1
|
Alsulais FM, Alhaidhal BA, Mothana RA, Alanzi AR. Identification of echinoderm metabolites as potential inhibitors targeting wild-type and mutant forms of Escherichia coli RNA polymerase (RpoB) for tuberculosis treatment. PLoS One 2024; 19:e0304587. [PMID: 39213289 PMCID: PMC11364244 DOI: 10.1371/journal.pone.0304587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/14/2024] [Indexed: 09/04/2024] Open
Abstract
Tuberculosis (TB) remains a critical global health challenge, with the emergence of drug-resistant strains heightening concerns. The development of effective drugs targeting both wild-type (WT) and mutant Escherichia coli RNA polymerase β subunit (RpoB) is crucial for global TB control, aiming to alleviate TB incidence, mortality, and transmission. This study employs molecular docking and ADMET analyses to screen echinoderm metabolites for their potential inhibition of Escherichia coli RNA polymerase, focusing on wild-type and mutant RpoB variants associated with TB drug resistance. The evaluation of docking results using the glide gscore led to the selection of the top 10 compounds for each protein receptor. Notably, CMNPD2176 demonstrated the highest binding affinity against wild-type RpoB, CMNPD13873 against RpoB D516V mutant, CMNPD2177 against RpoB H526Y mutant, and CMNPD11620 against RpoB S531L mutant. ADMET screening confirmed the therapeutic potential of these selected compounds. Additionally, MM-GBSA binding free energy calculations and molecular dynamics simulations provided further support for the docking investigations. While the results suggest these compounds could be viable for tuberculosis treatment, it is crucial to note that further in-vitro research is essential for the transition from prospective inhibitors to clinical drugs.
Collapse
Affiliation(s)
- Fatimah M. Alsulais
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bayan A. Alhaidhal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah R. Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Zhao H, Li J, Feng S, Xu L, Yan B, Li C, Li M, Wang Y, Li Y, Liang L, Zhou D, Wan J, Wang W, Tian GB, Gu B, Huang X. High-throughput mutagenesis and screening approach for the identification of drug-resistant mutations in the rifampicin resistance-determining region of mycobacteria. Int J Antimicrob Agents 2024; 63:107158. [PMID: 38537722 DOI: 10.1016/j.ijantimicag.2024.107158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/05/2024] [Accepted: 03/22/2024] [Indexed: 05/31/2024]
Abstract
Rifampicin is the most powerful first-line antibiotic for tuberculosis, which is caused by Mycobacterium tuberculosis. Although accumulating evidence from sequencing data of clinical M. tuberculosis isolates suggested that mutations in the rifampicin-resistance-determining region (RRDR) are strongly associated with rifampicin resistance, the comprehensive characterisation of RRDR polymorphisms that confer this resistance remains challenging. By incorporating I-SceI sites for I-SceI-based integrant removal and utilizing an L5 swap strategy, we efficiently replaced the integrated plasmid with alternative alleles, making mass allelic exchange feasible in mycobacteria. Using this method to establish a fitness-related gain-of function screen, we generated a mutant library that included all single-amino-acid mutations in the RRDR, and identified the important positions corresponding to some well-known rifampicin-resistance mutations (Q513, D516, S522, H525, R529, S531). We also detected a novel two-point mutation located in the RRDR confers a fitness advantage to M. smegmatis in the presence or absence of rifampicin. Our method provides a comprehensive insight into the growth phenotypes of RRDR mutants and should facilitate the development of anti-tuberculosis drugs.
Collapse
Affiliation(s)
- Hui Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, China; Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Jiachen Li
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Siyuan Feng
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Lin Xu
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Bin Yan
- Department of Neonatal Surgery, Guangzhou Women and Children's Medical Center, Guangzhou 510080, China
| | - Chengjuan Li
- School of Basic Medical Sciences, Xizang Minzu University, Xianyang, 712082, China
| | - Meisong Li
- Department of Clinical Laboratory Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yaxuan Wang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Yaxin Li
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Lujie Liang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Dianrong Zhou
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Jia Wan
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Wenli Wang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Guo-Bao Tian
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China.
| | - Bing Gu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China.
| | - Xi Huang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China.
| |
Collapse
|
3
|
Venkataraman P, Nagendra P, Ahlawat N, Brajesh RG, Saini S. Convergent genetic adaptation of Escherichia coli in minimal media leads to pleiotropic divergence. Front Mol Biosci 2024; 11:1286824. [PMID: 38660375 PMCID: PMC11039892 DOI: 10.3389/fmolb.2024.1286824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/15/2024] [Indexed: 04/26/2024] Open
Abstract
Adaptation in an environment can either be beneficial, neutral or disadvantageous in another. To test the genetic basis of pleiotropic behaviour, we evolved six lines of E. coli independently in environments where glucose and galactose were the sole carbon sources, for 300 generations. All six lines in each environment exhibit convergent adaptation in the environment in which they were evolved. However, pleiotropic behaviour was observed in several environmental contexts, including other carbon environments. Genome sequencing reveals that mutations in global regulators rpoB and rpoC cause this pleiotropy. We report three new alleles of the rpoB gene, and one new allele of the rpoC gene. The novel rpoB alleles confer resistance to Rifampicin, and alter motility. Our results show how single nucleotide changes in the process of adaptation in minimal media can lead to wide-scale pleiotropy, resulting in changes in traits that are not under direct selection.
Collapse
Affiliation(s)
| | | | | | | | - Supreet Saini
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
4
|
Voedts H, Anoyatis-Pelé C, Langella O, Rusconi F, Hugonnet JE, Arthur M. (p)ppGpp modifies RNAP function to confer β-lactam resistance in a peptidoglycan-independent manner. Nat Microbiol 2024; 9:647-656. [PMID: 38443580 DOI: 10.1038/s41564-024-01609-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 01/16/2024] [Indexed: 03/07/2024]
Abstract
(p)ppGpp is a nucleotide alarmone that controls bacterial response to nutrient deprivation. Since elevated (p)ppGpp levels confer mecillinam resistance and are essential for broad-spectrum β-lactam resistance as mediated by the β-lactam-insensitive transpeptidase YcbB (LdtD), we hypothesized that (p)ppGpp might affect cell wall peptidoglycan metabolism. Here we report that (p)ppGpp-dependent β-lactam resistance does not rely on any modification of peptidoglycan metabolism, as established by analysis of Escherichia coli peptidoglycan structure using high-resolution mass spectrometry. Amino acid substitutions in the β or β' RNA polymerase (RNAP) subunits, alone or in combination with the CRISPR interference-mediated downregulation of three of seven ribosomal RNA operons, were sufficient for resistance, although β-lactams have no known impact on the RNAP or ribosomes. This implies that modifications of RNAP and ribosome functions are critical to prevent downstream effects of the inactivation of peptidoglycan transpeptidases by β-lactams.
Collapse
Affiliation(s)
- Henri Voedts
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, Paris, France
| | - Constantin Anoyatis-Pelé
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, Paris, France
| | - Olivier Langella
- GQE-Le Moulon/PAPPSO, Université Paris-Saclay, INRAE, CNRS, AgroParisTech, IDEEV, Gif-sur-Yvette, France
| | - Filippo Rusconi
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, Paris, France
- GQE-Le Moulon/PAPPSO, Université Paris-Saclay, INRAE, CNRS, AgroParisTech, IDEEV, Gif-sur-Yvette, France
| | - Jean-Emmanuel Hugonnet
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, Paris, France.
| | - Michel Arthur
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, Paris, France.
| |
Collapse
|
5
|
Yang KB, Cameranesi M, Gowder M, Martinez C, Shamovsky Y, Epshtein V, Hao Z, Nguyen T, Nirenstein E, Shamovsky I, Rasouly A, Nudler E. High-resolution landscape of an antibiotic binding site. Nature 2023; 622:180-187. [PMID: 37648864 PMCID: PMC10550828 DOI: 10.1038/s41586-023-06495-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
Antibiotic binding sites are located in important domains of essential enzymes and have been extensively studied in the context of resistance mutations; however, their study is limited by positive selection. Using multiplex genome engineering1 to overcome this constraint, we generate and characterize a collection of 760 single-residue mutants encompassing the entire rifampicin binding site of Escherichia coli RNA polymerase (RNAP). By genetically mapping drug-enzyme interactions, we identify an alpha helix where mutations considerably enhance or disrupt rifampicin binding. We find mutations in this region that prolong antibiotic binding, converting rifampicin from a bacteriostatic to bactericidal drug by inducing lethal DNA breaks. The latter are replication dependent, indicating that rifampicin kills by causing detrimental transcription-replication conflicts at promoters. We also identify additional binding site mutations that greatly increase the speed of RNAP.Fast RNAP depletes the cell of nucleotides, alters cell sensitivity to different antibiotics and provides a cold growth advantage. Finally, by mapping natural rpoB sequence diversity, we discover that functional rifampicin binding site mutations that alter RNAP properties or confer drug resistance occur frequently in nature.
Collapse
Affiliation(s)
- Kevin B Yang
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Maria Cameranesi
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Manjunath Gowder
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Criseyda Martinez
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Yosef Shamovsky
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Vitaliy Epshtein
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Zhitai Hao
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Thao Nguyen
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Eric Nirenstein
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ilya Shamovsky
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Aviram Rasouly
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA.
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA.
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA.
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Sabatino R, Sbaffi T, Sivalingam P, Corno G, Fontaneto D, Di Cesare A. Bacteriophages limitedly contribute to the antimicrobial resistome of microbial communities in wastewater treatment plants. Microbiol Spectr 2023; 11:e0110123. [PMID: 37724865 PMCID: PMC10580818 DOI: 10.1128/spectrum.01101-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/26/2023] [Indexed: 09/21/2023] Open
Abstract
Bacteriophages are known as players in the transmission of antimicrobial resistance genes (ARGs) by horizontal gene transfer. In this study, we characterized the bacteriophage community and the associated ARGs to estimate the potential for phages to spread ARGs in aquatic ecosystems analyzing the intra- and extracellular DNA isolated from two wastewater treatment plants (WWTPs) by shotgun metagenomics. We compared the phage antimicrobial resistome with the bacterial resistome and investigated the effect of the final disinfection treatment on the phage community and its resistome. Phage community was mainly composed by Siphoviridae and other members of the order Caudovirales. The final disinfection only marginally affected the composition of the phage community, and it was not possible to measure its effect on the antimicrobial resistome. Indeed, only three phage metagenome-assembled genomes (pMAGs) annotated as Siphoviridae, Padoviridae, and Myoviridae were positive for putative ARGs. Among the detected ARGs, i.e., dfrB6, rpoB mutants, and EF-Tu mutants, the first one was not annotated in the bacterial MAGs. Overall, these results demonstrate that bacteriophages limitedly contribute to the whole antimicrobial resistome. However, in order to obtain a comprehensive understanding of the antimicrobial resistome within a microbial community, the role of bacteriophages needs to be investigated. IMPORTANCE WWTPs are considered hotspots for the spread of ARGs by horizontal gene transfer. In this study, we evaluated the phage composition and the associated antimicrobial resistome by shotgun metagenomics of samples collected before and after the final disinfection treatment. Only a few bacteriophages carried ARGs. However, since one of the detected genes was not found in the bacterial metagenome-assembled genomes, it is necessary to investigate the phage community in order to gain a comprehensive overview of the antimicrobial resistome. This investigation could help assess the potential threats to human health.
