1
|
Liljegren MM, Gama JA, Johnsen PJ, Harms K. Plasmids affect microindel mutations in Acinetobacter baylyi ADP1. Plasmid 2024; 131-132:102733. [PMID: 39427784 DOI: 10.1016/j.plasmid.2024.102733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Plasmids can impact the evolution of their hosts, e.g. due to carriage of mutagenic genes, through cross-talk with host genes or as result of SOS induction during transfer. Here we demonstrate that plasmids can affect the level of microindel mutations in the host genome. These mutations are driven by the production of single-stranded DNA molecules that invade replication forks at microhomologies and subsequently get integrated into the genome. Using the gammaproteobacterial model organism Acinetobacter baylyi, we show that carriage of broad host range plasmids from different incompatibility groups can cause microindel mutations directly or indirectly. The plasmid vector pQLICE belonging to the incompatibility group Q (IncQ) and replicating by a characteristic strand displacement mechanism can generate chromosomal microindel mutations directly with short stretches of DNA originating from pQLICE. In addition, results with the IncP plasmid vector pRK415 (theta replication mechanism) show that the presence of plasmids can increase microindel mutation frequencies indirectly (i.e., with chromosomal ectopic DNA), presumably through plasmid-chromosome interactions that lead to DNA damages. These results provide new mechanistic insights into the microindel mutation mechanism, suggesting that single-stranded DNA repair intermediates are the causing agents. By contrast, the IncN plasmid RN3 appears to suppress host microindel mutations. The suppression mechanism remains unknown. Other plasmids in this study (belonging to IncA/C2, IncW, pBBR incompatibility groups) confer ambiguous or no quantifiable mutagenic effects.
Collapse
Affiliation(s)
- Mikkel M Liljegren
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - João A Gama
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Pål J Johnsen
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Klaus Harms
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
2
|
Li B, Ni S, Liu Y, Lin J, Wang X. The histone-like nucleoid-structuring protein encoded by the plasmid pMBL6842 regulates both plasmid stability and host physiology of Pseudoalteromonas rubra SCSIO 6842. Microbiol Res 2024; 286:127817. [PMID: 38941922 DOI: 10.1016/j.micres.2024.127817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
Plasmids orchestrate bacterial adaptation across diverse environments and facilitate lateral gene transfer within bacterial communities. Their presence can perturb host metabolism, creating a competitive advantage for plasmid-free cells. Plasmid stability hinges on efficient replication and partition mechanisms. While plasmids commonly encode histone-like nucleoid-structuring (H-NS) family proteins, the precise influence of plasmid-encoded H-NS proteins on stability remains elusive. In this study, we examined the conjugative plasmid pMBL6842, harboring the hns gene, and observed its positive regulation of parAB transcription, critical for plasmid segregation. Deletion of hns led to rapid plasmid loss, which was remedied by hns complementation. Further investigations unveiled adverse effects of hns overexpression on the bacterial host. Transcriptome analysis revealed hns's role in regulating numerous bacterial genes, impacting both host growth and swimming motility in the presence of the hns gene. Therefore, our study unveils the multifaceted roles of H-NS in both plasmid stability and host physiology, underscoring its biological significance and paving the way for future inquiries into the involvement of H-NS in horizontal gene transfer events.
Collapse
Affiliation(s)
- Baiyuan Li
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China
| | - Songwei Ni
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yabo Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianzhong Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Liu Z, Zhao Q, Xu C, Song H. Compensatory evolution of chromosomes and plasmids counteracts the plasmid fitness cost. Ecol Evol 2024; 14:e70121. [PMID: 39170056 PMCID: PMC11336059 DOI: 10.1002/ece3.70121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Plasmids incur a fitness cost that has the potential to restrict the dissemination of resistance in bacterial pathogens. However, bacteria can overcome this disadvantage by compensatory evolution to maintain their resistance. Compensatory evolution can occur via both chromosomes and plasmids, but there are a few reviews regarding this topic, and most of them focus on plasmids. In this review, we provide a comprehensive overview of the currently reported mechanisms underlying compensatory evolution on chromosomes and plasmids, elucidate key targets regulating plasmid fitness cost, and discuss future challenges in this field. We found that compensatory evolution on chromosomes primarily arises from mutations in transcriptional regulatory factors, whereas compensatory evolution of plasmids predominantly involves three pathways: plasmid copy number regulation, conjugation transfer efficiency, and expression of antimicrobial resistance (AMR) genes. Furthermore, the importance of reasonable selection of research subjects and effective integration of diverse advanced research methods is also emphasized in our future study on compensatory mechanisms. Overall, this review establishes a theoretical framework that aims to provide innovative ideas for minimizing the emergence and spread of AMR genes.
Collapse
Affiliation(s)
- Ziyi Liu
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F UniversityHangzhouChina
| | - Qiuyun Zhao
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F UniversityHangzhouChina
| | - Chenggang Xu
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F UniversityHangzhouChina
| | - Houhui Song
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F UniversityHangzhouChina
| |
Collapse
|
4
|
Elg CA, Mack E, Rolfsmeier M, McLean TC, Kosterlitz O, Soderling E, Narum S, Rowley PA, Thomas CM, Top EM. Evolution of a Plasmid Regulatory Circuit Ameliorates Plasmid Fitness Cost. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.579024. [PMID: 38370613 PMCID: PMC10871194 DOI: 10.1101/2024.02.05.579024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Plasmids play a major role in rapid adaptation of bacteria by facilitating horizontal transfer of diverse genes, most notably those conferring antibiotic resistance. While most plasmids that replicate in a broad range of bacteria also persist well in diverse hosts, there are exceptions that are poorly understood. We investigated why a broad-host range plasmid, pBP136, originally found in clinical Bordetella pertussis isolates, quickly became extinct in laboratory Escherichia coli populations. Through experimental evolution we found that inactivation of a previously uncharacterized plasmid gene, upf31, drastically improved plasmid maintenance in E. coli. This gene inactivation resulted in decreased transcription of the global plasmid regulators (korA, korB, and korC) and numerous genes in their regulons. It also caused transcriptional changes in many chromosomal genes primarily related to metabolism. In silico analyses suggested that the change in plasmid transcriptome may be initiated by Upf31 interacting with the plasmid regulator KorB. Expression of upf31 in trans negatively affected persistence of pBP136Δupf31 as well as the closely related archetypal IncP-1β plasmid R751, which is stable in E. coli and natively encodes a truncated upf31 allele. Our results demonstrate that while the upf31 allele in pBP136 might advantageously modulate gene expression in its original host, B. pertussis, it has harmful effects in E. coli. Thus, evolution of a single plasmid gene can change the range of hosts in which that plasmid persists, due to effects on the regulation of plasmid gene transcription.
Collapse
Affiliation(s)
- Clinton A. Elg
- Bioinformatics and Computational Biology Program, University of Idaho, Moscow, Idaho, USA
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, Idaho, USA
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Erin Mack
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Michael Rolfsmeier
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Thomas C. McLean
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Olivia Kosterlitz
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, Idaho, USA
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
- Biology Department, University of Washington, Seattle, Washington, USA
| | | | - Solana Narum
- Bioinformatics and Computational Biology Program, University of Idaho, Moscow, Idaho, USA
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, Idaho, USA
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Paul A. Rowley
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | | | - Eva M. Top
- Bioinformatics and Computational Biology Program, University of Idaho, Moscow, Idaho, USA
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, Idaho, USA
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
5
|
Skutel M, Yanovskaya D, Demkina A, Shenfeld A, Musharova O, Severinov K, Isaev A. RecA-dependent or independent recombination of plasmid DNA generates a conflict with the host EcoKI immunity by launching restriction alleviation. Nucleic Acids Res 2024; 52:5195-5208. [PMID: 38567730 PMCID: PMC11109961 DOI: 10.1093/nar/gkae243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/17/2024] [Accepted: 03/22/2024] [Indexed: 05/23/2024] Open
Abstract
Bacterial defence systems are tightly regulated to avoid autoimmunity. In Type I restriction-modification (R-M) systems, a specific mechanism called restriction alleviation (RA) controls the activity of the restriction module. In the case of the Escherichia coli Type I R-M system EcoKI, RA proceeds through ClpXP-mediated proteolysis of restriction complexes bound to non-methylated sites that appear after replication or reparation of host DNA. Here, we show that RA is also induced in the presence of plasmids carrying EcoKI recognition sites, a phenomenon we refer to as plasmid-induced RA. Further, we show that the anti-restriction behavior of plasmid-borne non-conjugative transposons such as Tn5053, previously attributed to their ardD loci, is due to plasmid-induced RA. Plasmids carrying both EcoKI and Chi sites induce RA in RecA- and RecBCD-dependent manner. However, inactivation of both RecA and RecBCD restores RA, indicating that there exists an alternative, RecA-independent, homologous recombination pathway that is blocked in the presence of RecBCD. Indeed, plasmid-induced RA in a RecBCD-deficient background does not depend on the presence of Chi sites. We propose that processing of random dsDNA breaks in plasmid DNA via homologous recombination generates non-methylated EcoKI sites, which attract EcoKI restriction complexes channeling them for ClpXP-mediated proteolysis.
Collapse
Affiliation(s)
- Mikhail Skutel
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Daria Yanovskaya
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - Alina Demkina
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | - Olga Musharova
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute of Molecular Genetics, National Research Center Kurchatov Institute, Moscow, Russia
| | - Konstantin Severinov
- Waksman Institute of Microbiology, Piscataway, USA
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Artem Isaev
- Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
6
|
Wen X, Chen M, Ma B, Xu J, Zhu T, Zou Y, Liao X, Wang Y, Worrich A, Wu Y. Removal of antibiotic resistance genes during swine manure composting is strongly impaired by high levels of doxycycline residues. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 177:76-85. [PMID: 38290350 DOI: 10.1016/j.wasman.2024.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
Antibiotic resistance genes (ARGs) are emerging pollutants that enter the farm and surrounding environment via the manure of antibiotic-treated animals. Pretreatment of livestock manure by composting decreases ARGs abundance, but how antibiotic residues affect ARGs removal efficiency remains poorly understood. Here, we explored the fate of the resistome under different doxycycline residue levels during aerobic swine manure composting. Metagenomic sequencing showed that the presence of high levels of doxycycline generally had a higher abundance of tetracycline ARGs, and their dominant host bacteria of Firmicutes, especially Clostridium and Streptococcus, also had limited elimination in composting under high levels of doxycycline stress. Moreover, high levels of doxycycline impaired the removal of the total ARGs number in finished composts, with a removal rate of 51.74 % compared to 63.70 % and 71.52 % for the control and low-level doxycycline manure, respectively. Horizontal gene transfer and strengthened correlations among the bacterial community fostered ARGs preservation at high doxycycline levels during composting. In addition, ARGs carried by both plasmids and chromosomes, such as multidrug ARGs, showed wide host characteristics and rebound during compost maturation. Compared with chromosomes, a greater variety of ARGs on plasmids suggested that the majority of ARGs were characterized by horizontal mobility during composting, and the cross-host characteristics of ARGs during composting deserve further attention. This study provided deep insight into the fate of ARGs under residual antibiotic stress during manure composting and reminded the associated risk for environmental and public health.
Collapse
Affiliation(s)
- Xin Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig 04318, Germany
| | - Majian Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baohua Ma
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Jiaojiao Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Ting Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongde Zou
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Xindi Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Anja Worrich
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig 04318, Germany
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong 525000, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Tokuda M, Shintani M. Microbial evolution through horizontal gene transfer by mobile genetic elements. Microb Biotechnol 2024; 17:e14408. [PMID: 38226780 PMCID: PMC10832538 DOI: 10.1111/1751-7915.14408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024] Open
Abstract
Mobile genetic elements (MGEs) are crucial for horizontal gene transfer (HGT) in bacteria and facilitate their rapid evolution and adaptation. MGEs include plasmids, integrative and conjugative elements, transposons, insertion sequences and bacteriophages. Notably, the spread of antimicrobial resistance genes (ARGs), which poses a serious threat to public health, is primarily attributable to HGT through MGEs. This mini-review aims to provide an overview of the mechanisms by which MGEs mediate HGT in microbes. Specifically, the behaviour of conjugative plasmids in different environments and conditions was discussed, and recent methodologies for tracing the dynamics of MGEs were summarised. A comprehensive understanding of the mechanisms underlying HGT and the role of MGEs in bacterial evolution and adaptation is important to develop strategies to combat the spread of ARGs.
