencesBen Gurion University of the Negev Beersheva 84105 Israel
| |
Collapse
|
9
|
White MF, Allers T. DNA repair in the archaea-an emerging picture. FEMS Microbiol Rev 2018; 42:514-526. [PMID: 29741625 DOI: 10.1093/femsre/fuy020] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/02/2018] [Indexed: 12/12/2022] Open
Abstract
There has long been a fascination in the DNA repair pathways of archaea, for two main reasons. Firstly, many archaea inhabit extreme environments where the rate of physical damage to DNA is accelerated. These archaea might reasonably be expected to have particularly robust or novel DNA repair pathways to cope with this. Secondly, the archaea have long been understood to be a lineage distinct from the bacteria, and to share a close relationship with the eukarya, particularly in their information processing systems. Recent discoveries suggest the eukarya arose from within the archaeal domain, and in particular from lineages related to the TACK superphylum and Lokiarchaea. Thus, archaeal DNA repair proteins and pathways can represent a useful model system. This review focuses on recent advances in our understanding of archaeal DNA repair processes including base excision repair, nucleotide excision repair, mismatch repair and double-strand break repair. These advances are discussed in the context of the emerging picture of the evolution and relationship of the three domains of life.
Collapse
Affiliation(s)
- Malcolm F White
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, Fife KY16 9ST, UK
| | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
10
|
Archaeal DNA polymerases: new frontiers in DNA replication and repair. Emerg Top Life Sci 2018; 2:503-516. [PMID: 33525823 DOI: 10.1042/etls20180015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/27/2018] [Accepted: 10/08/2018] [Indexed: 11/17/2022]
Abstract
Archaeal DNA polymerases have long been studied due to their superior properties for DNA amplification in the polymerase chain reaction and DNA sequencing technologies. However, a full comprehension of their functions, recruitment and regulation as part of the replisome during genome replication and DNA repair lags behind well-established bacterial and eukaryotic model systems. The archaea are evolutionarily very broad, but many studies in the major model systems of both Crenarchaeota and Euryarchaeota are starting to yield significant increases in understanding of the functions of DNA polymerases in the respective phyla. Recent advances in biochemical approaches and in archaeal genetic models allowing knockout and epitope tagging have led to significant increases in our understanding, including DNA polymerase roles in Okazaki fragment maturation on the lagging strand, towards reconstitution of the replisome itself. Furthermore, poorly characterised DNA polymerase paralogues are finding roles in DNA repair and CRISPR immunity. This review attempts to provide a current update on the roles of archaeal DNA polymerases in both DNA replication and repair, addressing significant questions that remain for this field.
Collapse
|
11
|
Samson C, Celli F, Hendriks K, Zinke M, Essawy N, Herrada I, Arteni AA, Theillet FX, Alpha-Bazin B, Armengaud J, Coirault C, Lange A, Zinn-Justin S. Emerin self-assembly mechanism: role of the LEM domain. FEBS J 2017; 284:338-352. [PMID: 27960036 DOI: 10.1111/febs.13983] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/18/2016] [Accepted: 12/05/2016] [Indexed: 01/01/2023]
Abstract
At the nuclear envelope, the inner nuclear membrane protein emerin contributes to the interface between the nucleoskeleton and the chromatin. Emerin is an essential actor of the nuclear response to a mechanical signal. Genetic defects in emerin cause Emery-Dreifuss muscular dystrophy. It was proposed that emerin oligomerization regulates nucleoskeleton binding, and impaired oligomerization contributes to the loss of function of emerin disease-causing mutants. We here report the first structural characterization of emerin oligomers. We identified an N-terminal emerin region from amino acid 1 to amino acid 132 that is necessary and sufficient for formation of long curvilinear filaments. In emerin monomer, this region contains a globular LEM domain and a fragment that is intrinsically disordered. Solid-state nuclear magnetic resonance analysis identifies the LEM β-fragment as part of the oligomeric structural core. However, the LEM domain alone does not self-assemble into filaments. Additional residues forming a β-structure are observed within the filaments that could correspond to the unstructured region in emerin monomer. We show that the delK37 mutation causing muscular dystrophy triggers LEM domain unfolding and increases emerin self-assembly rate. Similarly, inserting a disulfide bridge that stabilizes the LEM folded state impairs emerin N-terminal region self-assembly, whereas reducing this disulfide bridge triggers self-assembly. We conclude that the LEM domain, responsible for binding to the chromatin protein BAF, undergoes a conformational change during self-assembly of emerin N-terminal region. The consequences of these structural rearrangement and self-assembly events on emerin binding properties are discussed.
Collapse
Affiliation(s)
- Camille Samson
- Laboratory of Structural Biology and Radiobiology, Institute for Integrative Biology of the Cell (CEA, CNRS, University Paris South), University Paris-Saclay, Gif-sur-Yvette, France
| | - Florian Celli
- Laboratory of Structural Biology and Radiobiology, Institute for Integrative Biology of the Cell (CEA, CNRS, University Paris South), University Paris-Saclay, Gif-sur-Yvette, France
| | - Kitty Hendriks
- Department of Molecular Biophysics, Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Maximilian Zinke
- Department of Molecular Biophysics, Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Nada Essawy
- Center for Research in Myology (INSERM, CNRS), Université Pierre et Marie Curie Paris 06, Sorbonne Universités, France
| | - Isaline Herrada
- Laboratory of Structural Biology and Radiobiology, Institute for Integrative Biology of the Cell (CEA, CNRS, University Paris South), University Paris-Saclay, Gif-sur-Yvette, France
| | - Ana-Andreea Arteni
- Department of Structural Virology, Institute for Integrative Biology of the Cell (CEA, CNRS, University Paris South), University Paris-Saclay, Gif-sur-Yvette, France
| | - François-Xavier Theillet
- Laboratory of Structural Biology and Radiobiology, Institute for Integrative Biology of the Cell (CEA, CNRS, University Paris South), University Paris-Saclay, Gif-sur-Yvette, France
| | - Béatrice Alpha-Bazin
- Laboratory 'Innovative technologies for Detection and Diagnostics', Institute of Biology and Technology Saclay, CEA, Bagnols-sur-Cèze, France
| | - Jean Armengaud
- Laboratory 'Innovative technologies for Detection and Diagnostics', Institute of Biology and Technology Saclay, CEA, Bagnols-sur-Cèze, France
| | - Catherine Coirault
- Center for Research in Myology (INSERM, CNRS), Université Pierre et Marie Curie Paris 06, Sorbonne Universités, France
| | - Adam Lange
- Department of Molecular Biophysics, Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany.,Institut für Biologie, Humboldt-Universität zu Berlin, Germany
| | - Sophie Zinn-Justin
- Laboratory of Structural Biology and Radiobiology, Institute for Integrative Biology of the Cell (CEA, CNRS, University Paris South), University Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|