Collapse
Affiliation(s)
- Raffaella Sabatino
- Molecular Ecology Group (MEG), National Research Council of Italy – Water Research Institute (CNR-IRSA), Verbania, Italy
| | - Tomasa Sbaffi
- Molecular Ecology Group (MEG), National Research Council of Italy – Water Research Institute (CNR-IRSA), Verbania, Italy
| | - Periyasamy Sivalingam
- Molecular Ecology Group (MEG), National Research Council of Italy – Water Research Institute (CNR-IRSA), Verbania, Italy
| | - Gianluca Corno
- Molecular Ecology Group (MEG), National Research Council of Italy – Water Research Institute (CNR-IRSA), Verbania, Italy
| | - Diego Fontaneto
- Molecular Ecology Group (MEG), National Research Council of Italy – Water Research Institute (CNR-IRSA), Verbania, Italy
| | - Andrea Di Cesare
- Molecular Ecology Group (MEG), National Research Council of Italy – Water Research Institute (CNR-IRSA), Verbania, Italy
| |
Collapse
|
7
|
Ashrafi R, Bruneaux M, Sundberg LR, Hoikkala V, Karvonen A. Multispecies coinfections and presence of antibiotics shape resistance and fitness costs in a pathogenic bacterium. Mol Ecol 2023; 32:4447-4460. [PMID: 37303030 DOI: 10.1111/mec.17040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/24/2023] [Indexed: 06/13/2023]
Abstract
Increasing antimicrobial resistance (AMR) poses a challenge for treatment of bacterial diseases. In real life, bacterial infections are typically embedded within complex multispecies communities and influenced by the environment, which can shape costs and benefits of AMR. However, knowledge of such interactions and their implications for AMR in vivo is limited. To address this knowledge gap, we investigated fitness-related traits of a pathogenic bacterium (Flavobacterium columnare) in its fish host, capturing the effects of bacterial antibiotic resistance, coinfections between bacterial strains and metazoan parasites (fluke Diplostomum pseudospathaceum) and antibiotic exposure. We quantified real-time replication and virulence of sensitive and resistant bacteria and demonstrate that both bacteria can benefit from coinfection in terms of persistence and replication, depending on the coinfecting partner and antibiotic presence. We also show that antibiotics can benefit resistant bacteria by increasing bacterial replication under coinfection with flukes. These results emphasize the importance of diverse, inter-kingdom coinfection interactions and antibiotic exposure in shaping costs and benefits of AMR, supporting their role as significant contributors to spread and long-term persistence of resistance.
Collapse
Affiliation(s)
- Roghaieh Ashrafi
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Matthieu Bruneaux
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Lotta-Riina Sundberg
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Ville Hoikkala
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Anssi Karvonen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
8
|
Patel Y, Soni V, Rhee KY, Helmann JD. Mutations in rpoB That Confer Rifampicin Resistance Can Alter Levels of Peptidoglycan Precursors and Affect β-Lactam Susceptibility. mBio 2023; 14:e0316822. [PMID: 36779708 PMCID: PMC10128067 DOI: 10.1128/mbio.03168-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/23/2023] [Indexed: 02/14/2023] Open
Abstract
Bacteria can adapt to stressful conditions through mutations affecting the RNA polymerase core subunits that lead to beneficial changes in transcription. In response to selection with rifampicin (RIF), mutations arise in the RIF resistance-determining region (RRDR) of rpoB that reduce antibiotic binding. These changes can also alter transcription and thereby have pleiotropic effects on bacterial fitness. Here, we studied the evolution of resistance in Bacillus subtilis to the synergistic combination of RIF and the β-lactam cefuroxime (CEF). Two independent evolution experiments led to the recovery of a single rpoB allele (S487L) that was able to confer resistance to RIF and CEF through a single mutation. Two other common RRDR mutations made the cells 32 times more sensitive to CEF (H482Y) or led to only modest CEF resistance (Q469R). The diverse effects of these three mutations on CEF resistance are correlated with differences in the expression of peptidoglycan (PG) synthesis genes and in the levels of two metabolites crucial in regulating PG synthesis, glucosamine-6-phosphate (GlcN-6-P) and UDP-N-acetylglucosamine (UDP-GlcNAc). We conclude that RRDR mutations can have widely varying effects on pathways important for cell wall biosynthesis, and this may restrict the spectrum of mutations that arise during combination therapy. IMPORTANCE Rifampicin (RIF) is one of the most valued drugs in the treatment of tuberculosis. TB treatment relies on a combination therapy and for multidrug-resistant strains may include β-lactams. Mutations in rpoB present a common route for emergence of resistance to RIF. In this study, using B. subtilis as a model, we evaluate the emergence of resistance for the synergistic combination of RIF and the β-lactam cefuroxime (CEF). One clinically relevant rpoB mutation conferred resistance to both RIF and CEF, whereas one other increased CEF sensitivity. We were able to link these CEF sensitivity phenotypes to accumulation of UDP-N-acetylglucosamine (UDP-GlcNAc), which feedback regulates GlmS activity and thereby peptidoglycan synthesis. Further, we found that higher CEF concentrations precluded the emergence of high RIF resistance. Collectively, these results suggest that multidrug treatment regimens may limit the available pathways for the evolution of antibiotic resistance.
Collapse
Affiliation(s)
- Yesha Patel
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Vijay Soni
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, USA
| | - Kyu Y. Rhee
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, USA
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
9
|
Investigation of Multi-Subunit Mycobacterium tuberculosis DNA-Directed RNA Polymerase and Its Rifampicin Resistant Mutants. Int J Mol Sci 2023; 24:ijms24043313. [PMID: 36834726 PMCID: PMC9965755 DOI: 10.3390/ijms24043313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Emerging Mycobacterium tuberculosis (Mtb) resistant strains have continued to limit the efficacies of existing antitubercular therapies. More specifically, mutations in the RNA replicative machinery of Mtb, RNA polymerase (RNAP), have been widely linked to rifampicin (RIF) resistance, which has led to therapeutic failures in many clinical cases. Moreover, elusive details on the underlying mechanisms of RIF-resistance caused by Mtb-RNAP mutations have hampered the development of new and efficient drugs that are able to overcome this challenge. Therefore, in this study we attempt to resolve the molecular and structural events associated with RIF-resistance in nine clinically reported missense Mtb RNAP mutations. Our study, for the first time, investigated the multi-subunit Mtb RNAP complex and findings revealed that the mutations commonly disrupted structural-dynamical attributes that may be essential for the protein's catalytic functions, particularly at the βfork loop 2, β'zinc-binding domain, the β' trigger loop and β'jaw, which in line with previous experimental reports, are essential for RNAP processivity. Complementarily, the mutations considerably perturbed the RIF-BP, which led to alterations in the active orientation of RIF needed to obstruct RNA extension. Consequentially, essential interactions with RIF were lost due to the mutation-induced repositioning with corresponding reductions in the binding affinity of the drug observed in majority of the mutants. We believe these findings will significantly aid future efforts in the discovery of new treatment options with the potential to overcome antitubercular resistance.
Collapse
|
10
|
Feng S, Liang L, Shen C, Lin D, Li J, Lyu L, Liang W, Zhong LL, Cook GM, Doi Y, Chen C, Tian GB. A CRISPR-guided mutagenic DNA polymerase strategy for the detection of antibiotic-resistant mutations in M. tuberculosis. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:354-367. [PMID: 35950213 PMCID: PMC9358013 DOI: 10.1016/j.omtn.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 07/08/2022] [Indexed: 11/26/2022]
Abstract
A sharp increase in multidrug-resistant tuberculosis (MDR-TB) threatens human health. Spontaneous mutation in essential gene confers an ability of Mycobacterium tuberculosis resistance to anti-TB drugs. However, conventional laboratory strategies for identification and prediction of the mutations in this slowly growing species remain challenging. Here, by combining XCas9 nickase and the error-prone DNA polymerase A from M. tuberculosis, we constructed a CRISPR-guided DNA polymerase system, CAMPER, for effective site-directed mutagenesis of drug-target genes in mycobacteria. CAMPER was able to generate mutagenesis of all nucleotides at user-defined loci, and its bidirectional mutagenesis at nick sites allowed editing windows with lengths up to 80 nucleotides. Mutagenesis of drug-targeted genes in Mycobacterium smegmatis and M. tuberculosis with this system significantly increased the fraction of the antibiotic-resistant bacterial population to a level approximately 60- to 120-fold higher than that in unedited cells. Moreover, this strategy could facilitate the discovery of the mutation conferring antibiotic resistance and enable a rapid verification of the growth phenotype-mutation genotype association. Our data demonstrate that CAMPER facilitates targeted mutagenesis of genomic loci and thus may be useful for broad functions such as resistance prediction and development of novel TB therapies.