Collapse
Affiliation(s)
- Maho Tokuda
- Department of Environment and Energy Systems, Graduate School of Science and TechnologyShizuoka UniversityHamamatsuJapan
| | - Masaki Shintani
- Department of Environment and Energy Systems, Graduate School of Science and TechnologyShizuoka UniversityHamamatsuJapan
- Research Institute of Green Science and TechnologyShizuoka UniversityHamamatsuJapan
- Japan Collection of MicroorganismsRIKEN BioResource Research CenterIbarakiJapan
- Graduate School of Integrated Science and TechnologyShizuoka UniversityHamamatsuJapan
| |
Collapse
|
8
|
Gao Y, Du P, Zhang P, Wang J, Liu Z, Fanning S, Wang Z, Li R, Bai L. Dynamic evolution and transmission of a bla NDM-1-bearing fusion plasmid in a clinical Escherichia coli. Microbiol Res 2023; 275:127450. [PMID: 37454426 DOI: 10.1016/j.micres.2023.127450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Plasmids are the main driving forces for the rapid dissemination of blaNDM-1. In recent years, blaNDM-1-carrying fusion plasmids have been frequently reported. However, the evolutionary patterns of blaNDM-1-carrying fusion plasmids remain largely unknown. Herein, we reported a blaNDM-1-bearing fusion plasmid pZX35-269k possessing IncFII and IncA/C2 replicons from clinical ST349 E. coli 13ZX35. The backbone of pZX35-269k was structurally unstable, which was manifested in different types of structural dissociation during conjugation and passage, thereby forming various daughter plasmids. Moreover, the same events were observed in the clinical setting as well. We found that pZX35-269k exhibited highly identical to two plasmids (pZX30-70k and pZX30-192k) in 13ZX30, both of which were isolated from the same hospital. Sequence analysis highlighted that two plasmids in 13ZX30 evolved from pZX35-269k through homologous recombination of a 4856-bp fragment. Collectively, this study confirmed the transmission and structural evolution of a blaNDM-1-bearing fusion plasmid in both laboratory and clinical settings, and provided clear evidence of plasmid spread and evolution in clinical settings. Such versatile plasmids may represent a potential risk for the public health.
Collapse
Affiliation(s)
- Yanyun Gao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, People's Republic of China
| | - Pengcheng Du
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, and Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, People's Republic of China
| | - Pei Zhang
- National Health Commission Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, People's Republic of China
| | - Juan Wang
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, 22, Yangling 712100 Shaanxi, People's Republic of China
| | - Ziyi Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, People's Republic of China
| | - Séamus Fanning
- National Health Commission Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, People's Republic of China; UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Zhiqiang Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, People's Republic of China
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, People's Republic of China.
| | - Li Bai
- National Health Commission Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, People's Republic of China.
| |
Collapse
|
9
|
Zhang Y, Xu D, He Z, Han J, Qu D. Characterization and fitness cost analysis of two plasmids carrying different subtypes of bla NDM in aquaculture farming. Food Microbiol 2023; 115:104327. [PMID: 37567620 DOI: 10.1016/j.fm.2023.104327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 08/13/2023]
Abstract
In recent years, the blaNDM gene, which mediate resistance to carbapenems, has disseminated all over the world, and has also been detected in animals. Understanding the dissemination and accumulation of antibiotic resistance genes (ARGs) in a human-impacted environment is essential to solve the food safety problems caused by antibiotics. In this study, two strains of carbapenem bacteria carrying blaNDM were screened from 244 strains isolated from two T. sinensis farms in Zhejiang province, China. After their plasmids were isolated and sequenced, their structure and gene environment were analyzed and the mechanism of blaNDM gene transfer was explored. The study measured the fitness cost of plasmids carrying different blaNDM subtypes by four biological characteristics experiments. The results showed that the fitness cost of IncC plasmid carrying blaNDM-1 was higher than that of IncX3 plasmid carrying blaNDM-5. Furthermore, the real-time PCR showed that the decrease of transcription level of fitness-related genes lead to the different fitness cost of plasmids carrying different blaNDM subtypes. Fitness of many blaNDM-harboring plasmids enhanced the further dissemination of this gene and increase the risk of blaNDM gene spreading in aquatic environment, and thus further investigation of carbapenem-resistant bacterias among food animals are in urgent need.
Collapse
Affiliation(s)
- Yaru Zhang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Dingting Xu
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 311100, Zhejiang, China
| | - Ze He
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Jianzhong Han
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Daofeng Qu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
10
|
Dewan I, Uecker H. A mathematician's guide to plasmids: an introduction to plasmid biology for modellers. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001362. [PMID: 37505810 PMCID: PMC10433428 DOI: 10.1099/mic.0.001362] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023]
Abstract
Plasmids, extrachromosomal DNA molecules commonly found in bacterial and archaeal cells, play an important role in bacterial genetics and evolution. Our understanding of plasmid biology has been furthered greatly by the development of mathematical models, and there are many questions about plasmids that models would be useful in answering. In this review, we present an introductory, yet comprehensive, overview of the biology of plasmids suitable for modellers unfamiliar with plasmids who want to get up to speed and to begin working on plasmid-related models. In addition to reviewing the diversity of plasmids and the genes they carry, their key physiological functions, and interactions between plasmid and host, we also highlight selected plasmid topics that may be of particular interest to modellers and areas where there is a particular need for theoretical development. The world of plasmids holds a great variety of subjects that will interest mathematical biologists, and introducing new modellers to the subject will help to expand the existing body of plasmid theory.
Collapse
Affiliation(s)
- Ian Dewan
- Research Group Stochastic Evolutionary Dynamics, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Hildegard Uecker
- Research Group Stochastic Evolutionary Dynamics, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
11
|
Vanacker M, Lenuzza N, Rasigade JP. The fitness cost of horizontally transferred and mutational antimicrobial resistance in Escherichia coli. Front Microbiol 2023; 14:1186920. [PMID: 37455716 PMCID: PMC10348881 DOI: 10.3389/fmicb.2023.1186920] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Antimicrobial resistance (AMR) in bacteria implies a tradeoff between the benefit of resistance under antimicrobial selection pressure and the incurred fitness cost in the absence of antimicrobials. The fitness cost of a resistance determinant is expected to depend on its genetic support, such as a chromosomal mutation or a plasmid acquisition, and on its impact on cell metabolism, such as an alteration in an essential metabolic pathway or the production of a new enzyme. To provide a global picture of the factors that influence AMR fitness cost, we conducted a systematic review and meta-analysis focused on a single species, Escherichia coli. By combining results from 46 high-quality studies in a multilevel meta-analysis framework, we find that the fitness cost of AMR is smaller when provided by horizontally transferable genes such as those encoding beta-lactamases, compared to mutations in core genes such as those involved in fluoroquinolone and rifampicin resistance. We observe that the accumulation of acquired AMR genes imposes a much smaller burden on the host cell than the accumulation of AMR mutations, and we provide quantitative estimates of the additional cost of a new gene or mutation. These findings highlight that gene acquisition is more efficient than the accumulation of mutations to evolve multidrug resistance, which can contribute to the observed dominance of horizontally transferred genes in the current AMR epidemic.
Collapse
Affiliation(s)
- Marie Vanacker
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Natacha Lenuzza
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Jean-Philippe Rasigade
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
12
|
Wedel E, Bernabe-Balas C, Ares-Arroyo M, Montero N, Santos-Lopez A, Mazel D, Gonzalez-Zorn B. Insertion Sequences Determine Plasmid Adaptation to New Bacterial Hosts. mBio 2023:e0315822. [PMID: 37097157 DOI: 10.1128/mbio.03158-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Plasmids facilitate the vertical and horizontal spread of antimicrobial resistance genes between bacteria. The host range and adaptation of plasmids to new hosts determine their impact on the spread of resistance. In this work, we explore the mechanisms driving plasmid adaptation to novel hosts in experimental evolution. Using the small multicopy plasmid pB1000, usually found in Pasteurellaceae, we studied its adaptation to a host from a different bacterial family, Escherichia coli. We observed two different mechanisms of adaptation. One mechanism is single nucleotide polymorphisms (SNPs) in the origin of replication (oriV) of the plasmid, which increase the copy number in E. coli cells, elevating the stability, and resistance profile. The second mechanism consists of two insertion sequences (ISs), IS1 and IS10, which decrease the fitness cost of the plasmid by disrupting an uncharacterized gene on pB1000 that is harmful to E. coli. Both mechanisms increase the stability of pB1000 independently, but only their combination allows long-term maintenance. Crucially, we show that the mechanisms have a different impact on the host range of the plasmid. SNPs in oriV prevent the replication in the original host, resulting in a shift of the host range. In contrast, the introduction of ISs either shifts or expands the host range, depending on the IS. While IS1 leads to expansion, IS10 cannot be reintroduced into the original host. This study gives new insights into the relevance of ISs in plasmid-host adaptation to understand the success in spreading resistance. IMPORTANCE ColE1-like plasmids are small, mobilizable plasmids that can be found across at least four orders of Gammaproteobacteria and are strongly associated with antimicrobial resistance genes. Plasmid pB1000 carries the gene blaROB-1, conferring high-level resistance to penicillins and cefaclor. pB1000 has been described in various species of the family Pasteurellaceae, for example, in Haemophilus influenzae, which can cause diseases such as otitis media, meningitis, and pneumonia. To understand the resistance spread through horizontal transfer, it is essential to study the mechanisms of plasmid adaptation to novel hosts. In this work we identify that a gene from pB1000, which encodes a peptide that is toxic for E. coli, and the low plasmid copy number (PCN) of pB1000 in E. coli cells are essential targets in the described plasmid-host adaptation and therefore limit the spread of pB1000-encoded blaROB-1. Furthermore, we show how the interplay of two adaptation mechanisms leads to successful plasmid maintenance in a different bacterial family.
Collapse
Affiliation(s)
- Emilia Wedel
- Antimicrobial Resistance Unit (ARU), Facultad de Veterinaria and Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
| | - Cristina Bernabe-Balas
- Antimicrobial Resistance Unit (ARU), Facultad de Veterinaria and Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
| | - Manuel Ares-Arroyo
- Antimicrobial Resistance Unit (ARU), Facultad de Veterinaria and Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
| | - Natalia Montero
- Antimicrobial Resistance Unit (ARU), Facultad de Veterinaria and Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
| | - Alfonso Santos-Lopez
- Antimicrobial Resistance Unit (ARU), Facultad de Veterinaria and Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
| | - Didier Mazel
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Unité de Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France
| | - Bruno Gonzalez-Zorn
- Antimicrobial Resistance Unit (ARU), Facultad de Veterinaria and Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
13
|
Liu YY, Zhu XQ, Nang SC, Xun H, Lv L, Yang J, Liu JH. Greater Invasion and Persistence of mcr-1-Bearing Plasmids in Escherichia coli than in Klebsiella pneumoniae. Microbiol Spectr 2023; 11:e0322322. [PMID: 36975832 PMCID: PMC10100767 DOI: 10.1128/spectrum.03223-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
The emergence of the plasmid-borne polymyxin resistance gene mcr-1 threatens the clinical utility of last-line polymyxins. Although mcr-1 has disseminated to various Enterobacterales species, the prevalence of mcr-1 is the highest among Escherichia coli isolates while remaining low in Klebsiella pneumoniae. The reason for such a difference in prevalence has not been investigated. In this study, we examined and compared the biological characteristics of various mcr-1 plasmids in these two bacterial species. Although mcr-1-bearing plasmids were stably maintained in both E. coli and K. pneumoniae, the former presented itself to be superior by demonstrating a fitness advantage while carrying the plasmid. The inter- and intraspecies transferability efficiencies were evaluated for common mcr-1-harboring plasmids (IncX4, IncI2, IncHI2, IncP, and IncF types) with native E. coli and K. pneumoniae strains as donors. Here, we found that the conjugation frequencies of mcr-1 plasmids were significantly higher in E. coli than in K. pneumoniae, regardless of the donor species and Inc types of the mcr-1 plasmids. Plasmid invasion experiments revealed that mcr-1 plasmids displayed greater invasiveness and stability in E. coli than in K. pneumoniae. Moreover, K. pneumoniae carrying mcr-1 plasmids showed a competitive disadvantage when cocultured with E. coli. These findings indicate that mcr-1 plasmids could spread more easily among E. coli than among K. pneumoniae isolates and that mcr-1 plasmid-carrying E. coli has a competitive advantage over K. pneumoniae, leading to E. coli being the main mcr-1 reservoir. IMPORTANCE As infections caused by multidrug-resistant "superbugs" are increasing globally, polymyxins are often the only viable therapeutic option. Alarmingly, the wide spread of the plasmid-mediated polymyxin resistance gene mcr-1 is restricting the clinical utility of this last-line treatment option. With this, there is an urgent need to investigate the factors contributing to the spread and persistence of mcr-1-bearing plasmids in the bacterial community. Our research highlights that the higher prevalence of mcr-1 in E. coli than in K. pneumoniae is attributed to the greater transferability and persistence of mcr-1-bearing plasmid in the former species. By gaining these important insights into the persistence of mcr-1 in different bacterial species, we will be able to formulate effective strategies to curb the spread of mcr-1 and prolong the clinical life span of polymyxins.