Collapse
|
11
|
Stephanie F, Saragih M, Tambunan USF, Siahaan TJ. Structural Design and Synthesis of Novel Cyclic Peptide Inhibitors Targeting Mycobacterium tuberculosis Transcription. Life (Basel) 2022; 12:life12091333. [PMID: 36143370 PMCID: PMC9506182 DOI: 10.3390/life12091333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022] Open
Abstract
Tuberculosis (TB) remains one of the deadliest infectious diseases in the world. Although several established antitubercular drugs have been found, various factors obstruct efforts to combat this disease due to the existence of drug-resistance (DR) TB strains, the need for lengthy treatment, and the occurrence of side effects from drug–drug interactions. Rifampicin (RIF) is the first line of antitubercular drugs and targets RNA polymerase (RNAP) of Mycobacterium tuberculosis (MTB). Here, RIF blocks the synthesis of long RNA during transcription initiation. The efficacy of RIF is low in DR-TB strains, and the use of RIF leads to various side effects. In this study, novel cyclic peptides were computationally designed as inhibitors of MTB transcription initiation. The designed cyclic peptides were subjected to a virtual screening to generate compounds that can bind to the RIF binding site in MTB RNAP subunit β (RpoB) for obtaining a new potential TB drug with a safe clinical profile. The molecular simulations showed that the cyclic peptides were capable of binding with RpoB mutants, suggesting that they can be possibility utilized for treating DR-TB. Structural modifications were carried out by acetylation and amidation of the N- and C-terminus, respectively, to improve their plasma stability and bioavailability. The modified linear and cyclic peptides were successfully synthesized with a solid-phase peptide synthesis method using Fmoc chemistry, and they were characterized by analytical HPLC, LC-ESI-MS+, and 1H NMR.
Collapse
Affiliation(s)
- Filia Stephanie
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Jawa Barat 16424, Indonesia
| | - Mutiara Saragih
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Jawa Barat 16424, Indonesia
| | - Usman Sumo Friend Tambunan
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Jawa Barat 16424, Indonesia
| | - Teruna J. Siahaan
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66045, USA
- Correspondence: ; Tel.: +1-(785)-864-7327
| |
Collapse
|
12
|
Rajeswaran W, Ashkar SR, Lee PH, Yeomans L, Shin Y, Franzblau SG, Murakami KS, Showalter HD, Garcia GA. Optimization of Benzoxazinorifamycins to Improve Mycobacterium tuberculosis RNA Polymerase Inhibition and Treatment of Tuberculosis. ACS Infect Dis 2022; 8:1422-1438. [PMID: 35772744 DOI: 10.1021/acsinfecdis.1c00636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rifampin (RMP), a very potent inhibitor of the Mycobacterium tuberculosis (MTB) RNA polymerase (RNAP), remains a keystone in the treatment of tuberculosis since its introduction in 1965. However, rifamycins suffer from serious drawbacks, including 3- to 9-month treatment times, Cyp450 induction (particularly problematic for HIV-MTB coinfection), and resistant mutations within RNAP that yield RIF-resistant (RIFR) MTB strains. There is a clear and pressing need for improved TB therapies. We have utilized a structure-based drug design approach to synthesize and test novel benzoxazinorifamycins (bxRIF), congeners of the clinical candidate rifalazil. Our goal is to gain binding interactions that will compensate for the loss of RIF-binding affinity to the (RIFR) MTB RNAP and couple those with substitutions that we have previously found that essentially eliminate Cyp450 induction. Herein, we report a systematic exploration of 42 substituted bxRIFs that have yielded an analogue (27a) that has an excellent in vitro activity (MTB RNAP inhibition, MIC, MBC), enhanced (∼30-fold > RMP) activity against RIFR MTB RNAP, negligible hPXR activation, good mouse pharmacokinetics, and excellent activity with no observable adverse effects in an acute mouse TB model. In a time-kill study, 27a has a 7 day MBC that is ∼10-fold more potent than RMP. These results suggest that 27a may exhibit a faster kill rate than RMP, which could possibly reduce the clinical treatment time. Our synthetic protocol enabled the synthesis of ∼2 g of 27a at >95% purity in 3 months, demonstrating the feasibility of scale-up synthesis of bxRIFs for preclinical and clinical studies.
Collapse
Affiliation(s)
- Walajapet Rajeswaran
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, United States.,Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, Michigan 48109-1065, United States
| | - Shireen R Ashkar
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, United States
| | - Pil H Lee
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, United States.,Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, Michigan 48109-1065, United States
| | - Larisa Yeomans
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, United States
| | - Yeonoh Shin
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, Pennsylvania 16801, United States
| | - Scott G Franzblau
- Institute for Tuberculosis Research, University of Illinois, Chicago, Illinois 60612-7231, United States
| | - Katsuhiko S Murakami
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, Pennsylvania 16801, United States
| | - Hollis D Showalter
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, United States
| | - George A Garcia
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, United States
| |
Collapse
|
13
|
Ashkar SR, Rajeswaran W, Lee PH, Yeomans L, Thrasher CM, Franzblau SG, Murakami KS, Showalter HD, Garcia GA. Optimization of Benzoxazinorifamycins to Minimize hPXR Activation for the Treatment of Tuberculosis and HIV Coinfection. ACS Infect Dis 2022; 8:1408-1421. [PMID: 35772743 DOI: 10.1021/acsinfecdis.1c00635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tuberculosis (TB) is one of the most significant world health problems, responsible for 1.5 M deaths in 2020, and yet, current treatments rely largely on 40 year old paradigms. Although the rifamycins (RIFs), best exemplified by the drug rifampin (RMP), represent a well-studied and therapeutically effective chemotype that targets the bacterial RNA polymerase (RNAP), these agents still suffer from serious drawbacks including the following: 3-9 month treatment times; cytochrome P450 (Cyp450) induction [particularly problematic for human immunodeficiency virus-Mycobacterium tuberculosis (MTB) co-infection]; and the existence of RIF-resistant (RIFR) MTB strains. We have utilized a structure-based drug design approach to synthesize and test 15 benzoxazinorifamycins (bxRIFs), congeners of the clinical candidate rifalazil, to minimize human pregnane X receptor (hPXR) activation while improving potency against MTB. We have determined the compounds' activation of the hPXR [responsible for inducing Cyp450 3A4 (CYP3A4)]. Compound IC50s have been determined against the wild-type and the most prevalent RIFR (β-S450L) mutant MTB RNAPs. We have also determined their bactericidal activity against "normal" replicating MTB and a model for non-replicating, persister MTB. We have identified a minimal substitution and have probed larger substitutions that exhibit negligible hPXR activation (1.2-fold over the dimethyl sulfoxide control), many of which are 5- to 10-fold more potent against RNAPs and MTB than RMP. Importantly, we have analogues that are essentially equipotent against replicating MTB and non-replicating persister MTB, a property that is correlated with faster kill rates and may lead to shorter treatment durations. This work provides a proof of principle that the ansamycin core remains an attractive and effective scaffold for novel and dramatically improved RIFs.
Collapse
Affiliation(s)
- Shireen R Ashkar
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, United States
| | - Walajapet Rajeswaran
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, United States.,Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, Michigan 48109-1065, United States
| | - Pil H Lee
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, United States.,Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, Michigan 48109-1065, United States
| | - Larisa Yeomans
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, United States
| | - Claire M Thrasher
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, United States
| | - Scott G Franzblau
- Institute for Tuberculosis Research, University of Illinois, Chicago, Illinois 60612-7231, United States
| | - Katsuhiko S Murakami
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, University Park, Pennsylvania 16801, United States
| | - Hollis D Showalter
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, United States
| | - George A Garcia
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, United States
| |
Collapse
|
14
|
Differential Impact of the rpoB Mutant on Rifampin and Rifabutin Resistance Signatures of Mycobacterium tuberculosis Is Revealed Using a Whole-Genome Sequencing Assay. Microbiol Spectr 2022; 10:e0075422. [PMID: 35924839 PMCID: PMC9430608 DOI: 10.1128/spectrum.00754-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Drug resistance in Mycobacterium tuberculosis (MTB) has long been a serious health issue worldwide. Most drug-resistant MTB isolates were identified due to treatment failure or in clinical examinations 3~6 months postinfection. In this study, we propose a whole-genome sequencing (WGS) pipeline via the Nanopore MinION platform to facilitate the efficacy of phenotypic identification of clinical isolates. We used the Nanopore MinION platform to perform WGS of clinical MTB isolates, including susceptible (n = 30) and rifampin- (RIF) or rifabutin (RFB)-resistant isolates (n = 20) according to results of a susceptibility test. Nonsynonymous variants within the rpoB gene associated with RIF resistance were identified using the WGS analytical pipeline. In total, 131 variants within the rpoB gene in RIF-resistant isolates were identified. The presence of the emergent Asp531Gly or His445Gln was first identified to be associated with the rifampin and rifabutin resistance signatures of clinical isolates. The results of the minimum inhibitory concentration (MIC) test further indicated that the Ser450Leu or the mutant within the rifampin resistance-determining region (RRDR)-associated rifabutin-resistant signature was diminished in the presence of novel mutants, including Phe669Val, Leu206Ile, or Met148Leu, identified in this study. IMPORTANCE Current approaches to diagnose drug-resistant MTB are time-consuming, consequently leading to inefficient intervention or further disease transmission. In this study, we curated lists of coding variants associated with differential rifampin and rifabutin resistant signatures using a single molecule real-time (SMRT) sequencing platform with a shorter hands-on time. Accordingly, the emerging WGS pipeline constitutes a potential platform for efficacious and accurate diagnosis of drug-resistant MTB isolates.
Collapse
|
15
|
Sun Q, Liao X, Wang C, Jiang G, Yang J, Zhao J, Huang H, Wang G, Li H. In vitro activity of fidaxomicin against nontuberculosis mycobacteria. J Med Microbiol 2022; 71. [PMID: 35708979 DOI: 10.1099/jmm.0.001549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Nontuberculous mycobacteria (NTM) infections are increasing worldwide and are relatively resistant to many of the first- and second-line drugs to treat tuberculosis. Macrolide antibiotics, such as clarithromycin and azithromycin, are the key drugs for treating NTM infections. Fidaxomicin is a macrolide antibiotic that is widely used in treating Clostridium difficle (C.difficile) infections, and has high in vitro activity against Mycobacterium tuberculosis especially multidrug-resistant tuberculosis (MDR-TB) and has no cross-resistance with rifampicin.Hypothesis. Fidaxomicin may have in vitro activity against NTM strains.Aim. To find that whether the macrolide antibiotic fidaxomicin has in vitro activity against NTM strains.Methodology. Fidaxomicin used in this study was firstly tested on C. difficile reference strains and has shown to be effective and workable. And then 28 rapidly growing mycobacteria (RGM), 12 slowly growing mycobacteria (SGM) reference strains and 103 NTM clinical isolates were tested by the microplate-based AlamarBlue assay (MABA) method to determine the MICs. Fidaxomicin, rifampicin and clarithromycin were tested against M. abcessus complex subspecies 14 M. abscessus and 5 M. massiliense strains for inducible resistance determination.Results. In total, 21 out of 28 RGM and 9 of 12 SGM reference strains have the MICs of fidaxomicin at or below 1 µg ml-1. Fidaxomicin also showed low MIC values for some clinical isolates including M. abscessus complex, M. avium complex, M. fortuitum, M. kansasii and M. parascrofulaceum. Fidaxomicin also has no inducible macrolide resistance in M. abscessus complex in comparison with clarithromycin.Conclusion. Fidaxomicin has high in vitro activity against most of the NTM reference strains and some prevalent NTM clinical isolates. This promising finding warrants further investigation on the actions of fidaxomicn in vivo and as a potential antibiotic for NTM treatment.