Collapse
Affiliation(s)
- Yi-Yun Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiao-Qing Zhu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Sue C. Nang
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| | - Haoliang Xun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Luchao Lv
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jun Yang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jian-Hua Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
14
|
Genomics, Transcriptomics, and Metabolomics Reveal That Minimal Modifications in the Host Are Crucial for the Compensatory Evolution of ColE1-Like Plasmids. mSphere 2022; 7:e0018422. [PMID: 36416553 PMCID: PMC9769657 DOI: 10.1128/msphere.00184-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Plasmid-mediated antimicrobial resistance is one of the major threats to public health worldwide. The mechanisms involved in the plasmid/host coadaptation are still poorly characterized, and their understanding is crucial to comprehend the genesis and evolution of multidrug-resistant bacteria. With this purpose, we designed an experimental evolution using Haemophilus influenzae RdKW20 as the model strain carrying the ColE1-like plasmid pB1000. Five H. influenzae populations adapted previously to the culture conditions were transformed with pB1000 and subsequently evolved to compensate for the plasmid-associated fitness cost. Afterward, we performed an integrative multiomic analysis combining genomics, transcriptomics, and metabolomics to explore the molecular mechanisms involved in the compensatory evolution of the plasmid. Our results demonstrate that minimal modifications in the host are responsible for plasmid adaptation. Among all of them, the most enriched process was amino acid metabolism, especially those pathways related to serine, tryptophan, and arginine, eventually related to the genesis and resolution of plasmid dimers. Additional rearrangements occurred during the plasmid adaptation, such as an overexpression of the ribonucleotide reductases and metabolic modifications within specific membrane phospholipids. All these findings demonstrate that the plasmid compensation occurs through the combination of diverse host-mediated mechanisms, of which some are beyond genomic and transcriptomic modifications. IMPORTANCE The ability of bacteria to horizontally transfer genetic material has turned antimicrobial resistance into one of the major sanitary crises of the 21st century. Plasmid conjugation is considered the main mechanism responsible for the mobilization of resistance genes, and its understanding is crucial to tackle this crisis. It is generally accepted that the acquisition and maintenance of mobile genetic elements entail a fitness cost to its host, which is susceptible to be alleviated through a coadaptation process or compensatory evolution. Notwithstanding, despite recent major efforts, the underlying mechanisms involved in this adaptation remain poorly characterized. Analyzing the plasmid/host coadaptation from a multiomic perspective sheds light on the physiological processes involved in the compensation, providing a new understanding on the genesis and evolution of plasmid-mediated antimicrobial-resistant bacteria.
Collapse
|
15
|
Xiao X, Liu Z, Chen X, Peng K, Li R, Liu Y, Wang Z. Persistence of plasmid and tet(X4) in an Escherichia coli isolate coharboring blaNDM-5 and mcr-1 after acquiring an IncFII tet(X4)-positive plasmid. Front Microbiol 2022; 13:1010387. [PMID: 36338060 PMCID: PMC9626518 DOI: 10.3389/fmicb.2022.1010387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/26/2022] [Indexed: 11/19/2022] Open
Abstract
The prevalence of plasmid-mediated tigecycline resistance gene tet(X4) is presenting an increasing trend. Once tet(X4)-bearing plasmids are captured by multidrug-resistant bacteria, such as blaNDM and mcr-coharboring bacteria, it will promote bacteria to develop an ultra-broad resistance spectrum, limiting clinical treatment options. However, little is known about the destiny of such bacteria or how they will evolve in the future. Herein, we constructed a multidrug-resistant bacteria coharboring tet(X4), blaNDM-5, and mcr-1 by introducing a tet(X4)-bearing plasmid into a blaNDM-5 and mcr-1 positive E. coli strain. Subsequently, the stability of tet(X4) and the plasmid was measured after being evolved under tigecycline or antibiotic-free circumstance. Interestingly, we observed both tet(X4)-bearing plasmids in tigecycline treated strains and non-tigecycline treated strains were stable, which might be jointly affected by the increased conjugation frequency and the structural alterations of the tet(X4)-positive plasmid. However, the stability of tet(X4) gene showed different scenarios in the two types of evolved strains. The tet(X4) gene in non-tigecycline treated strains was stable whereas the tet(X4) gene was discarded rapidly in tigecycline treated strains. Accordingly, we found the expression levels of tet(X4) gene in tigecycline-treated strains were several times higher than in non-tigecycline treated strains and ancestral strains, which might in turn impose a stronger burden on the host bacteria. SNPs analysis revealed that a myriad of mutations occurred in genes involving in conjugation transfer, and the missense mutation of marR gene in chromosome of tigecycline treated strains might account for the completely different stability of tet(X4)-bearing plasmid and tet(X4) gene. Collectively, these findings shed a light on the possibility of the emergence of multidrug resistant bacteria due to the transmission of tet(X4)-bearing plasmid, and highlighted that the antibiotic residues may be critical to the development of such bacteria.
Collapse
Affiliation(s)
- Xia Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Ziyi Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Xiaojun Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Kai Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Ruichao Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- *Correspondence: Zhiqiang Wang,
| |
Collapse
|
16
|
Hitherto-Unnoticed Self-Transmissible Plasmids Widely Distributed among Different Environments in Japan. Appl Environ Microbiol 2022; 88:e0111422. [PMID: 36069618 PMCID: PMC9499019 DOI: 10.1128/aem.01114-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Various conjugative plasmids were obtained by exogenous plasmid capture, biparental mating, and/or triparental mating methods from different environmental samples in Japan. Based on phylogenetic analyses of their whole-nucleotide sequences, new IncP/P-1 plasmids that could be classified into novel subgroups were obtained. Mini-replicons of the plasmids were constructed, and each of them was incompatible with at least one of the IncP/P-1 plasmids, although they showed diverse iteron sequences in their oriV regions. There were two large clades of IncP/P-1 plasmids, clade I and II. Plasmids in clade I and II included antibiotic resistance genes. Notably, nucleotide compositions of newly found plasmids exhibited different tendencies compared with those of the previously well-studied IncP/P-1 plasmids. Indeed, the host range of plasmids of clade II was different from that of clade I. Although few PromA plasmids have been reported, the number of plasmids belonging to PromAβ, and -γ subgroups detected in this study was close to that of IncP/P-1 plasmids. The host ranges of PromAγ and PromAδ plasmids were broad and transferred to different and distinct classes of Proteobacteria. Interestingly, PromA plasmids and many IncP/P-1 plasmids do not carry any accessory genes. These findings indicate the presence of "hitherto-unnoticed" conjugative plasmids, including IncP/P-1 or PromA derivative ones in nature. These plasmids would have important roles in the exchange of various genes, including antibiotic resistance genes, among different bacteria in nature. IMPORTANCE Plasmids are known to spread among different bacteria. However, which plasmids spread among environmental samples and in which environments they are present is still poorly understood. This study showed that unidentified conjugative plasmids were present in various environments. Different novel IncP/P-1 plasmids were found, whose host ranges were different from those of known plasmids, showing wide diversity of IncP/P-1 plasmids. PromA plasmids, exhibiting a broad host range, were diversified into several subgroups and widely distributed in varied environments. These findings are important for understanding how bacteria naturally exchange their genes, including antibiotic resistance genes, a growing threat to human health worldwide.
Collapse
|
17
|
Mellor KC, Blackwell GA, Cawthraw SA, Mensah NE, Reid SWJ, Thomson NR, Petrovska L, Mather AE. Contrasting long-term dynamics of antimicrobial resistance and virulence plasmids in Salmonella Typhimurium from animals. Microb Genom 2022; 8. [PMID: 35997596 PMCID: PMC9484752 DOI: 10.1099/mgen.0.000826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plasmids are mobile elements that can carry genes encoding traits of clinical concern, including antimicrobial resistance (AMR) and virulence. Population-level studies of Enterobacterales, including Escherichia coli, Shigella and Klebsiella, indicate that plasmids are important drivers of lineage expansions and dissemination of AMR genes. Salmonella Typhimurium is the second most common cause of salmonellosis in humans and livestock in the UK and Europe. The long-term dynamics of plasmids between S. Typhimurium were investigated using isolates collected through national surveillance of animals in England and Wales over a 25-year period. The population structure of S. Typhimurium and its virulence plasmid (where present) were inferred through phylogenetic analyses using whole-genome sequence data for 496 isolates. Antimicrobial resistance genes and plasmid markers were detected in silico. Phenotypic plasmid characterization, using the Kado and Liu method, was used to confirm the number and size of plasmids. The differences in AMR and plasmids between clades were striking, with livestock clades more likely to carry one or more AMR plasmid and be multi-drug-resistant compared to clades associated with wildlife and companion animals. Multiple small non-AMR plasmids were distributed across clades. However, all hybrid AMR–virulence plasmids and most AMR plasmids were highly clade-associated and persisted over decades, with minimal evidence of horizontal transfer between clades. This contrasts with the role of plasmids in the short-term dissemination of AMR between diverse strains in other Enterobacterales in high-antimicrobial-use settings, with implications for predicting plasmid dissemination amongst S. Typhimurium.