Collapse
Affiliation(s)
- Qing Sun
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, PR China
| | - Xinlei Liao
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, PR China
| | - Chenqian Wang
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, PR China
| | - Guanglu Jiang
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, PR China
| | - Jing Yang
- Hebei Provincial Center for Clinical Laboratories, Second Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, PR China
| | - Jianhong Zhao
- Hebei Provincial Center for Clinical Laboratories, Second Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, PR China
| | - Hairong Huang
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, PR China
| | - Guirong Wang
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, PR China
| | - Hao Li
- College of Veterinary Medicine, China Agricultural University, Beijing, PR China.,Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, PR China
| |
Collapse
|
16
|
Kirsch SH, Haeckl FPJ, Müller R. Beyond the approved: target sites and inhibitors of bacterial RNA polymerase from bacteria and fungi. Nat Prod Rep 2022; 39:1226-1263. [PMID: 35507039 DOI: 10.1039/d1np00067e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: 2016 to 2022RNA polymerase (RNAP) is the central enzyme in bacterial gene expression representing an attractive and validated target for antibiotics. Two well-known and clinically approved classes of natural product RNAP inhibitors are the rifamycins and the fidaxomycins. Rifampicin (Rif), a semi-synthetic derivative of rifamycin, plays a crucial role as a first line antibiotic in the treatment of tuberculosis and a broad range of bacterial infections. However, more and more pathogens such as Mycobacterium tuberculosis develop resistance, not only against Rif and other RNAP inhibitors. To overcome this problem, novel RNAP inhibitors exhibiting different target sites are urgently needed. This review includes recent developments published between 2016 and today. Particular focus is placed on novel findings concerning already known bacterial RNAP inhibitors, the characterization and development of new compounds isolated from bacteria and fungi, and providing brief insights into promising new synthetic compounds.
Collapse
Affiliation(s)
- Susanne H Kirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - F P Jake Haeckl
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.,Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
17
|
Ni H, Kwan-wai Chan B, Cheng Q, Chen K, Xie M, Wang H, Wai-chi Chan E, Chen S. A novel clinical therapy to combat infections caused by Hypervirulent Carbapenem-Resistant Klebsiella pneumoniae. J Infect 2022; 85:174-211. [DOI: 10.1016/j.jinf.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022]
|
18
|
Skrzypczak N, Przybylski P. Modifications, biological origin and antibacterial activity of naphthalenoid ansamycins. Nat Prod Rep 2022; 39:1653-1677. [PMID: 35244668 DOI: 10.1039/d2np00002d] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: 2011 to 2021Structural division of natural naphthalenoid ansamycins, regarding the type of the core and length of the ansa chain, and their biosynthetic pathways in microorganisms are discussed. The great biosynthetic plasticity of natural naphthalenoid ansamycins is reflected in their structural variety due to the alterations within ansa bridge or naphthalenoid core portions. A comparison between the biological potency of natural and semisynthetic naphthalenoid ansamycins was performed and discussed in relation to the molecular targets in cells. The antibacterial potency of naphthalenoid ansamycins seems to be dependent on the ansa chain length and conformational flexibility - the higher flexibility of the ansa chain the better biological outcome is noted.
Collapse
Affiliation(s)
- Natalia Skrzypczak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland.
| | - Piotr Przybylski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland.
| |
Collapse
|
19
|
Zhang Z, Weng Z, Yao J, Liu D, Zhang L, Zhang L, Xie G. Toehold-mediated nonenzymatic DNA strand displacement coupling UDG mediated PCR and multi-code magnetic beads for DNA genotyping. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Ma Z, He S, Yuan Y, Zhuang Z, Liu Y, Wang H, Chen J, Xu X, Ding C, Molodtsov V, Lin W, Robertson GT, Weiss WJ, Pulse M, Nguyen P, Duncan L, Doyle T, Ebright RH, Lynch AS. Design, Synthesis, and Characterization of TNP-2198, a Dual-Targeted Rifamycin-Nitroimidazole Conjugate with Potent Activity against Microaerophilic and Anaerobic Bacterial Pathogens. J Med Chem 2022; 65:4481-4495. [PMID: 35175750 PMCID: PMC8958509 DOI: 10.1021/acs.jmedchem.1c02045] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
TNP-2198, a stable
conjugate of a rifamycin pharmacophore and a
nitroimidazole pharmacophore, has been designed, synthesized, and
evaluated as a novel dual-targeted antibacterial agent for the treatment
of microaerophilic and anaerobic bacterial infections. TNP-2198 exhibits
greater activity than a 1:1 molar mixture of the parent drugs and
exhibits activity against strains resistant to both rifamycins and
nitroimidazoles. A crystal structure of TNP-2198 bound to a Mycobacterium tuberculosis RNA polymerase transcription
initiation complex reveals that the rifamycin portion of TNP-2198
binds to the rifamycin binding site on RNAP and the nitroimidazole
portion of TNP-2198 interacts directly with the DNA template-strand
in the RNAP active-center cleft, forming a hydrogen bond with a base
of the DNA template strand. TNP-2198 is currently in Phase 2 clinical
development for the treatment of Helicobacter pylori infection, Clostridioides difficile infection,
and bacterial vaginosis.
Collapse
Affiliation(s)
- Zhenkun Ma
- TenNor Therapeutics Ltd, 218 Xinghu Street, Suzhou Industrial Park, Suzhou 215123, China
| | - Shijie He
- TenNor Therapeutics Ltd, 218 Xinghu Street, Suzhou Industrial Park, Suzhou 215123, China
| | - Ying Yuan
- TenNor Therapeutics Ltd, 218 Xinghu Street, Suzhou Industrial Park, Suzhou 215123, China
| | - Zhijun Zhuang
- TenNor Therapeutics Ltd, 218 Xinghu Street, Suzhou Industrial Park, Suzhou 215123, China
| | - Yu Liu
- TenNor Therapeutics Ltd, 218 Xinghu Street, Suzhou Industrial Park, Suzhou 215123, China
| | - Huan Wang
- TenNor Therapeutics Ltd, 218 Xinghu Street, Suzhou Industrial Park, Suzhou 215123, China
| | - Jing Chen
- TenNor Therapeutics Ltd, 218 Xinghu Street, Suzhou Industrial Park, Suzhou 215123, China
| | - Xiangyi Xu
- TenNor Therapeutics Ltd, 218 Xinghu Street, Suzhou Industrial Park, Suzhou 215123, China
| | - Charles Ding
- TenNor Therapeutics Ltd, 218 Xinghu Street, Suzhou Industrial Park, Suzhou 215123, China
| | - Vadim Molodtsov
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Wei Lin
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Gregory T Robertson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, 80523-1682, United States
| | - William J Weiss
- HSC College of Pharmacy, University of North Texas, Fort Worth, Texas 76107, United States
| | - Mark Pulse
- HSC College of Pharmacy, University of North Texas, Fort Worth, Texas 76107, United States
| | - Phung Nguyen
- HSC College of Pharmacy, University of North Texas, Fort Worth, Texas 76107, United States
| | - Leonard Duncan
- JMI Laboratories, North Liberty, Iowa 52317, United States
| | - Timothy Doyle
- JMI Laboratories, North Liberty, Iowa 52317, United States
| | - Richard H Ebright
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Anthony Simon Lynch
- TenNor Therapeutics Ltd, 218 Xinghu Street, Suzhou Industrial Park, Suzhou 215123, China
| |
Collapse
|
21
|
The Structural Basis of Mycobacterium tuberculosis RpoB Drug-Resistant Clinical Mutations on Rifampicin Drug Binding. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030885. [PMID: 35164151 PMCID: PMC8839920 DOI: 10.3390/molecules27030885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022]
Abstract
Tuberculosis (TB), caused by the Mycobacterium tuberculosis infection, continues to be a leading cause of morbidity and mortality in developing countries. Resistance to the first-line anti-TB drugs, isoniazid (INH) and rifampicin (RIF), is a major drawback to effective TB treatment. Genetic mutations in the β-subunit of the DNA-directed RNA polymerase (rpoB) are reported to be a major reason of RIF resistance. However, the structural basis and mechanisms of these resistant mutations are insufficiently understood. In the present study, thirty drug-resistant mutants of rpoB were initially modeled and screened against RIF via a comparative molecular docking analysis with the wild-type (WT) model. These analyses prioritized six mutants (Asp441Val, Ser456Trp, Ser456Gln, Arg454Gln, His451Gly, and His451Pro) that showed adverse binding affinities, molecular interactions, and RIF binding hinderance properties, with respect to the WT. These mutant models were subsequently analyzed by molecular dynamics (MD) simulations. One-hundred nanosecond all-atom MD simulations, binding free energy calculations, and a dynamic residue network analysis (DRN) were employed to exhaustively assess the impact of mutations on RIF binding dynamics. Considering the global structural motions and protein-ligand binding affinities, the Asp441Val, Ser456Gln, and His454Pro mutations generally yielded detrimental effects on RIF binding. Locally, we found that the electrostatic contributions to binding, particularly by Arg454 and Glu487, might be adjusted to counteract resistance. The DRN analysis revealed that all mutations mostly distorted the communication values of the critical hubs and may, therefore, confer conformational changes in rpoB to perturb RIF binding. In principle, the approach combined fundamental molecular modeling tools for robust "global" and "local" level analyses of structural dynamics, making it well suited for investigating other similar drug resistance cases.
Collapse
|
22
|
Pleiotropic Effects of Statins: New Therapeutic Approaches to Chronic, Recurrent Infection by Staphylococcus aureus. Pharmaceutics 2021; 13:pharmaceutics13122047. [PMID: 34959329 PMCID: PMC8706520 DOI: 10.3390/pharmaceutics13122047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 01/01/2023] Open
Abstract
An emergent approach to bacterial infection is the use of host rather than bacterial-directed strategies. This approach has the potential to improve efficacy in especially challenging infection settings, including chronic, recurrent infection due to intracellular pathogens. For nearly two decades, the pleiotropic effects of statin drugs have been examined for therapeutic usefulness beyond the treatment of hypercholesterolemia. Interest originated after retrospective studies reported decreases in the risk of death due to bacteremia or sepsis for those on a statin regimen. Although subsequent clinical trials have yielded mixed results and earlier findings have been questioned for biased study design, in vitro and in vivo studies have provided clear evidence of protective mechanisms that include immunomodulatory effects and the inhibition of host cell invasion. Ultimately, the benefits of statins in an infection setting appear to require attention to the underlying host response and to the timing of the dosage. From this examination of statin efficacy, additional novel host-directed strategies may produce adjunctive therapeutic approaches for the treatment of infection where traditional antimicrobial therapy continues to yield poor outcomes. This review focuses on the opportunistic pathogen, Staphylococcus aureus, as a proof of principle in examining the promise and limitations of statins in recalcitrant infection.
Collapse
|
23
|
Rifamycin antibiotics and the mechanisms of their failure. J Antibiot (Tokyo) 2021; 74:786-798. [PMID: 34400805 DOI: 10.1038/s41429-021-00462-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
Rifamycins are a class of antibiotics that were first discovered in 1957 and are known for their use in treating tuberculosis (TB). Rifamycins exhibit bactericidal activity against many Gram-positive and Gram-negative bacteria by inhibiting RNA polymerase (RNAP); however, resistance is prevalent and the mechanisms range from primary target modification and antibiotic inactivation to cytoplasmic exclusion. Further, phenotypic resistance, in which only a subpopulation of bacteria grow in concentrations exceeding their minimum inhibitory concentration, and tolerance, which is characterized by reduced rates of bacterial cell death, have been identified as additional causes of rifamycin failure. Here we summarize current understanding and recent developments regarding this critical antibiotic class.
Collapse
|
24
|
Analysing the fitness cost of antibiotic resistance to identify targets for combination antimicrobials. Nat Microbiol 2021; 6:1410-1423. [PMID: 34697460 DOI: 10.1038/s41564-021-00973-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/03/2021] [Indexed: 11/09/2022]
Abstract
Mutations in the rifampicin (Rif)-binding site of RNA polymerase (RNAP) confer antibiotic resistance and often have global effects on transcription that compromise fitness and stress tolerance of resistant mutants. We suggested that the non-essential genome, through its impact on the bacterial transcription cycle, may represent an untapped source of targets for combination antimicrobial therapies. Using transposon sequencing, we carried out a genome-wide analysis of fitness cost in a clinically common rpoB H526Y mutant. We find that genes whose products enable increased transcription elongation rates compound the fitness costs of resistance whereas genes whose products function in cell wall synthesis and division mitigate it. We validate our findings by showing that the cell wall synthesis and division defects of rpoB H526Y result from an increased transcription elongation rate that is further exacerbated by the activity of the uracil salvage pathway and unresponsiveness of the mutant RNAP to the alarmone ppGpp. We applied our findings to identify drugs that inhibit more readily rpoB H526Y and other RifR alleles from the same phenotypic class. Thus, genome-wide analysis of fitness cost of antibiotic-resistant mutants should expedite the discovery of new combination therapies and delineate cellular pathways that underlie the molecular mechanisms of cost.
Collapse
|
25
|
Li MC, Lu J, Lu Y, Xiao TY, Liu HC, Lin SQ, Xu D, Li GL, Zhao XQ, Liu ZG, Zhao LL, Wan KL. rpoB Mutations and Effects on Rifampin Resistance in Mycobacterium tuberculosis. Infect Drug Resist 2021; 14:4119-4128. [PMID: 34675557 PMCID: PMC8502021 DOI: 10.2147/idr.s333433] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/21/2021] [Indexed: 11/23/2022] Open
Abstract
Objective To investigate the mutations within the whole rpoB gene of Mycobacterium tuberculosis and analyze their effects on rifampin (RIF) resistance based on crystal structure. Methods We sequenced the entire rpoB gene in 175 tuberculosis isolates and quantified their minimum inhibitory concentrations using microplate-based assays. Additionally, the structural interactions between wild-type/mutant RpoB and RIF were also analyzed. Results Results revealed that a total of 34 mutations distributed across 17 different sites within the whole rpoB gene were identified. Of the 34 mutations, 25 could alter the structural interaction between RpoB and RIF and contribute to RIF resistance. Statistical analysis showed that S450L, H445D, H445Y and H445R mutations were associated with high-level RIF resistance, while D435V was associated with moderate-level RIF resistance. Conclusion Some mutations within the rpoB gene could affect the interaction between RpoB and RIF and thus are associated with RIF resistance. These findings could be helpful to design new antibiotics and develop novel diagnostic tools for drug resistance in TB.
Collapse
Affiliation(s)
- Ma-Chao Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Jie Lu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Yao Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Tong-Yang Xiao
- Guangdong Key Laboratory for Diagnosis & Treatment of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Hai-Can Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Shi-Qiang Lin
- Department of Bioinformatics, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Da Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Gui-Lian Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Xiu-Qin Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Zhi-Guang Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Li-Li Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Kang-Lin Wan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| |
Collapse
|
26
|
Castro RAD, Borrell S, Gagneux S. The within-host evolution of antimicrobial resistance in Mycobacterium tuberculosis. FEMS Microbiol Rev 2021; 45:fuaa071. [PMID: 33320947 PMCID: PMC8371278 DOI: 10.1093/femsre/fuaa071] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) has been responsible for the greatest number of human deaths due to an infectious disease in general, and due to antimicrobial resistance (AMR) in particular. The etiological agents of human TB are a closely-related group of human-adapted bacteria that belong to the Mycobacterium tuberculosis complex (MTBC). Understanding how MTBC populations evolve within-host may allow for improved TB treatment and control strategies. In this review, we highlight recent works that have shed light on how AMR evolves in MTBC populations within individual patients. We discuss the role of heteroresistance in AMR evolution, and review the bacterial, patient and environmental factors that likely modulate the magnitude of heteroresistance within-host. We further highlight recent works on the dynamics of MTBC genetic diversity within-host, and discuss how spatial substructures in patients' lungs, spatiotemporal heterogeneity in antimicrobial concentrations and phenotypic drug tolerance likely modulates the dynamics of MTBC genetic diversity in patients during treatment. We note the general characteristics that are shared between how the MTBC and other bacterial pathogens evolve in humans, and highlight the characteristics unique to the MTBC.
Collapse
Affiliation(s)
- Rhastin A D Castro
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| |
Collapse
|
27
|
Expression Dysregulation as a Mediator of Fitness Costs in Antibiotic Resistance. Antimicrob Agents Chemother 2021; 65:e0050421. [PMID: 34228548 PMCID: PMC8370218 DOI: 10.1128/aac.00504-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Antimicrobial resistance (AMR) poses a threat to global health and the economy. Rifampicin-resistant Mycobacterium tuberculosis accounts for a third of the global AMR burden. Gaining the upper hand on AMR requires a deeper understanding of the physiology of resistance. AMR often results in a fitness cost in the absence of drug. Identifying the molecular mechanisms underpinning this cost could help strengthen future treatment regimens. Here, we used a collection of M. tuberculosis strains that provide an evolutionary and phylogenetic snapshot of rifampicin resistance and subjected them to genome-wide transcriptomic and proteomic profiling to identify key perturbations of normal physiology. We found that the clinically most common rifampicin resistance-conferring mutation, RpoB Ser450Leu, imparts considerable gene expression changes, many of which are mitigated by the compensatory mutation in RpoC Leu516Pro. However, our data also provide evidence for pervasive epistasis—the same resistance mutation imposed a different fitness cost and functionally distinct changes to gene expression in genetically unrelated clinical strains. Finally, we report a likely posttranscriptional modulation of gene expression that is shared in most of the tested strains carrying RpoB Ser450Leu, resulting in an increased abundance of proteins involved in central carbon metabolism. These changes contribute to a more general trend in which the disruption of the composition of the proteome correlates with the fitness cost of the RpoB Ser450Leu mutation in different strains.
Collapse
|
28
|
Ma P, Luo T, Ge L, Chen Z, Wang X, Zhao R, Liao W, Bao L. Compensatory effects of M. tuberculosis rpoB mutations outside the rifampicin resistance-determining region. Emerg Microbes Infect 2021; 10:743-752. [PMID: 33775224 PMCID: PMC8057087 DOI: 10.1080/22221751.2021.1908096] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mycobacterium tuberculosis has been observed to develop resistance to the frontline anti-tuberculosis drug rifampicin, primarily through mutations in the rifampicin resistance-determining region (RRDR) of rpoB. While these mutations have been determined to confer a fitness cost, compensatory mutations in rpoA and rpoC that may enhance the fitness of resistant strains have been demonstrated. Recent genomic studies identified several rpoB non-RRDR mutations that co-occurred with RRDR mutations in clinical isolates without rpoA/rpoC mutations and may confer fitness compensation. In this study, we identified 33 evolutionarily convergent rpoB non-RRDR mutations through phylogenomic analysis of public genomic data for clinical M. tuberculosis isolates. We found that none of these mutations, except V170F and I491F, can cause rifampin resistance in Mycolicibacterium smegmatis. The compensatory effects of five representative mutations across rpoB were evaluated by an in vitro competition assay, through which we observed that each of these mutations can significantly improve the relative fitness of the initial S450L mutant (0.97–1.08 vs 0.87). Furthermore, we observed that the decreased RNAP transcription efficiency introduced by S450L was significantly alleviated by each of the five mutations. Structural analysis indicated that the fitness compensation observed for the non-RRDR mutations might be achieved by modification of the RpoB active centre or by changes in interactions between RNAP subunits. Our results provide experimental evidence supporting that compensatory effects are exerted by several rpoB non-RRDR mutations, which could be utilized as additional molecular markers for predicting the fitness of clinical rifampin-resistant M. tuberculosis strains.