Collapse
Affiliation(s)
- Kate C Mellor
- Royal Veterinary College, Hatfield, UK.,London School of Hygiene and Tropical Medicine, London, UK
| | - Grace A Blackwell
- European Bioinformatics Institute, Hinxton, UK.,Wellcome Trust Sanger Institute, Hinxton, UK
| | | | | | | | - Nicholas R Thomson
- London School of Hygiene and Tropical Medicine, London, UK.,Wellcome Trust Sanger Institute, Hinxton, UK
| | | | - Alison E Mather
- Quadram Institute Bioscience, Norwich, UK.,University of East Anglia, Norwich, UK
| |
Collapse
|
18
|
Plasmid Viability Depends on the Ecological Setting of Hosts within a Multiplasmid Community. Microbiol Spectr 2022; 10:e0013322. [PMID: 35416702 PMCID: PMC9045312 DOI: 10.1128/spectrum.00133-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Plasmids are extrachromosomal genetic elements, some of which disperse horizontally between different strains and species of bacteria. They are a major factor in the dissemination of virulence factors and antibiotic resistance. Understanding the ecology of plasmids has a notable anthropocentric value, and therefore, the interactions between bacterial hosts and individual plasmids have been studied in detail. However, bacterial systems often carry multiple genetically distinct plasmids, but dynamics within these multiplasmid communities have remained unstudied. Here, we set to investigate the survival of 11 mobilizable or conjugative plasmids under five different conditions where the hosts had a differing ecological status in comparison to other bacteria in the system. The key incentive was to determine whether plasmid dynamics are reproducible and whether there are tradeoffs in plasmid fitness that stem from the ecological situation of their initial hosts. Growth rates and maximum population densities increased in all communities and treatments over the 42-day evolution experiment, although plasmid contents at the end varied notably. Large multiresistance-conferring plasmids were unfit when the community also contained smaller plasmids with fewer resistance genes. This suggests that restraining the use of a few antibiotics can make bacterial communities sensitive to others. In general, the presence or absence of antibiotic selection and plasmid-free hosts (of various fitnesses) has a notable influence on which plasmids survive. These tradeoffs in different settings can help explain, for example, why some resistance plasmids have an advantage during a rapid proliferation of antibiotic-sensitive pathogens whereas others dominate in alternative situations. IMPORTANCE Conjugative and mobilizable plasmids are ubiquitous in bacterial systems. Several different plasmids can compete within a single bacterial community. We here show that the ecological setting of the host bacteria has a notable effect on the survival of individual plasmids. Selection for opportunistic genes such as antibiotic resistance genes and the presence of plasmid-free hosts can determine which plasmids survive in the system. Host bacteria appear to adapt specifically to a situation where there are multiple plasmids present instead of alleviating the plasmid-associated fitness costs of individual plasmids. Plasmids providing antibiotic resistance survived under all conditions even if there was a constant migration of higher-fitness plasmid-free hosts and no selection via antibiotics. This study is one of the first to observe the behavior of multiple genetically different plasmids as a part of a single system.
Collapse
|
19
|
Smith BA, Dougherty K, Clark M, Baltrus DA. Experimental evolution of the megaplasmid pMPPla107 in Pseudomonas stutzeri enables identification of genes contributing to sensitivity to an inhibitory agent. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200474. [PMID: 34839711 PMCID: PMC8628073 DOI: 10.1098/rstb.2020.0474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/24/2021] [Indexed: 01/19/2023] Open
Abstract
Horizontally transferred elements, such as plasmids, can burden host cells with various metabolic and fitness costs and may lead to other potentially detrimental phenotypic effects. Acquisition of the Pseudomonas syringae megaplasmid pMPPla107 by various Pseudomonads causes sensitivity to a growth-inhibiting substance that is produced in cultures by Pseudomonads during growth under standard laboratory conditions. After approximately 500 generations of laboratory passage of Pseudomonas stutzeri populations containing pMPPla107, strains from two out of six independent passage lines displayed resistance to this inhibitory agent. Resistance was transferable and is, therefore, associated with mutations occurring on pMPPla107. Resequencing experiments demonstrated that resistance is likely due to a large deletion on the megaplasmid in one line, and to a nonsynonymous change in an uncharacterized megaplasmid locus in the other strain. We further used allele exchange experiments to confirm that resistance is due to this single amino acid change in a previously uncharacterized megaplasmid protein, which we name SkaA. These results provide further evidence that costs and phenotypic changes associated with horizontal gene transfer can be compensated through single mutational events and emphasize the power of experimental evolution and resequencing to better understand the genetic basis of evolved phenotypes. This article is part of the theme issue 'The secret lives of microbial mobile genetic elements'.
Collapse
Affiliation(s)
- Brian A. Smith
- School of Plant Sciences, University of Arizona, Tucson, AZ 5403369, USA
| | - Kevin Dougherty
- School of Plant Sciences, University of Arizona, Tucson, AZ 5403369, USA
| | - Meara Clark
- School of Plant Sciences, University of Arizona, Tucson, AZ 5403369, USA
| | - David A. Baltrus
- School of Plant Sciences, University of Arizona, Tucson, AZ 5403369, USA
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 5403369, USA
| |
Collapse
|
20
|
Zhang P, Mao D, Gao H, Zheng L, Chen Z, Gao Y, Duan Y, Guo J, Luo Y, Ren H. Colonization of gut microbiota by plasmid-carrying bacteria is facilitated by evolutionary adaptation to antibiotic treatment. THE ISME JOURNAL 2021; 16:1284-1293. [PMID: 34903849 PMCID: PMC9038720 DOI: 10.1038/s41396-021-01171-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 12/27/2022]
Abstract
Multidrug-resistant plasmid-carrying bacteria are of particular clinical concern as they could transfer antibiotic resistance genes to other bacterial species. However, little is known whether evolutionary adaptation of plasmid-carrying bacteria after long-term antibiotic exposure could affect their subsequent colonization of the human gut. Herein, we combined a long-term evolutionary model based on Escherichia coli K-12 MG1655 and the multidrug-resistant plasmid RP4 with in vivo colonization experiments in mice. We found that the evolutionary adaptation of plasmid-carrying bacteria to antibiotic exposure facilitated colonization of the murine gut and subsequent plasmid transfer to gut bacteria. The evolved plasmid-carrying bacteria exhibited phenotypic alterations, including multidrug resistance, enhanced bacterial growth and biofilm formation capability and decreased plasmid fitness cost, which might be jointly caused by chromosomal mutations (SNPs in rpoC, proQ, and hcaT) and transcriptional modifications. The upregulated transcriptional genes, e.g., type 1 fimbrial-protein pilus (fimA and fimH) and the surface adhesin gene (flu) were likely responsible for the enhanced biofilm-forming capacity. The gene tnaA that encodes a tryptophanase-catalyzing indole formation was transcriptionally upregulated, and increased indole products participated in facilitating the maximum population density of the evolved strains. Furthermore, several chromosomal genes encoding efflux pumps (acriflavine resistance proteins A and B (acrA, acrB), outer-membrane protein (tolC), multidrug-resistance protein (mdtM), and macrolide export proteins A and B (macA, macB)) were transcriptionally upregulated, while most plasmid-harboring genes (conjugal transfer protein (traF) and (trbB), replication protein gene (trfA), beta-lactamase TEM precursor (blaTEM), aminoglycoside 3'-phosphotransferase (aphA) and tetracycline resistance protein A (tetA)) were downregulated. Collectively, these findings demonstrated that evolutionary adaptation of plasmid-carrying bacteria in an antibiotic-influenced environment facilitated colonization of the murine gut by the bacteria and plasmids.
Collapse
Affiliation(s)
- Peng Zhang
- College of Environmental Sciences and Engineering, Nankai University, Tianjin, 300350, China.,State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210046, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Huihui Gao
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Liyang Zheng
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zeyou Chen
- College of Environmental Sciences and Engineering, Nankai University, Tianjin, 300350, China
| | - Yuting Gao
- College of Environmental Sciences and Engineering, Nankai University, Tianjin, 300350, China
| | - Yitao Duan
- College of Environmental Sciences and Engineering, Nankai University, Tianjin, 300350, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia.
| | - Yi Luo
- College of Environmental Sciences and Engineering, Nankai University, Tianjin, 300350, China. .,State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210046, China.
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210046, China
| |
Collapse
|
21
|
Johnson CN, Sheriff EK, Duerkop BA, Chatterjee A. Let Me Upgrade You: Impact of Mobile Genetic Elements on Enterococcal Adaptation and Evolution. J Bacteriol 2021; 203:e0017721. [PMID: 34370561 PMCID: PMC8508098 DOI: 10.1128/jb.00177-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococci are Gram-positive bacteria that have evolved to thrive as both commensals and pathogens, largely due to their accumulation of mobile genetic elements via horizontal gene transfer (HGT). Common agents of HGT include plasmids, transposable elements, and temperate bacteriophages. These vehicles of HGT have facilitated the evolution of the enterococci, specifically Enterococcus faecalis and Enterococcus faecium, into multidrug-resistant hospital-acquired pathogens. On the other hand, commensal strains of Enterococcus harbor CRISPR-Cas systems that prevent the acquisition of foreign DNA, restricting the accumulation of mobile genetic elements. In this review, we discuss enterococcal mobile genetic elements by highlighting their contributions to bacterial fitness, examine the impact of CRISPR-Cas on their acquisition, and identify key areas of research that can improve our understanding of enterococcal evolution and ecology.
Collapse
Affiliation(s)
- Cydney N. Johnson
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Emma K. Sheriff
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Breck A. Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Anushila Chatterjee
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
22
|
Hall JPJ, Wright RCT, Harrison E, Muddiman KJ, Wood AJ, Paterson S, Brockhurst MA. Plasmid fitness costs are caused by specific genetic conflicts enabling resolution by compensatory mutation. PLoS Biol 2021; 19:e3001225. [PMID: 34644303 PMCID: PMC8544851 DOI: 10.1371/journal.pbio.3001225] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/25/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022] Open
Abstract
Plasmids play an important role in bacterial genome evolution by transferring genes between lineages. Fitness costs associated with plasmid carriage are expected to be a barrier to gene exchange, but the causes of plasmid fitness costs are poorly understood. Single compensatory mutations are often sufficient to completely ameliorate plasmid fitness costs, suggesting that such costs are caused by specific genetic conflicts rather than generic properties of plasmids, such as their size, metabolic burden, or gene expression level. By combining the results of experimental evolution with genetics and transcriptomics, we show here that fitness costs of 2 divergent large plasmids in Pseudomonas fluorescens are caused by inducing maladaptive expression of a chromosomal tailocin toxin operon. Mutations in single genes unrelated to the toxin operon, and located on either the chromosome or the plasmid, ameliorated the disruption associated with plasmid carriage. We identify one of these compensatory loci, the chromosomal gene PFLU4242, as the key mediator of the fitness costs of both plasmids, with the other compensatory loci either reducing expression of this gene or mitigating its deleterious effects by up-regulating a putative plasmid-borne ParAB operon. The chromosomal mobile genetic element Tn6291, which uses plasmids for transmission, remained up-regulated even in compensated strains, suggesting that mobile genetic elements communicate through pathways independent of general physiological disruption. Plasmid fitness costs caused by specific genetic conflicts are unlikely to act as a long-term barrier to horizontal gene transfer (HGT) due to their propensity for amelioration by single compensatory mutations, helping to explain why plasmids are so common in bacterial genomes.
Collapse
Affiliation(s)
- James P. J. Hall
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Rosanna C. T. Wright
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| | - Ellie Harrison
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Katie J. Muddiman
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - A. Jamie Wood
- Department of Biology, University of York, York, United Kingdom
- Department of Mathematics, University of York, York, United Kingdom
| | - Steve Paterson
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Michael A. Brockhurst
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
23
|
Cao Y, Tian R, Lv X, Li J, Liu L, Du G, Chen J, Liu Y. Inducible Population Quality Control of Engineered Bacillus subtilis for Improved N-Acetylneuraminic Acid Biosynthesis. ACS Synth Biol 2021; 10:2197-2209. [PMID: 34404207 DOI: 10.1021/acssynbio.1c00086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Biosynthesis by microorganisms using renewable feedstocks is an important approach for realizing sustainable chemical manufacturing. However, cell-to-cell variation in biosynthesis capability during fermentation restricts the robustness and efficiency of bioproduction, hampering the industrialization of biosynthesis. Herein, we developed an inducible population quality control system (iPopQC) for dynamically modulating the producing and nonproducing subpopulations of engineered Bacillus subtilis, which was constructed via inducible promoter- and metabolite-responsive biosensor-based genetic circuit for regulating essential genes. Moreover, iPopQC achieved a 1.97-fold increase in N-acetylneuraminic acid (NeuAc) titer by enriching producing cell subpopulation during cultivation, representing 52% higher than that of previous PopQC. Strains with double-output iPopQC cocoupling the expression of double essential genes with NeuAc production improved production robustness further, retaining NeuAc production throughout 96 h of fermentation, upon which the strains cocoupling one essential gene expression with NeuAc production abolished the production ability.
Collapse
Affiliation(s)
- Yanting Cao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Rongzhen Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
24
|
Nuismer SL, C. Layman N, Redwood AJ, Chan B, Bull JJ. Methods for measuring the evolutionary stability of engineered genomes to improve their longevity. Synth Biol (Oxf) 2021; 6:ysab018. [PMID: 34712842 PMCID: PMC8546616 DOI: 10.1093/synbio/ysab018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/05/2021] [Accepted: 07/26/2021] [Indexed: 11/14/2022] Open
Abstract
Diverse applications rely on engineering microbes to carry and express foreign transgenes. This engineered baggage rarely benefits the microbe and is thus prone to rapid evolutionary loss when the microbe is propagated. For applications where a transgene must be maintained for extended periods of growth, slowing the rate of transgene evolution is critical and can be achieved by reducing either the rate of mutation or the strength of selection. Because the benefits realized by changing these quantities will not usually be equal, it is important to know which will yield the greatest improvement to the evolutionary half-life of the engineering. Here, we provide a method for jointly estimating the mutation rate of transgene loss and the strength of selection favoring these transgene-free, revertant individuals. The method requires data from serial transfer experiments in which the frequency of engineered genomes is monitored periodically. Simple mathematical models are developed that use these estimates to predict the half-life of the engineered transgene and provide quantitative predictions for how alterations to mutation and selection will influence longevity. The estimation method and predictive tools have been implemented as an interactive web application, MuSe.
Collapse
Affiliation(s)
- Scott L Nuismer
- Department of Biological Sciences, University of Idaho, 875 Perimeter Dr, Moscow, Idaho 83844, USA
- Department of Mathematics, University of Idaho, 875 Perimeter Dr, Moscow, Idaho 83844, USA
| | - Nathan C. Layman
- Department of Biological Sciences, University of Idaho, 875 Perimeter Dr, Moscow, Idaho 83844, USA
| | - Alec J Redwood
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
- The Institute for Respiratory Health, Nedlands, Western Australia, Australia
| | - Baca Chan
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
- The Institute for Respiratory Health, Nedlands, Western Australia, Australia
| | - James J Bull
- Department of Biological Sciences, University of Idaho, 875 Perimeter Dr, Moscow, Idaho 83844, USA
| |
Collapse
|
25
|
Sklyar T, Kurahina N, Lavrentieva K, Burlaka V, Lykholat T, Lykholat O. Autonomic (Mobile) Genetic Elements of Bacteria and Their Hierarchy. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721030099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Wegrzyn K, Zabrocka E, Bury K, Tomiczek B, Wieczor M, Czub J, Uciechowska U, Moreno-Del Alamo M, Walkow U, Grochowina I, Dutkiewicz R, Bujnicki JM, Giraldo R, Konieczny I. Defining a novel domain that provides an essential contribution to site-specific interaction of Rep protein with DNA. Nucleic Acids Res 2021; 49:3394-3408. [PMID: 33660784 PMCID: PMC8034659 DOI: 10.1093/nar/gkab113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 12/24/2022] Open
Abstract
An essential feature of replication initiation proteins is their ability to bind to DNA. In this work, we describe a new domain that contributes to a replication initiator sequence-specific interaction with DNA. Applying biochemical assays and structure prediction methods coupled with DNA–protein crosslinking, mass spectrometry, and construction and analysis of mutant proteins, we identified that the replication initiator of the broad host range plasmid RK2, in addition to two winged helix domains, contains a third DNA-binding domain. The phylogenetic analysis revealed that the composition of this unique domain is typical within the described TrfA-like protein family. Both in vitro and in vivo experiments involving the constructed TrfA mutant proteins showed that the newly identified domain is essential for the formation of the protein complex with DNA, contributes to the avidity for interaction with DNA, and the replication activity of the initiator. The analysis of mutant proteins, each containing a single substitution, showed that each of the three domains composing TrfA is essential for the formation of the protein complex with DNA. Furthermore, the new domain, along with the winged helix domains, contributes to the sequence specificity of replication initiator interaction within the plasmid replication origin.
Collapse
Affiliation(s)
- Katarzyna Wegrzyn
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Elzbieta Zabrocka
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Katarzyna Bury
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Bartlomiej Tomiczek
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Milosz Wieczor
- Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Jacek Czub
- Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Urszula Uciechowska
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - María Moreno-Del Alamo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas - CSIC, E28040 Madrid, Spain
| | - Urszula Walkow
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Igor Grochowina
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Rafal Dutkiewicz
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Księcia Trojdena 4, 02-109 Warsaw, Poland.,Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Rafael Giraldo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas - CSIC, E28040 Madrid, Spain
| | - Igor Konieczny
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| |
Collapse
|
27
|
Stalder T, Cornwell B, Lacroix J, Kohler B, Dixon S, Yano H, Kerr B, Forney LJ, Top EM. Evolving Populations in Biofilms Contain More Persistent Plasmids. Mol Biol Evol 2021; 37:1563-1576. [PMID: 32027370 PMCID: PMC7253198 DOI: 10.1093/molbev/msaa024] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bacterial plasmids substantially contribute to the rapid spread of antibiotic resistance, which is a crisis in healthcare today. Coevolution of plasmids and their hosts promotes this spread of resistance by ameliorating the cost of plasmid carriage. However, our knowledge of plasmid–bacteria coevolution is solely based on studies done in well-mixed liquid cultures, even though biofilms represent the main way of bacterial life on Earth and are responsible for most infections. The spatial structure and the heterogeneity provided by biofilms are known to lead to increased genetic diversity as compared with well-mixed liquids. Therefore, we expect that growth in this complex environment could affect the evolutionary trajectories of plasmid–host dyads. We experimentally evolved Shewanella oneidensis MR-1 with plasmid pBP136Gm in biofilms and chemostats and sequenced the genomes of clones and populations. Biofilm populations not only maintained a higher diversity of mutations than chemostat populations but contained a few clones with markedly more persistent plasmids that evolved via multiple distinct trajectories. These included the acquisition of a putative toxin–antitoxin transposon by the plasmid and chromosomal mutations. Some of these genetic changes resulted in loss of plasmid transferability or decrease in plasmid cost. Growth in chemostats led to a higher proportion of variants with decreased plasmid persistence, a phenomenon not detected in biofilms. We suggest that the presence of more stable plasmid–host dyads in biofilms reflects higher genetic diversity and possibly unknown selection pressures. Overall, this study underscores the importance of the mode of growth in the evolution of antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Thibault Stalder
- Department of Biological Sciences, University of Idaho, Moscow, ID.,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID.,BEACON Center for the Study of Evolution in Action
| | - Brandon Cornwell
- Department of Biological Sciences, University of Idaho, Moscow, ID
| | - Jared Lacroix
- Department of Biological Sciences, University of Idaho, Moscow, ID
| | - Bethel Kohler
- Department of Biological Sciences, University of Idaho, Moscow, ID
| | - Seth Dixon
- Department of Biological Sciences, University of Idaho, Moscow, ID
| | - Hirokazu Yano
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Ben Kerr
- BEACON Center for the Study of Evolution in Action.,Department of Biology, University of Washington, Seattle, WA
| | - Larry J Forney
- Department of Biological Sciences, University of Idaho, Moscow, ID.,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID
| | - Eva M Top
- Department of Biological Sciences, University of Idaho, Moscow, ID.,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID.,BEACON Center for the Study of Evolution in Action.,Department of Biology, University of Washington, Seattle, WA
| |
Collapse
|
28
|
Köstlbacher S, Collingro A, Halter T, Domman D, Horn M. Coevolving Plasmids Drive Gene Flow and Genome Plasticity in Host-Associated Intracellular Bacteria. Curr Biol 2021; 31:346-357.e3. [PMID: 33157023 PMCID: PMC7846284 DOI: 10.1016/j.cub.2020.10.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/30/2020] [Accepted: 10/09/2020] [Indexed: 12/30/2022]
Abstract
Plasmids are important in microbial evolution and adaptation to new environments. Yet, carrying a plasmid can be costly, and long-term association of plasmids with their hosts is poorly understood. Here, we provide evidence that the Chlamydiae, a phylum of strictly host-associated intracellular bacteria, have coevolved with their plasmids since their last common ancestor. Current chlamydial plasmids are amalgamations of at least one ancestral plasmid and a bacteriophage. We show that the majority of plasmid genes are also found on chromosomes of extant chlamydiae. The most conserved plasmid gene families are predominantly vertically inherited, while accessory plasmid gene families show significantly increased mobility. We reconstructed the evolutionary history of plasmid gene content of an entire bacterial phylum over a period of around one billion years. Frequent horizontal gene transfer and chromosomal integration events illustrate the pronounced impact of coevolution with these extrachromosomal elements on bacterial genome dynamics in host-dependent microbes.
Collapse
Affiliation(s)
- Stephan Köstlbacher
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Althanstrasse 14, Vienna 1090, Austria
| | - Astrid Collingro
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Althanstrasse 14, Vienna 1090, Austria
| | - Tamara Halter
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Althanstrasse 14, Vienna 1090, Austria
| | - Daryl Domman
- Wellcome Sanger Institute, Parasites and Microbes Programme, Hinxton, Cambridge CB10 1SA, UK; Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Matthias Horn
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Althanstrasse 14, Vienna 1090, Austria.
| |
Collapse
|
29
|
Kim JW, Bugata V, Cortés-Cortés G, Quevedo-Martínez G, Camps M. Mechanisms of Theta Plasmid Replication in Enterobacteria and Implications for Adaptation to Its Host. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0026-2019. [PMID: 33210586 PMCID: PMC7724965 DOI: 10.1128/ecosalplus.esp-0026-2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 11/20/2022]
Abstract
Plasmids are autonomously replicating sequences that help cells adapt to diverse stresses. Theta plasmids are the most frequent plasmid class in enterobacteria. They co-opt two host replication mechanisms: replication at oriC, a DnaA-dependent pathway leading to replisome assembly (theta class A), and replication fork restart, a PriA-dependent pathway leading to primosome assembly through primer extension and D-loop formation (theta classes B, C, and D). To ensure autonomy from the host's replication and to facilitate copy number regulation, theta plasmids have unique mechanisms of replication initiation at the plasmid origin of replication (ori). Tight plasmid copy number regulation is essential because of the major and direct impact plasmid gene dosage has on gene expression. The timing of plasmid replication and segregation are also critical for optimizing plasmid gene expression. Therefore, we propose that plasmid replication needs to be understood in its biological context, where complex origins of replication (redundant origins, mosaic and cointegrated replicons), plasmid segregation, and toxin-antitoxin systems are often present. Highlighting their tight functional integration with ori function, we show that both partition and toxin-antitoxin systems tend to be encoded in close physical proximity to the ori in a large collection of Escherichia coli plasmids. We also propose that adaptation of plasmids to their host optimizes their contribution to the host's fitness while restricting access to broad genetic diversity, and we argue that this trade-off between adaptation to host and access to genetic diversity is likely a determinant factor shaping the distribution of replicons in populations of enterobacteria.
Collapse
Affiliation(s)
- Jay W Kim
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, 95064
| | - Vega Bugata
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, 95064
| | - Gerardo Cortés-Cortés
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, 95064
| | - Giselle Quevedo-Martínez
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, 95064
| | - Manel Camps
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, 95064
| |
Collapse
|
30
|
Hülter NF, Wein T, Effe J, Garoña A, Dagan T. Intracellular Competitions Reveal Determinants of Plasmid Evolutionary Success. Front Microbiol 2020; 11:2062. [PMID: 33013753 PMCID: PMC7500096 DOI: 10.3389/fmicb.2020.02062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/05/2020] [Indexed: 11/24/2022] Open
Abstract
Plasmids are autonomously replicating genetic elements that are ubiquitous in all taxa and habitats where they constitute an integral part of microbial genomes. The stable inheritance of plasmids depends on their segregation during cell division and their long-term persistence in a host population is thought to largely depend on their impact on the host fitness. Nonetheless, many plasmids found in nature are lacking a clear trait that is advantageous to their host; the determinants of plasmid evolutionary success in the absence of plasmid benefit to the host remain understudied. Here we show that stable plasmid inheritance is an important determinant of plasmid evolutionary success. Borrowing terminology from evolutionary biology of cellular living forms, we hypothesize that Darwinian fitness is key for the plasmid evolutionary success. Performing intracellular plasmid competitions between non-mobile plasmids enables us to compare the evolutionary success of plasmid genotypes within the host, i.e., the plasmid fitness. Intracellular head-to-head competitions between stable and unstable variants of the same model plasmid revealed that the stable plasmid variant has a higher fitness in comparison to the unstable plasmid. Preemptive plasmid competitions reveal that plasmid fitness may depend on the order of plasmid arrival in the host. Competitions between plasmids characterized by similar stability of inheritance reveal plasmid fitness differences depending on the plasmid-encoded trait. Our results further reveal that competing plasmids can be maintained in coexistence following plasmid fusions that maintain unstable plasmid variants over time. Plasmids are not only useful accessory genetic elements to their host but they are also evolving and replicating entities, similarly to cellular living forms. There is a clear link between plasmid genetics and plasmid evolutionary success – hence plasmids are evolving entities whose fitness is quantifiable.