Collapse
Affiliation(s)
- Pengjiao Ma
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Tao Luo
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Liang Ge
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Zonghai Chen
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Xinyan Wang
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Rongchuan Zhao
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Wei Liao
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Lang Bao
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
29
|
Deaconescu AM. Mfd - at the crossroads of bacterial DNA repair, transcriptional regulation and molecular evolvability. Transcription 2021; 12:156-170. [PMID: 34674614 PMCID: PMC8632110 DOI: 10.1080/21541264.2021.1982628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022] Open
Abstract
For survival, bacteria need to continuously evolve and adapt to complex environments, including those that may impact the integrity of the DNA, the repository of genetic information to be passed on to future generations. The multiple factors of DNA repair share the substrate on which they operate with other key cellular machineries, principally those of replication and transcription, implying a high degree of coordination of DNA-based activities. In this review, I focus on progress made in the understanding of the protein factors operating at the crossroads of these three fundamental processes, with emphasis on the mutation frequency decline protein (Mfd, aka TRCF). Although Mfd research has a rich history that goes back in time for more than half a century, recent reports hint that much remains to be uncovered. I argue that besides being a transcription-repair coupling factor (TRCF), Mfd is also a global regulator of transcription and a pro-mutagenic factor, and that the way it interfaces with transcription, replication and nucleotide excision repair makes it an attractive candidate for the development of strategies to curb molecular evolution, hence, antibiotic resistance.
Collapse
Affiliation(s)
- Alexandra M. Deaconescu
- CONTACT Alexandra M. Deaconescu Molecular Biology, Cell Biology and Biochemistry, Laboratories of Molecular Medicine, Brown University, 70 Ship St. G-E4, Providence, RI02903, USA
| |
Collapse
|
30
|
Shin Y, Murakami KS. Watching the bacterial RNA polymerase transcription reaction by time-dependent soak-trigger-freeze X-ray crystallography. Enzymes 2021; 49:305-314. [PMID: 34696836 DOI: 10.1016/bs.enz.2021.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RNA polymerase (RNAP) is the central enzyme of gene expression, which transcribes DNA to RNA. All cellular organisms synthesize RNA with highly conserved multi-subunit DNA-dependent RNAPs, except mitochondrial RNA transcription, which is carried out by a single-subunit RNAP. Over 60 years of extensive research has elucidated the structures and functions of cellular RNAPs. In this review, we introduce a brief structural feature of bacterial RNAP, the most well characterized model enzyme, and a novel experimental approach known as "Time-dependent soak-trigger-freeze X-ray crystallography" which can be used to observe the RNA synthesis reaction at atomic resolution in real time. This principle methodology can be used for elucidating fundamental mechanisms of cellular RNAP transcription.
Collapse
Affiliation(s)
- Yeonoh Shin
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Katsuhiko S Murakami
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
31
|
Marti H, Bommana S, Read TD, Pesch T, Prähauser B, Dean D, Borel N. Generation of Tetracycline and Rifamycin Resistant Chlamydia Suis Recombinants. Front Microbiol 2021; 12:630293. [PMID: 34276577 PMCID: PMC8278220 DOI: 10.3389/fmicb.2021.630293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 06/03/2021] [Indexed: 01/01/2023] Open
Abstract
The Chlamydiaceae are a family of obligate intracellular, gram-negative bacteria known to readily exchange DNA by homologous recombination upon co-culture in vitro, allowing the transfer of antibiotic resistance residing on the chlamydial chromosome. Among all the obligate intracellular bacteria, only Chlamydia (C.) suis naturally integrated a tetracycline resistance gene into its chromosome. Therefore, in order to further investigate the readiness of Chlamydia to exchange DNA and especially antibiotic resistance, C. suis is an excellent model to advance existing co-culture protocols allowing the identification of factors crucial to promote homologous recombination in vitro. With this strategy, we co-cultured tetracycline-resistant with rifamycin group-resistant C. suis, which resulted in an allover recombination efficiency of 28%. We found that simultaneous selection is crucial to increase the number of recombinants, that sub-inhibitory concentrations of tetracycline inhibit rather than promote the selection of double-resistant recombinants, and identified a recombination-deficient C. suis field isolate, strain SWA-110 (1-28b). While tetracycline resistance was detected in field isolates, rifampicin/rifamycin resistance (RifR) had to be induced in vitro. Here, we describe the protocol with which RifR C. suis strains were generated and confirmed. Subsequent whole-genome sequencing then revealed that G530E and D461A mutations in rpoB, a gene encoding for the β-subunit of the bacterial RNA polymerase (RNAP), was likely responsible for rifampicin and rifamycin resistance, respectively. Finally, whole-genome sequencing of recombinants obtained by co-culture revealed that recombinants picked from the same plate may be sibling clones and confirmed C. suis genome plasticity by revealing variable, apparently non-specific areas of recombination.
Collapse
Affiliation(s)
- Hanna Marti
- Vetsuisse Faculty, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Sankhya Bommana
- Division of Infectious Diseases, Departments of Medicine and Pediatrics, University of California San Francisco School of Medicine, San Francisco, CA, United States
| | - Timothy D Read
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States.,Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Theresa Pesch
- Vetsuisse Faculty, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Barbara Prähauser
- Vetsuisse Faculty, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Deborah Dean
- Division of Infectious Diseases, Departments of Medicine and Pediatrics, University of California San Francisco School of Medicine, San Francisco, CA, United States.,Joint Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, United States.,Joint Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, United States
| | - Nicole Borel
- Vetsuisse Faculty, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
32
|
Alame Emane AK, Guo X, Takiff HE, Liu S. Drug resistance, fitness and compensatory mutations in Mycobacterium tuberculosis. Tuberculosis (Edinb) 2021; 129:102091. [PMID: 34090078 DOI: 10.1016/j.tube.2021.102091] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 01/26/2023]
Abstract
For tuberculosis to be eradicated, the transmission of Multi-Drug-Resistant and eXtensively Drug Resistant strains of Mycobacterium tuberculosis (MDR and XDR-TB) must be considerably reduced. Drug resistant strains were initially thought to have reduced fitness, and the majority of resistant strains may actually have compromised fitness because they are found in only one or a few patients. In contrast, some MDR/XDR-TB strains are highly transmitted and cause large outbreaks. Most antibiotics target essential bacterial functions and the mutations that confer resistance to anti-TB drugs can incur fitness costs manifested as slower growth and reduced viability. The fitness costs vary with different resistance mutations and the bacilli can also accumulate secondary mutations that compensate for the compromised functions and partially or fully restore lost fitness. The compensatory mutations (CM) are different for each antibiotic, as they mitigate the deleterious effects of the specific functions compromised by the resistance mutations. CM are generally more common in strains with resistance mutations incurring the greatest fitness costs, but for RIF resistance, CM are most frequent in strains with the mutation carrying the least fitness cost, Ser450Leu. Here, we review what is known about fitness costs, CM and mechanisms of resistance to the drugs that define a strain as MDR or XDR-TB. The relative fitness costs of the resistance mutations and the mitigating effects of CM largely explain why certain mutations are frequently found in highly transmitted clusters while others are less frequently, rarely or never found in clinical isolates. The CM illustrate how drug resistance affects bacteria and how bacteria evolve to overcome the effects of the antibiotics, and thus a paradigm for how mycobacteria can evolve in response to stress.
Collapse
Affiliation(s)
- Amel Kevin Alame Emane
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China. 7 Huaming Road, Nanshan, Shenzhen City, Guangdong Province, China
| | - Xujun Guo
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China. 7 Huaming Road, Nanshan, Shenzhen City, Guangdong Province, China
| | - Howard E Takiff
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China. 7 Huaming Road, Nanshan, Shenzhen City, Guangdong Province, China; Integrated Mycobacterial Pathogenomics Unit, Institut Pasteur, 28 Rue du Dr Roux, Paris, 75015, France; CMBC, Instituto Venezolano de Investigaciones Científicas, IVIC, Caracas, Venezuela.
| | - Shengyuan Liu
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China. 7 Huaming Road, Nanshan, Shenzhen City, Guangdong Province, China.
| |
Collapse
|
33
|
Surur AS, Sun D. Macrocycle-Antibiotic Hybrids: A Path to Clinical Candidates. Front Chem 2021; 9:659845. [PMID: 33996753 PMCID: PMC8120311 DOI: 10.3389/fchem.2021.659845] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/15/2021] [Indexed: 12/21/2022] Open
Abstract
The tale of abate in antibiotics continued defense mechanisms that chaperone the rise of drug-defying superbugs—on the other hand, the astray in antibacterial drug discovery and development. Our salvation lies in circumventing the genesis of resistance. Considering the competitive advantages of antibacterial chemotherapeutic agents equipped with multiple warheads against resistance, the development of hybrids has rejuvenated. The adoption of antibiotic hybrid paradigm to macrocycles has advanced novel chemical entities to clinical trials. The multi-targeted TD-1792, for instance, retained potent antibacterial activities against multiple strains that are resistant to its constituent, vancomycin. Moreover, the antibiotic conjugation of rifamycins has provided hybrid clinical candidates with desirable efficacy and safety profiles. In 2020, the U.S. FDA has granted an orphan drug designation to TNP-2092, a conjugate of rifamycin and fluoroquinolone, for the treatment of prosthetic joint infections. DSTA4637S is a pioneer antibacterial agent under clinical development and represents a novel class of bacterial therapy, that is, antibody–antibiotic conjugates. DSTA4637S is effective against the notorious persistent S. aureus bacteremia, a revelation of the abracadabra potential of antibiotic hybrid approaches.
Collapse
Affiliation(s)
- Abdrrahman Shemsu Surur
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, HI, United States
| | - Dianqing Sun
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, HI, United States
| |
Collapse
|
34
|
Ning Q, Wang D, Cheng F, Zhong Y, Ding Q, You J. Predicting rifampicin resistance mutations in bacterial RNA polymerase subunit beta based on majority consensus. BMC Bioinformatics 2021; 22:210. [PMID: 33888055 PMCID: PMC8063314 DOI: 10.1186/s12859-021-04137-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/16/2021] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Mutations in an enzyme target are one of the most common mechanisms whereby antibiotic resistance arises. Identification of the resistance mutations in bacteria is essential for understanding the structural basis of antibiotic resistance and design of new drugs. However, the traditionally used experimental approaches to identify resistance mutations were usually labor-intensive and costly. RESULTS We present a machine learning (ML)-based classifier for predicting rifampicin (Rif) resistance mutations in bacterial RNA Polymerase subunit β (RpoB). A total of 186 mutations were gathered from the literature for developing the classifier, using 80% of the data as the training set and the rest as the test set. The features of the mutated RpoB and their binding energies with Rif were calculated through computational methods, and used as the mutation attributes for modeling. Classifiers based on five ML algorithms, i.e. decision tree, k nearest neighbors, naïve Bayes, probabilistic neural network and support vector machine, were first built, and a majority consensus (MC) approach was then used to obtain a new classifier based on the classifications of the five individual ML algorithms. The MC classifier comprehensively improved the predictive performance, with accuracy, F-measure and AUC of 0.78, 0.83 and 0.81for training set whilst 0.84, 0.87 and 0.83 for test set, respectively. CONCLUSION The MC classifier provides an alternative methodology for rapid identification of resistance mutations in bacteria, which may help with early detection of antibiotic resistance and new drug discovery.