Collapse
Affiliation(s)
- Nils F Hülter
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Tanita Wein
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Johannes Effe
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Ana Garoña
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Tal Dagan
- Institute of General Microbiology, Kiel University, Kiel, Germany
| |
Collapse
|
31
|
Gama JA, Zilhão R, Dionisio F. Plasmid Interactions Can Improve Plasmid Persistence in Bacterial Populations. Front Microbiol 2020; 11:2033. [PMID: 32983032 PMCID: PMC7487452 DOI: 10.3389/fmicb.2020.02033] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/31/2020] [Indexed: 01/31/2023] Open
Abstract
It is difficult to understand plasmid maintenance in the absence of selection and theoretical models predict the conditions for plasmid persistence to be limited. Plasmid-associated fitness costs decrease bacterial competitivity, while imperfect partition allows the emergence of plasmid-free cells during cell division. Although plasmid conjugative transfer allows mobility into plasmid-free cells, the rate of such events is generally not high enough to ensure plasmid persistence. Experimental data suggest several factors that may expand the conditions favorable for plasmid maintenance, such as compensatory mutations and accessory genes that allow positive selection. Most of the previous studies focus on bacteria that carry a single plasmid. However, there is increasing evidence that multiple plasmids inhabit the same bacterial population and that interactions between them affect their transmission and persistence. Here, we adapt previous mathematical models to include multiple plasmids and perform computer simulations to study how interactions among them affect plasmid maintenance. We tested the contribution of different plasmid interaction parameters that impact three biological features: host fitness, conjugative transfer and plasmid loss – which affect plasmid persistence. The interaction affecting conjugation was studied in the contexts of intracellular and intercellular interactions, i.e., the plasmids interact when present in the same cell or when in different cells, respectively. First, we tested the effect of each type of interaction alone and concluded that only interactions affecting fitness (epistasis) prevented plasmid extinction. Although not allowing plasmid maintenance, intracellular interactions increasing conjugative efficiencies had a more determinant impact in delaying extinction than the remaining parameters. Then, we allowed multiple interactions between plasmids and concluded that, in a few cases, a combined effect of (intracellular) interactions increasing conjugation and fitness lead to plasmid maintenance. Our results show a hierarchy among these interaction parameters. Those affecting fitness favor plasmid persistence more than those affecting conjugative transfer and lastly plasmid loss. These results suggest that interactions between different plasmids can favor their persistence in bacterial communities.
Collapse
Affiliation(s)
- João Alves Gama
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Rita Zilhão
- Department of Plant Biology, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Francisco Dionisio
- Department of Plant Biology, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.,cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
32
|
Coevolution of host-plasmid pairs facilitates the emergence of novel multidrug resistance. Nat Ecol Evol 2020; 4:863-869. [PMID: 32251388 DOI: 10.1038/s41559-020-1170-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/05/2020] [Indexed: 11/08/2022]
Abstract
Multidrug resistance (MDR) of pathogens is an ongoing public health crisis exacerbated by the horizontal transfer of antibiotic resistance genes via conjugative plasmids. Factors that stabilize these plasmids in bacterial communities contribute to an even higher incidence of MDR, given the increased likelihood that a host will already contain a plasmid when it acquires another through conjugation. Here, we show one such stabilizing factor is host-plasmid coevolution under antibiotic selection, which facilitated the emergence of MDR via two distinct plasmids in communities consisting of Escherichia coli and Klebsiella pneumoniae once antibiotics were removed. In our system, evolution promoted greater stability of a plasmid in its coevolved host. Further, pleiotropic effects resulted in greater plasmid persistence in both novel host-plasmid combinations and, in some cases, multi-plasmid hosts. This evolved stability favoured the generation of MDR cells and thwarted their loss within communities with multiple plasmids. By selecting for plasmid persistence, the application of antibiotics may promote MDR well after their original period of use.
Collapse
|
33
|
Novel IS26-mediated hybrid plasmid harbouring tet(X4) in Escherichia coli. J Glob Antimicrob Resist 2020; 21:162-168. [PMID: 32247809 DOI: 10.1016/j.jgar.2020.03.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/03/2020] [Accepted: 03/20/2020] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES As the spread of antimicrobial resistance genes becomes an increasing global threat, improved understanding of genetic structure and transferability of the resistant plasmids becomes more critical. The newly description of several plasmid-mediated tet(X) variant genes, tet(X3), tet(X4) and tet(X5), poses a considerable risk for public health. This study aimed to investigate the recombination event that occurred during the conjugation process of a tet(X4)-bearing plasmid. METHODS A Tet(X4)-producing Escherichia coli isolate, 2019XSD11, was subjected to susceptibility testing, S1-PFGE and whole genome sequencing. The genetic features of plasmids and the recombination event were analysed by sequence comparison and annotation. We performed electrotransformation assay to further test the transferability of the tet(X4)-bearing plasmid. RESULTS A novel type of fusion tet(X4)-bearing plasmid was discovered from the transconjugant, plasmid p2019XSD11-TC2-284 (∼280kbp). The sequence of this plasmid consisted of a hybrid episome of two plasmids p2019XSD11-190 (∼190kbp) harbouring tet(X4) and p2019XSD11-92 (∼92kbp) harbouring blaCTX-M-55 originated from 2019XSD11. The two plasmids were concatenated by IS26 elements. Analyses of the genetic constitution of the plasmids essential for transmission showed the plasmid p2019XSD11-190 lacked an intact type IV secretion system. Beyond this, the origin of transfer region and relaxase genes in plasmid p2019XSD11-190 had no sequence similarity with those in plasmid p2019XSD11-92. CONCLUSIONS The fusion of the two plasmids probably formed through IS26 homologous recombination. Such recombination events presumably play an important role in the dissemination of the tet(X4). Molecular surveillance of tet(X) variant genes and genetic structures warrants further investigation to evaluate the underlying public health risk.
Collapse
|
34
|
Porse A, Jahn LJ, Ellabaan MMH, Sommer MOA. Dominant resistance and negative epistasis can limit the co-selection of de novo resistance mutations and antibiotic resistance genes. Nat Commun 2020; 11:1199. [PMID: 32139686 PMCID: PMC7057998 DOI: 10.1038/s41467-020-15080-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 02/12/2020] [Indexed: 01/24/2023] Open
Abstract
To tackle the global antibiotic resistance crisis, antibiotic resistance acquired either vertically by chromosomal mutations or horizontally through antibiotic resistance genes (ARGs) have been studied. Yet, little is known about the interactions between the two, which may impact the evolution of antibiotic resistance. Here, we develop a multiplexed barcoded approach to assess the fitness of 144 mutant-ARG combinations in Escherichia coli subjected to eight different antibiotics at 11 different concentrations. While most interactions are neutral, we identify significant interactions for 12% of the mutant-ARG combinations. The ability of most ARGs to confer high-level resistance at a low fitness cost shields the selective dynamics of mutants at low drug concentrations. Therefore, high-fitness mutants are often selected regardless of their resistance level. Finally, we identify strong negative epistasis between two unrelated resistance mechanisms: the tetA tetracycline resistance gene and loss-of-function nuo mutations involved in aminoglycoside tolerance. Our study highlights important constraints that may allow better prediction and control of antibiotic resistance evolution.
Collapse
Affiliation(s)
- Andreas Porse
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Leonie J Jahn
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Mostafa M H Ellabaan
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Morten O A Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark.
| |
Collapse
|
35
|
Neyaz L, Rajagopal N, Wells H, Fakhr MK. Molecular Characterization of Staphylococcus aureus Plasmids Associated With Strains Isolated From Various Retail Meats. Front Microbiol 2020; 11:223. [PMID: 32140145 PMCID: PMC7042431 DOI: 10.3389/fmicb.2020.00223] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/30/2020] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus aureus is considered one of the most important foodborne bacterial pathogens causing food poisoning and related illnesses. S. aureus strains harbor plasmids encoding genes for virulence and antimicrobial resistance, but few studies have investigated S. aureus plasmids, especially megaplasmids, in isolates from retail meats. Furthermore, knowledge about the distribution of genes encoding replication (rep) initiation proteins in food isolates is lacking. In this study, the prevalence of plasmids in S. aureus strains isolated from retail meats purchased in Oklahoma was investigated; furthermore, we evaluated associations between rep families, selected virulence and antimicrobial resistance genes, and food source origin. Two hundred and twenty-two S. aureus isolates from chicken (n = 55), beef liver (n = 43), pork (n = 42), chicken liver (n = 29), beef (n = 24), turkey (n = 22), and chicken gizzards (n = 7) were subjected to plasmid screening with alkaline lysis and PFGE to detect small-to-medium sized and large plasmids, respectively. The S. aureus isolates contained variable sizes of plasmids, and PFGE was superior to alkaline lysis in detecting large megaplasmids. A total of 26 rep families were identified by PCR, and the most dominant rep families were rep10 and rep7 in 164 isolates (89%), rep21 in 124 isolates (56%), and rep12 in 99 isolates (45%). Relationships between selected rep genes, antimicrobial resistance and virulence genes, and meat sources were detected. In conclusion, S. aureus strains isolated from retail meats harbor plasmids with various sizes and there is an association between rep genes on these plasmids and the meat source or the antimicrobial resistance of the strains harboring them.
Collapse
Affiliation(s)
- Leena Neyaz
- Department of Biological Science, The University of Tulsa, Tulsa, OK, United States
| | - Nisha Rajagopal
- Department of Biological Science, The University of Tulsa, Tulsa, OK, United States
| | - Harrington Wells
- Department of Biological Science, The University of Tulsa, Tulsa, OK, United States
| | - Mohamed K Fakhr
- Department of Biological Science, The University of Tulsa, Tulsa, OK, United States
| |
Collapse
|
36
|
|
37
|
Rugbjerg P, Sommer MOA. Overcoming genetic heterogeneity in industrial fermentations. Nat Biotechnol 2019; 37:869-876. [DOI: 10.1038/s41587-019-0171-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 05/28/2019] [Indexed: 12/15/2022]
|
38
|
Harrison E, Hall JPJ, Brockhurst MA. Migration promotes plasmid stability under spatially heterogeneous positive selection. Proc Biol Sci 2019; 285:rspb.2018.0324. [PMID: 29794045 DOI: 10.1098/rspb.2018.0324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/25/2018] [Indexed: 01/01/2023] Open
Abstract
Bacteria-plasmid associations can be mutualistic or antagonistic depending on the strength of positive selection for plasmid-encoded genes, with contrasting outcomes for plasmid stability. In mutualistic environments, plasmids are swept to high frequency by positive selection, increasing the likelihood of compensatory evolution to ameliorate the plasmid cost, which promotes long-term stability. In antagonistic environments, plasmids are purged by negative selection, reducing the probability of compensatory evolution and driving their extinction. Here we show, using experimental evolution of Pseudomonas fluorescens and the mercury-resistance plasmid, pQBR103, that migration promotes plasmid stability in spatially heterogeneous selection environments. Specifically, migration from mutualistic environments, by increasing both the frequency of the plasmid and the supply of compensatory mutations, stabilized plasmids in antagonistic environments where, without migration, they approached extinction. These data suggest that spatially heterogeneous positive selection, which is common in natural environments, coupled with migration helps to explain the stability of plasmids and the ecologically important genes that they encode.
Collapse
Affiliation(s)
- Ellie Harrison
- P3 Institute, Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 1AE, UK
| | - James P J Hall
- Department of Animal and Plant Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Michael A Brockhurst
- Department of Animal and Plant Science, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
39
|
Bardaji L, Añorga M, Echeverría M, Ramos C, Murillo J. The toxic guardians - multiple toxin-antitoxin systems provide stability, avoid deletions and maintain virulence genes of Pseudomonas syringae virulence plasmids. Mob DNA 2019; 10:7. [PMID: 30728866 PMCID: PMC6354349 DOI: 10.1186/s13100-019-0149-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/18/2019] [Indexed: 02/05/2023] Open
Abstract
Background Pseudomonas syringae is a γ-proteobacterium causing economically relevant diseases in practically all cultivated plants. Most isolates of this pathogen contain native plasmids collectively carrying many pathogenicity and virulence genes. However, P. syringae is generally an opportunistic pathogen primarily inhabiting environmental reservoirs, which could exert a low selective pressure for virulence plasmids. Additionally, these plasmids usually contain a large proportion of repeated sequences, which could compromise plasmid integrity. Therefore, the identification of plasmid stability determinants and mechanisms to preserve virulence genes is essential to understand the evolution of this pathogen and its adaptability to agroecosystems. Results The three virulence plasmids of P. syringae pv. savastanoi NCPPB 3335 contain from one to seven functional stability determinants, including three highly active toxin-antitoxin systems (TA) in both pPsv48A and pPsv48C. The TA systems reduced loss frequency of pPsv48A by two orders of magnitude, whereas one of the two replicons of pPsv48C likely confers stable inheritance by itself. Notably, inactivation of the TA systems from pPsv48C exposed the plasmid to high-frequency deletions promoted by mobile genetic elements. Thus, recombination between two copies of MITEPsy2 caused the deletion of an 8.3 kb fragment, with a frequency of 3.8 ± 0.3 × 10− 3. Likewise, one-ended transposition of IS801 generated plasmids containing deletions of variable size, with a frequency of 5.5 ± 2.1 × 10− 4, of which 80% had lost virulence gene idi. These deletion derivatives were stably maintained in the population by replication mediated by repJ, which is adjacent to IS801. IS801 also promoted deletions in plasmid pPsv48A, either by recombination or one-ended transposition. In all cases, functional TA systems contributed significantly to reduce the occurrence of plasmid deletions in vivo. Conclusions Virulence plasmids from P. syringae harbour a diverse array of stability determinants with a variable contribution to plasmid persistence. Importantly, we showed that multiple plasmid-borne TA systems have a prominent role in preserving plasmid integrity and ensuring the maintenance of virulence genes in free-living conditions. This strategy is likely widespread amongst native plasmids of P. syringae and other bacteria. Electronic supplementary material The online version of this article (10.1186/s13100-019-0149-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leire Bardaji
- 1Institute for Multidisciplinary Applied Biology, Universidad Pública de Navarra, 31192 Mutilva, Spain
| | - Maite Añorga
- 1Institute for Multidisciplinary Applied Biology, Universidad Pública de Navarra, 31192 Mutilva, Spain
| | - Myriam Echeverría
- 1Institute for Multidisciplinary Applied Biology, Universidad Pública de Navarra, 31192 Mutilva, Spain
| | - Cayo Ramos
- 2Instituto de Hortofruticultura Subtropical y Mediterránea «La Mayora», Universidad de Málaga-CSIC, Área de Genética, Universidad de Málaga, Campus de Teatinos s/n, 29010 Málaga, Spain
| | - Jesús Murillo
- 1Institute for Multidisciplinary Applied Biology, Universidad Pública de Navarra, 31192 Mutilva, Spain
| |
Collapse
|
40
|
Stevenson C, Hall JPJ, Brockhurst MA, Harrison E. Plasmid stability is enhanced by higher-frequency pulses of positive selection. Proc Biol Sci 2019; 285:rspb.2017.2497. [PMID: 29321301 PMCID: PMC5784203 DOI: 10.1098/rspb.2017.2497] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/01/2017] [Indexed: 11/22/2022] Open
Abstract
Plasmids accelerate bacterial adaptation by sharing ecologically important traits between lineages. However, explaining plasmid stability in bacterial populations is challenging owing to their associated costs. Previous theoretical and experimental studies suggest that pulsed positive selection may explain plasmid stability by favouring gene mobility and promoting compensatory evolution to ameliorate plasmid cost. Here we test how the frequency of pulsed positive selection affected the dynamics of a mercury-resistance plasmid, pQBR103, in experimental populations of Pseudomonas fluorescens SBW25. Plasmid dynamics varied according to the frequency of Hg2+ positive selection: in the absence of Hg2+ plasmids declined to low frequency, whereas pulses of Hg2+ selection allowed plasmids to sweep to high prevalence. Compensatory evolution to ameliorate the cost of plasmid carriage was widespread across the entire range of Hg2+ selection regimes, including both constant and pulsed Hg2+ selection. Consistent with theoretical predictions, gene mobility via conjugation appeared to play a greater role in promoting plasmid stability under low-frequency pulses of Hg2+ selection. However, upon removal of Hg2+ selection, plasmids which had evolved under low-frequency pulse selective regimes declined over time. Our findings suggest that temporally variable selection environments, such as those created during antibiotic treatments, may help to explain the stability of mobile plasmid-encoded resistance.
Collapse
Affiliation(s)
- Cagla Stevenson
- Department of Biology, University of York, York YO10 5DD, UK .,Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - James P J Hall
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Michael A Brockhurst
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Ellie Harrison
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
41
|
Yano H, Shintani M, Tomita M, Suzuki H, Oshima T. Reconsidering plasmid maintenance factors for computational plasmid design. Comput Struct Biotechnol J 2018; 17:70-81. [PMID: 30619542 PMCID: PMC6312765 DOI: 10.1016/j.csbj.2018.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/08/2018] [Accepted: 12/09/2018] [Indexed: 12/18/2022] Open
Abstract
Plasmids are genetic parasites of microorganisms. The genomes of naturally occurring plasmids are expected to be polished via natural selection to achieve long-term persistence in the microbial cell population. However, plasmid genomes are extremely diverse, and the rules governing plasmid genomes are not fully understood. Therefore, computationally designing plasmid genomes optimized for model and nonmodel organisms remains challenging. Here, we summarize current knowledge of the plasmid genome organization and the factors that can affect plasmid persistence, with the aim of constructing synthetic plasmids for use in gram-negative bacteria. Then, we introduce publicly available resources, plasmid data, and bioinformatics tools that are useful for computational plasmid design.
Collapse
Affiliation(s)
- Hirokazu Yano
- Graduate School of Life Sciences, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Masaki Shintani
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1, Hamamatsu 432-8561, Japan
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 3-5-1, Hamamatsu 432-8561, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, 14-1, Baba-cho, Tsuruoka, Yamagata 997-0035, Japan
- Faculty of Environment and Information Studies, Keio University, 5322, Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Haruo Suzuki
- Institute for Advanced Biosciences, Keio University, 14-1, Baba-cho, Tsuruoka, Yamagata 997-0035, Japan
- Faculty of Environment and Information Studies, Keio University, 5322, Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Taku Oshima
- Department of Biotechnology, Toyama Prefectural University, 5180, Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
42
|
San Millan A, Toll-Riera M, Qi Q, Betts A, Hopkinson RJ, McCullagh J, MacLean RC. Integrative analysis of fitness and metabolic effects of plasmids in Pseudomonas aeruginosa PAO1. THE ISME JOURNAL 2018; 12:3014-3024. [PMID: 30097663 PMCID: PMC6246594 DOI: 10.1038/s41396-018-0224-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/09/2018] [Accepted: 05/25/2018] [Indexed: 01/25/2023]
Abstract
Horizontal gene transfer (HGT) mediated by the spread of plasmids fuels evolution in prokaryotes. Although plasmids provide bacteria with new adaptive genes, they also produce physiological alterations that often translate into a reduction in bacterial fitness. The fitness costs associated with plasmids represent an important limit to plasmid maintenance in bacterial communities, but their molecular origins remain largely unknown. In this work, we combine phenomics, transcriptomics and metabolomics to study the fitness effects produced by a collection of diverse plasmids in the opportunistic pathogen Pseudomonas aeruginosa PAO1. Using this approach, we scan the physiological changes imposed by plasmids and test the generality of some main mechanisms that have been proposed to explain the cost of HGT, including increased biosynthetic burden, reduced translational efficiency, and impaired chromosomal replication. Our results suggest that the fitness effects of plasmids have a complex origin, since none of these mechanisms could individually provide a general explanation for the cost of plasmid carriage. Interestingly, our results also showed that plasmids alter the expression of a common set of metabolic genes in PAO1, and produce convergent changes in host cell metabolism. These surprising results suggest that there is a common metabolic response to plasmids in P. aeruginosa PAO1.
Collapse
Affiliation(s)
- Alvaro San Millan
- Department of Zoology, University of Oxford, Oxford, OX2 6GG, UK.
- Department of Microbiology, Hospital Universitario Ramon y Cajal (IRYCIS) and Network Research Centre for Epidemiology and Public Health (CIBERESP), 28034, Madrid, Spain.
| | - Macarena Toll-Riera
- Department of Zoology, University of Oxford, Oxford, OX2 6GG, UK.
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Quartier Sorge-Bâtiment Génopode, 1015, Lausanne, Switzerland.
| | - Qin Qi
- Department of Zoology, University of Oxford, Oxford, OX2 6GG, UK
| | - Alex Betts
- Department of Zoology, University of Oxford, Oxford, OX2 6GG, UK
| | - Richard J Hopkinson
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
- Leicester Institute of Structural and Chemical Biology and Department of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| | - James McCullagh
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - R Craig MacLean
- Department of Zoology, University of Oxford, Oxford, OX2 6GG, UK
| |
Collapse
|
43
|
Black Queen Evolution and Trophic Interactions Determine Plasmid Survival after the Disruption of the Conjugation Network. mSystems 2018; 3:mSystems00104-18. [PMID: 30320219 PMCID: PMC6172774 DOI: 10.1128/msystems.00104-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/30/2018] [Indexed: 01/21/2023] Open
Abstract
Bacterial antibiotic resistance is often a part of mobile genetic elements that move from one bacterium to another. By interfering with the horizontal movement and the maintenance of these elements, it is possible to remove the resistance from the population. Here, we show that a so-called plasmid-dependent bacteriophage causes the initially resistant bacterial population to become susceptible to antibiotics. However, this effect is efficiently countered when the system also contains a predator that feeds on bacteria. Moreover, when the environment contains antibiotics, the survival of resistance is dependent on the resistance mechanism. When bacteria can help their contemporaries to degrade antibiotics, resistance is maintained by only a fraction of the community. On the other hand, when bacteria cannot help others, then all bacteria remain resistant. The concentration of the antibiotic played a less notable role than the antibiotic used. This report shows that the survival of antibiotic resistance in bacterial communities represents a complex process where many factors present in real-life systems define whether or not resistance is actually lost. Mobile genetic elements such as conjugative plasmids are responsible for antibiotic resistance phenotypes in many bacterial pathogens. The ability to conjugate, the presence of antibiotics, and ecological interactions all have a notable role in the persistence of plasmids in bacterial populations. Here, we set out to investigate the contribution of these factors when the conjugation network was disturbed by a plasmid-dependent bacteriophage. Phage alone effectively caused the population to lose plasmids, thus rendering them susceptible to antibiotics. Leakiness of the antibiotic resistance mechanism allowing Black Queen evolution (i.e. a “race to the bottom”) was a more significant factor than the antibiotic concentration (lethal vs sublethal) in determining plasmid prevalence. Interestingly, plasmid loss was also prevented by protozoan predation. These results show that outcomes of attempts to resensitize bacterial communities by disrupting the conjugation network are highly dependent on ecological factors and resistance mechanisms. IMPORTANCE Bacterial antibiotic resistance is often a part of mobile genetic elements that move from one bacterium to another. By interfering with the horizontal movement and the maintenance of these elements, it is possible to remove the resistance from the population. Here, we show that a so-called plasmid-dependent bacteriophage causes the initially resistant bacterial population to become susceptible to antibiotics. However, this effect is efficiently countered when the system also contains a predator that feeds on bacteria. Moreover, when the environment contains antibiotics, the survival of resistance is dependent on the resistance mechanism. When bacteria can help their contemporaries to degrade antibiotics, resistance is maintained by only a fraction of the community. On the other hand, when bacteria cannot help others, then all bacteria remain resistant. The concentration of the antibiotic played a less notable role than the antibiotic used. This report shows that the survival of antibiotic resistance in bacterial communities represents a complex process where many factors present in real-life systems define whether or not resistance is actually lost.