Collapse
Affiliation(s)
- Qing Ning
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Dali Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| | - Fei Cheng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Yuheng Zhong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Qi Ding
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| |
Collapse
|
35
|
Hicks K, Tan Y, Cao W, Hathcock T, Boothe D, Kennis R, Zhang D, Wang X, White A. Genomic and in vitro pharmacodynamic analysis of rifampicin resistance in multidrug-resistant canine Staphylococcus pseudintermedius isolates. Vet Dermatol 2021; 32:219-e67. [PMID: 33881188 DOI: 10.1111/vde.12959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/16/2020] [Accepted: 01/13/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Antimicrobial resistance is a growing concern in canine Staphylococcus pseudintermedius dermatitis. Treatment with rifampicin (RFP) is considered only in meticillin-resistant and multidrug-resistant S. pseudintermedius (MDR-MRSP). HYPOTHESIS/OBJECTIVES To determine an optimal RFP dosing for MDR-MRSP treatment without induction of RFP resistance and identify causal mutations for antimicrobial resistance. METHODS AND MATERIALS Time-kill assays were performed in a control isolate and three MDR-MRSP isolates at six clinically relevant concentrations [32 to 1,024 × MIC (the minimum inhibitory concentration)]. Whole-genome resequencing and bioinformatic analysis were performed in the resistant strains developed in this assay. RESULTS The genomic analysis identified nine antimicrobial resistance genes (ARGs) in MDR-MRSP isolates, which are responsible for resistance to seven classes of antibiotics. RFP activity against all four isolates was consistent with a time-dependent and bacteriostatic response. RFP resistance was observed in six of the 28 time-kill assays, including concentrations 64 × MIC in MDR-MRSP1 isolates at 24 h, 32 × MIC in MDR-MRSP2 at 48 h, 32 × MIC in MDR-MRSP3 at 48 h and 256 × MIC in MDR-MRSP3 at 24 h. Genome-wide mutation analyses in these RFP-resistant strains discovered the causal mutations in the coding region of the rpoB gene. CONCLUSIONS AND CLINICAL RELEVANCE A study has shown that 6 mg/kg per os results in plasma concentrations of 600-1,000 × MIC of S. pseudintermedius. Based on our data, this dose should achieve the minimum MIC (×512) to prevent RFP resistance development; therefore, we recommend a minimum daily dose of 6 mg/kg for MDR-MRSP pyoderma treatment when limited antibiotic options are available.
Collapse
Affiliation(s)
- Karly Hicks
- Department of Clinical Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yongjun Tan
- Department of Biology, Saint Louis University, Saint Louis, MO, 63103, USA
| | - Wenqi Cao
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, 36849, USA
| | - Terri Hathcock
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, 36849, USA
| | - Dawn Boothe
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, 36849, USA
| | - Robert Kennis
- Department of Clinical Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Dapeng Zhang
- Department of Biology, Saint Louis University, Saint Louis, MO, 63103, USA
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, 36849, USA.,Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, 36849, USA.,Alabama Agricultural Experiment Station, Auburn University, Auburn, AL, 36849, USA.,HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Amelia White
- Department of Clinical Sciences, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
36
|
Ford A, Miller L, Trant J, Nawarathne IN. Generating single-stranded DNA circles with minimal resources. MethodsX 2021; 8:101300. [PMID: 34434820 PMCID: PMC8374276 DOI: 10.1016/j.mex.2021.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 03/04/2021] [Indexed: 11/30/2022] Open
Abstract
Single-stranded circular oligonucleotides are heavily utilized in rolling circle amplification and rolling circle transcription technologies. Although various reported methodologies are available to synthesize circular, single-stranded DNA (ssDNA), the unduly complicated protocols and the associated cost minimize the utility of these methodologies to a non-expert or a beginner in the field. Our protocol provides the simplest yet robust synthesis of circular ssDNA templates to be utilized in various applications, using minimal resources.•In this manuscript, we describe the most basic approach to synthesize circular ssDNA.•Our method utilizes the minimal resources, yet it is robust.•The utility of the methodology is very high for a non-expert or a beginner in the field.
Collapse
Affiliation(s)
- Amanda Ford
- Mathematics and Science Division, Lyon College, 2300 Highland Road, Batesville, AR 72501, United States
| | - LaShawna Miller
- Mathematics and Science Division, Lyon College, 2300 Highland Road, Batesville, AR 72501, United States
| | | | - Irosha N Nawarathne
- Mathematics and Science Division, Lyon College, 2300 Highland Road, Batesville, AR 72501, United States
| |
Collapse
|
37
|
Click ES, Kurbatova EV, Alexander H, Dalton TL, Chen MP, Posey JE, Ershova J, Cegielski JP. Isoniazid and Rifampin-Resistance Mutations Associated With Resistance to Second-Line Drugs and With Sputum Culture Conversion. J Infect Dis 2021; 221:2072-2082. [PMID: 32002554 DOI: 10.1093/infdis/jiaa042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/28/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Mutations in the genes inhA, katG, and rpoB confer resistance to anti-tuberculosis (TB) drugs isoniazid and rifampin. We questioned whether specific mutations in these genes were associated with different clinical and microbiological characteristics. METHODS In a multicountry prospective cohort study of multidrug-resistant TB, we identified inhA, katG, and rpoB mutations in sputum isolates using the Hain MTBDRplus line probe assay. For specific mutations, we performed bivariate analysis to determine relative risk of baseline or acquired resistance to other TB drugs. We compared time to sputum culture conversion (TSCC) using Kaplan-Meier curves and stratified Cox regression. RESULTS In total, 447 participants enrolled from January 2005 to December 2008 from 7 countries were included. Relative to rpoB S531L, isolates with rpoB D516V had less cross-resistance to rifabutin, increased baseline resistance to other drugs, and increased acquired fluoroquinolone resistance. Relative to mutation of katG only, mutation of inhA promoter and katG was associated with baseline extensively drug resistant (XDR) TB, increased acquired fluoroquinolone resistance, and slower TSCC (125.5 vs 89.0 days). CONCLUSIONS Specific mutations in inhA and katG are associated with differences in resistance to other drugs and TSCC. Molecular testing may make it possible to tailor treatment and assess additional drug resistance risk according to specific mutation profile.
Collapse
Affiliation(s)
- Eleanor S Click
- Division of Global HIV and TB, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ekaterina V Kurbatova
- Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Heather Alexander
- Division of Global HIV and TB, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Tracy L Dalton
- Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michael P Chen
- Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - James E Posey
- Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Julia Ershova
- Division of Global HIV and TB, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - J Peter Cegielski
- Division of Global HIV and TB, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
38
|
Sun Q, Wang S, Liao X, Jiang G, Huang H, Li H, Wang G. Fidaxomicin has high in vitro activity against Mycobacterium tuberculosis. J Med Microbiol 2021; 70. [PMID: 33593474 DOI: 10.1099/jmm.0.001324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study aimed to evaluate whether the antibiotic fidaxomicin has in vitro activity against Mycobacterium tuberculosis (Mtb). 38 fully drug-sensitive Mtb strains and 34 multidrug-resistant tuberculosis (MDR-TB) strains were tested using the microplate alamar blue assay (MABA) method to determine the minimum inhibitory concentrations (MICs) for fidaxomicin and rifampicin. Fidaxomicin has high in vitro activity against Mtb and is a potential drug to treat Mtb, and MDR-TB infections in particular.
Collapse
Affiliation(s)
- Qing Sun
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, PR China
| | - Shuqi Wang
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, PR China
| | - Xinlei Liao
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, PR China
| | - Guanglu Jiang
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, PR China
| | - Hairong Huang
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, PR China
| | - Hao Li
- College of Veterinary Medicine, China Agricultural University, Beijing, PR China.,Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, PR China
| | - Guirong Wang
- National Clinical Laboratory on Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, PR China
| |
Collapse
|
39
|
The antibiotic sorangicin A inhibits promoter DNA unwinding in a Mycobacterium tuberculosis rifampicin-resistant RNA polymerase. Proc Natl Acad Sci U S A 2020; 117:30423-30432. [PMID: 33199626 PMCID: PMC7720108 DOI: 10.1073/pnas.2013706117] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Rifampicin (Rif) is a first-line therapeutic used to treat the infectious disease tuberculosis (TB), which is caused by the pathogen Mycobacterium tuberculosis (Mtb). The emergence of Rif-resistant (RifR) Mtb presents a need for new antibiotics. Rif targets the enzyme RNA polymerase (RNAP). Sorangicin A (Sor) is an unrelated inhibitor that binds in the Rif-binding pocket of RNAP. Sor inhibits a subset of RifR RNAPs, including the most prevalent clinical RifR RNAP substitution found in Mtb infected patients (S456>L of the β subunit). Here, we present structural and biochemical data demonstrating that Sor inhibits the wild-type Mtb RNAP by a similar mechanism as Rif: by preventing the translocation of very short RNAs. By contrast, Sor inhibits the RifR S456L enzyme at an earlier step, preventing the transition of a partially unwound promoter DNA intermediate to the fully opened DNA and blocking the template-strand DNA from reaching the active site in the RNAP catalytic center. By defining template-strand blocking as a mechanism for inhibition, we provide a mechanistic drug target in RNAP. Our finding that Sor inhibits the wild-type and mutant RNAPs through different mechanisms prompts future considerations for designing antibiotics against resistant targets. Also, we show that Sor has a better pharmacokinetic profile than Rif, making it a suitable starting molecule to design drugs to be used for the treatment of TB patients with comorbidities who require multiple medications.