Collapse
|
44
|
Durão P, Balbontín R, Gordo I. Evolutionary Mechanisms Shaping the Maintenance of Antibiotic Resistance. Trends Microbiol 2018; 26:677-691. [DOI: 10.1016/j.tim.2018.01.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/05/2018] [Accepted: 01/24/2018] [Indexed: 01/10/2023]
|
45
|
Nonaka L, Yamamoto T, Maruyama F, Hirose Y, Onishi Y, Kobayashi T, Suzuki S, Nomura N, Masuda M, Yano H. Interplay of a non-conjugative integrative element and a conjugative plasmid in the spread of antibiotic resistance via suicidal plasmid transfer from an aquaculture Vibrio isolate. PLoS One 2018; 13:e0198613. [PMID: 29879198 PMCID: PMC5991714 DOI: 10.1371/journal.pone.0198613] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/22/2018] [Indexed: 12/01/2022] Open
Abstract
The capture of antimicrobial resistance genes (ARGs) by mobile genetic elements (MGEs) plays a critical role in resistance acquisition for human-associated bacteria. Although aquaculture environments are recognized as important reservoirs of ARGs, intra- and intercellular mobility of MGEs discovered in marine organisms is poorly characterized. Here, we show a new pattern of interspecies ARGs transfer involving a 'non-conjugative' integrative element. To identify active MGEs in a Vibrio ponticus isolate, we conducted whole-genome sequencing of a transconjugant obtained by mating between Escherichia coli and Vibrio ponticus. This revealed integration of a plasmid (designated pSEA1) into the chromosome, consisting of a self-transmissible plasmid backbone of the MOBH group, ARGs, and a 13.8-kb integrative element Tn6283. Molecular genetics analysis suggested a two-step gene transfer model. First, Tn6283 integrates into the recipient chromosome during suicidal plasmid transfer, followed by homologous recombination between the Tn6283 copy in the chromosome and that in the newly transferred pSEA1. Tn6283 is unusual among integrative elements in that it apparently does not encode transfer function and its excision barely generates unoccupied donor sites. Thus, its movement is analogous to the transposition of insertion sequences rather than to that of canonical integrative and conjugative elements. Overall, this study reveals the presence of a previously unrecognized type of MGE in a marine organism, highlighting diversity in the mode of interspecies gene transfer.
Collapse
Affiliation(s)
- Lisa Nonaka
- Department of Microbiology, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Tatsuya Yamamoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Japan
| | | | - Yuu Hirose
- Department of Environmental and Life Sciences, Toyohashi University of Technology, Tempaku, Toyohashi, Aichi, Japan
| | - Yuki Onishi
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Ehime, Japan
| | | | - Satoru Suzuki
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Ehime, Japan
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Japan
| | - Michiaki Masuda
- Department of Microbiology, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Hirokazu Yano
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Japan
| |
Collapse
|
46
|
Hall JPJ, Brockhurst MA, Harrison E. Sampling the mobile gene pool: innovation via horizontal gene transfer in bacteria. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0424. [PMID: 29061896 DOI: 10.1098/rstb.2016.0424] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2017] [Indexed: 12/26/2022] Open
Abstract
In biological systems, evolutionary innovations can spread not only from parent to offspring (i.e. vertical transmission), but also 'horizontally' between individuals, who may or may not be related. Nowhere is this more apparent than in bacteria, where novel ecological traits can spread rapidly within and between species through horizontal gene transfer (HGT). This important evolutionary process is predominantly a by-product of the infectious spread of mobile genetic elements (MGEs). We will discuss the ecological conditions that favour the spread of traits by HGT, the evolutionary and social consequences of sharing traits, and how HGT is shaped by inherent conflicts between bacteria and MGEs.This article is part of the themed issue 'Process and pattern in innovations from cells to societies'.
Collapse
Affiliation(s)
- James P J Hall
- Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Michael A Brockhurst
- Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Ellie Harrison
- P3 Institute, Department of Animal and Plant Sciences, Arthur Willis Environment Centre, University of Sheffield, 1 Maxfield Avenue, Sheffield S10 1AE, UK
| |
Collapse
|
47
|
Clinically Relevant Plasmid-Host Interactions Indicate that Transcriptional and Not Genomic Modifications Ameliorate Fitness Costs of Klebsiella pneumoniae Carbapenemase-Carrying Plasmids. mBio 2018; 9:mBio.02303-17. [PMID: 29691332 PMCID: PMC5915730 DOI: 10.1128/mbio.02303-17] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The rapid dissemination of antimicrobial resistance (AMR) around the globe is largely due to mobile genetic elements, such as plasmids. They confer resistance to critically important drugs, including extended-spectrum beta-lactams, carbapenems, and colistin. Large, complex resistance plasmids have evolved alongside their host bacteria. However, much of the research on plasmid-host evolution has focused on small, simple laboratory plasmids in laboratory-adapted bacterial hosts. These and other studies have documented mutations in both host and plasmid genes which occur after plasmid introduction to ameliorate fitness costs of plasmid carriage. We describe here the impact of two naturally occurring variants of a large AMR plasmid (pKpQIL) on a globally successful pathogen. In our study, after pKpQIL plasmid introduction, no changes in coding domain sequences were observed in their natural host, Klebsiella pneumoniae However, significant changes in chromosomal and plasmid gene expression may have allowed the bacterium to adapt to the acquisition of the AMR plasmid. We hypothesize that this was sufficient to ameliorate the associated fitness costs of plasmid carriage, as pKpQIL plasmids were maintained without selection pressure. The dogma that removal of selection pressure (e.g., antimicrobial exposure) results in plasmid loss due to bacterial fitness costs is not true for all plasmid/host combinations. We also show that pKpQIL impacted the ability of K. pneumoniae to form a biofilm, an important aspect of virulence. This study used highly relevant models to study the interaction between AMR plasmids and pathogens and revealed striking differences from results of studies done on laboratory-adapted plasmids and strains.IMPORTANCE Antimicrobial resistance is a serious problem facing society. Many of the genes that confer resistance can be shared between bacteria through mobile genetic elements, such as plasmids. Our work shows that when two clinically relevant AMR plasmids enter their natural host bacteria, there are changes in gene expression, rather than changes to gene coding sequences. These changes in gene expression ameliorate the potential fitness costs of carriage of these AMR plasmids. In line with this, the plasmids were stable within their natural host and were not lost in the absence of selective pressure. We also show that better understanding of the impact of resistance plasmids on fundamental pathogen biology, including biofilm formation, is crucial for fighting drug-resistant infections.
Collapse
|
48
|
Abstract
Plasmids are extrachromosomal DNA elements that can be found throughout bacteria, as well as in other domains of life. Nonetheless, the evolutionary processes underlying the persistence of plasmids are incompletely understood. Bacterial plasmids may encode genes for traits that are sometimes beneficial to their hosts, such as antimicrobial resistance, virulence, heavy metal tolerance, and the catabolism of unique nutrient sources. In the absence of selection for these traits, however, plasmids generally impose a fitness cost on their hosts. As such, plasmid persistence presents a conundrum: models predict that costly plasmids will be lost over time or that beneficial plasmid genes will be integrated into the host genome. However, laboratory and comparative studies have shown that plasmids can persist for long periods, even in the absence of positive selection. Several hypotheses have been proposed to explain plasmid persistence, including host-plasmid co-adaptation, plasmid hitchhiking, cross-ecotype transfer, and high plasmid transfer rates, but there is no clear evidence that any one model adequately resolves the plasmid paradox.
Collapse
Affiliation(s)
- Amanda C Carroll
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.,Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Alex Wong
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.,Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
49
|
Lopatkin AJ, Meredith HR, Srimani JK, Pfeiffer C, Durrett R, You L. Persistence and reversal of plasmid-mediated antibiotic resistance. Nat Commun 2017; 8:1689. [PMID: 29162798 PMCID: PMC5698434 DOI: 10.1038/s41467-017-01532-1] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/22/2017] [Indexed: 02/07/2023] Open
Abstract
In the absence of antibiotic-mediated selection, sensitive bacteria are expected to displace their resistant counterparts if resistance genes are costly. However, many resistance genes persist for long periods in the absence of antibiotics. Horizontal gene transfer (primarily conjugation) could explain this persistence, but it has been suggested that very high conjugation rates would be required. Here, we show that common conjugal plasmids, even when costly, are indeed transferred at sufficiently high rates to be maintained in the absence of antibiotics in Escherichia coli. The notion is applicable to nine plasmids from six major incompatibility groups and mixed populations carrying multiple plasmids. These results suggest that reducing antibiotic use alone is likely insufficient for reversing resistance. Therefore, combining conjugation inhibition and promoting plasmid loss would be an effective strategy to limit conjugation-assisted persistence of antibiotic resistance. It is unclear whether the transfer of plasmids carrying antibiotic resistance genes can explain their persistence when antibiotics are not present. Here, Lopatkin et al. show that conjugal plasmids, even when costly, are indeed transferred at sufficiently high rates to be maintained in the absence of antibiotics.
Collapse
Affiliation(s)
- Allison J Lopatkin
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Hannah R Meredith
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Jaydeep K Srimani
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Connor Pfeiffer
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Rick Durrett
- Department of Mathematics, Duke University, Durham, NC, 27708, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA. .,Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA. .,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
50
|
San Millan A, MacLean RC. Fitness Costs of Plasmids: a Limit to Plasmid Transmission. Microbiol Spectr 2017; 5:10.1128/microbiolspec.mtbp-0016-2017. [PMID: 28944751 PMCID: PMC11687550 DOI: 10.1128/microbiolspec.mtbp-0016-2017] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Indexed: 12/11/2022] Open
Abstract
Plasmids mediate the horizontal transmission of genetic information between bacteria, facilitating their adaptation to multiple environmental conditions. An especially important example of the ability of plasmids to catalyze bacterial adaptation and evolution is their instrumental role in the global spread of antibiotic resistance, which constitutes a major threat to public health. Plasmids provide bacteria with new adaptive tools, but they also entail a metabolic burden that, in the absence of selection for plasmid-encoded traits, reduces the competitiveness of the plasmid-carrying clone. Although this fitness reduction can be alleviated over time through compensatory evolution, the initial cost associated with plasmid carriage is the main constraint on the vertical and horizontal replication of these genetic elements. The fitness effects of plasmids therefore have a crucial influence on their ability to associate with new bacterial hosts and consequently on the evolution of plasmid-mediated antibiotic resistance. However, the molecular mechanisms underlying plasmid fitness cost remain poorly understood. Here, we analyze the literature in the field and examine the potential fitness effects produced by plasmids throughout their life cycle in the host bacterium. We also explore the various mechanisms evolved by plasmids and bacteria to minimize the cost entailed by these mobile genetic elements. Finally, we discuss potential future research directions in the field.
Collapse
Affiliation(s)
- Alvaro San Millan
- Department of Microbiology, Hospital Universitario Ramon y Cajal (IRYCIS) and Centro de Investigacion Biomedica en Red (CIBERESP), Madrid, Spain
| | - R Craig MacLean
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|