Collapse
|
40
|
Girase PS, Dhawan S, Kumar V, Shinde SR, Palkar MB, Karpoormath R. An appraisal of anti-mycobacterial activity with structure-activity relationship of piperazine and its analogues: A review. Eur J Med Chem 2020; 210:112967. [PMID: 33190957 DOI: 10.1016/j.ejmech.2020.112967] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 01/18/2023]
Abstract
Piperazine, is privileged six membered nitrogen containing heterocyclic ring also known as 1,4-Diazacyclohexane. Consequently, piperazine is a versatile medicinally important scaffold and is an essential core in numerous marketed drugs with diverse pharmacological activities. In recent years several potent molecules containing piperazine as an essential subunit of the structural frame have been reported, especially against Mycobacterium tuberculosis (MTB). Remarkably, a good number of these reported molecules also displayed potential activity against multidrug-resistant (MDR), and extremely drug-resistant (XDR) strains of MTB. In this review, we have made a concerted effort to retrace anti-mycobacterial compounds for the past five decades (1971-2019) specifically where piperazine has been used as a vital building block. This review will benefit medicinal chemists as it elaborates on the design, rationale and structure-activity relationship (SAR) of the reported potent piperazine based anti-TB molecules, which in turn will assist them in addressing the gaps, exploiting the reported strategies and developing safer, selective, and cost-effective anti-mycobacterial agents.
Collapse
Affiliation(s)
- Pankaj S Girase
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Sanjeev Dhawan
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Vishal Kumar
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Suraj R Shinde
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Mahesh B Palkar
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa; Department of Pharmaceutical Chemistry, K.L.E. College of Pharmacy (Constituent Unit of KAHER), Vidyanagar, Hubballi, 580031, Karnataka, India
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa.
| |
Collapse
|
41
|
Abstract
The spread of antibiotic resistance is an urgent threat to global health that necessitates new therapeutics. Treatments for Gram-negative pathogens are particularly challenging to identify due to the robust outer membrane permeability barrier in these organisms. Recent discovery efforts have attempted to overcome this hurdle by disrupting the outer membrane using chemical perturbants and have yielded several new peptides and small molecules that allow the entry of otherwise inactive antimicrobials. However, a comprehensive investigation into the strengths and limitations of outer membrane perturbants as antibiotic partners is currently lacking. Herein, we interrogate the interaction between outer membrane perturbation and several common impediments to effective antibiotic use. Interestingly, we discover that outer membrane disruption is able to overcome intrinsic, spontaneous, and acquired antibiotic resistance in Gram-negative bacteria, meriting increased attention toward this approach. Disruption of the outer membrane (OM) barrier allows for the entry of otherwise inactive antimicrobials into Gram-negative pathogens. Numerous efforts to implement this approach have identified a large number of OM perturbants that sensitize Gram-negative bacteria to many clinically available Gram-positive active antibiotics. However, there is a dearth of investigation into the strengths and limitations of this therapeutic strategy, with an overwhelming focus on characterization of individual potentiator molecules. Herein, we look to explore the utility of exploiting OM perturbation to sensitize Gram-negative pathogens to otherwise inactive antimicrobials. We identify the ability of OM disruption to change the rules of Gram-negative entry, overcome preexisting and spontaneous resistance, and impact biofilm formation. Disruption of the OM expands the threshold of hydrophobicity compatible with Gram-negative activity to include hydrophobic molecules. We demonstrate that while resistance to Gram-positive active antibiotics is surprisingly common in Gram-negative pathogens, OM perturbation overcomes many antibiotic inactivation determinants. Further, we find that OM perturbation reduces the rate of spontaneous resistance to rifampicin and impairs biofilm formation. Together, these data suggest that OM disruption overcomes many of the traditional hurdles encountered during antibiotic treatment and is a high priority approach for further development.
Collapse
|
42
|
Panchal VV, Griffiths C, Mosaei H, Bilyk B, Sutton JAF, Carnell OT, Hornby DP, Green J, Hobbs JK, Kelley WL, Zenkin N, Foster SJ. Evolving MRSA: High-level β-lactam resistance in Staphylococcus aureus is associated with RNA Polymerase alterations and fine tuning of gene expression. PLoS Pathog 2020; 16:e1008672. [PMID: 32706832 PMCID: PMC7380596 DOI: 10.1371/journal.ppat.1008672] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 06/02/2020] [Indexed: 12/21/2022] Open
Abstract
Most clinical MRSA (methicillin-resistant S. aureus) isolates exhibit low-level β-lactam resistance (oxacillin MIC 2-4 μg/ml) due to the acquisition of a novel penicillin binding protein (PBP2A), encoded by mecA. However, strains can evolve high-level resistance (oxacillin MIC ≥256 μg/ml) by an unknown mechanism. Here we have developed a robust system to explore the basis of the evolution of high-level resistance by inserting mecA into the chromosome of the methicillin-sensitive S. aureus SH1000. Low-level mecA-dependent oxacillin resistance was associated with increased expression of anaerobic respiratory and fermentative genes. High-level resistant derivatives had acquired mutations in either rpoB (RNA polymerase subunit β) or rpoC (RNA polymerase subunit β') and these mutations were shown to be responsible for the observed resistance phenotype. Analysis of rpoB and rpoC mutants revealed decreased growth rates in the absence of antibiotic, and alterations to, transcription elongation. The rpoB and rpoC mutations resulted in decreased expression to parental levels, of anaerobic respiratory and fermentative genes and specific upregulation of 11 genes including mecA. There was however no direct correlation between resistance and the amount of PBP2A. A mutational analysis of the differentially expressed genes revealed that a member of the S. aureus Type VII secretion system is required for high level resistance. Interestingly, the genomes of two of the high level resistant evolved strains also contained missense mutations in this same locus. Finally, the set of genetically matched strains revealed that high level antibiotic resistance does not incur a significant fitness cost during pathogenesis. Our analysis demonstrates the complex interplay between antibiotic resistance mechanisms and core cell physiology, providing new insight into how such important resistance properties evolve.
Collapse
Affiliation(s)
- Viralkumar V. Panchal
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, United Kingdom
| | - Caitlin Griffiths
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Hamed Mosaei
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Bohdan Bilyk
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, United Kingdom
| | - Joshua A. F. Sutton
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, United Kingdom
| | - Oliver T. Carnell
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, United Kingdom
| | - David P. Hornby
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Jeffrey Green
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Jamie K. Hobbs
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, United Kingdom
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
| | - William L. Kelley
- Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, Geneva, Switzerland
| | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Simon J. Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
43
|
Raths R, Peta V, Bücking H. Massilia arenosa sp. nov., isolated from the soil of a cultivated maize field. Int J Syst Evol Microbiol 2020; 70:3912-3920. [DOI: 10.1099/ijsem.0.004266] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strain MC02T, a Gram-stain-negative, rod-shaped bacterium, was isolated from field soil collected from California, USA. To examine if MC02T represents a novel species, we compared its colony morphology, 16S rRNA gene and whole genome sequence, and its metabolic phenotype using Biolog GenIII and MALDI-TOF analyses compared to reference strains. Based on 16S rRNA gene and whole genome sequencing, MC02T belongs to the genus
Massilia
and
Massilia agri
K-3–1T is the most similar strain with 96.97 % 16S rRNA gene sequence identity. MALDI-TOF analysis revealed that
Massilia aerilata
DSM19289T is the closest match, but the similarity score was much lower than the ≥1.7 threshold for a reliable identification at the genus level. The predominant fatty acids were summed feature 3 (C16 : 1⍵7c and/or C16 : 1⍵6c; 49.07 %) and C16 : 0 (30.01 %). The genome is 5.02 Mbp and the G+C content is 66.2 mol%. Whole genome comparisons to the closest related strains revealed an average amino acid identity value of 67.4 %, an OrthoANI similarity of 77.1 %, and a DNA–DNA-hybridization probability ≥70 %, confirming that MC02T represents a novel species. Strain MC02T can grow at pH 6 but not at pH 5, and a salt concentration of ≥1 % inhibits its growth. In contrast to other
Massilia
strains, MC02T can utilize turanose, inosine and l-serine. The genome of MC02T shows putative endophyte genes such as a nitrate reductase, several phosphatases, and biotin biosynthesis genes, 26 flagellar motility genes and 14 invasion and intracellular resistance genes. Based on its metabolic, physiological and genomic characteristics, we propose that strain MC02T (NRRL B-65554T=ATCC TSD-200T=LMG 31737T) represents a novel species of the genus
Massilia
with the name Massilia arenosa sp. nov.
Collapse
Affiliation(s)
- Rachel Raths
- South Dakota State University, Biology and Microbiology Department, Brookings, SD 57007, USA
| | - Vincent Peta
- South Dakota State University, Biology and Microbiology Department, Brookings, SD 57007, USA
| | - Heike Bücking
- South Dakota State University, Biology and Microbiology Department, Brookings, SD 57007, USA
| |
Collapse
|
44
|
Mosaei H, Zenkin N. Inhibition of RNA Polymerase by Rifampicin and Rifamycin-Like Molecules. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0017-2019. [PMID: 32342856 PMCID: PMC11168578 DOI: 10.1128/ecosalplus.esp-0017-2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Indexed: 12/16/2022]
Abstract
RNA polymerases (RNAPs) accomplish the first step of gene expression in all living organisms. However, the sequence divergence between bacterial and human RNAPs makes the bacterial RNAP a promising target for antibiotic development. The most clinically important and extensively studied class of antibiotics known to inhibit bacterial RNAP are the rifamycins. For example, rifamycins are a vital element of the current combination therapy for treatment of tuberculosis. Here, we provide an overview of the history of the discovery of rifamycins, their mechanisms of action, the mechanisms of bacterial resistance against them, and progress in their further development.
Collapse
Affiliation(s)
- Hamed Mosaei
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK
| | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK
| |
Collapse
|
45
|
Tatara MB, Perdigão J, Viveiros M, Kritski A, Silva KED, Sacchi FPC, de Lima CC, Dos Santos PCP, Diniz JDLDCG, Almeida Silva PE, Gomes P, Gomes MMQ, Cunha EAT, Lapa E Silva JR, Portugal I, Croda J, Andrade MKDN. Genetic Diversity and Molecular Epidemiology of Mycobacterium tuberculosis in Roraima State, Brazil. Am J Trop Med Hyg 2020; 101:774-779. [PMID: 31392954 DOI: 10.4269/ajtmh.19-0324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
National border areas are special places for the spread of Mycobacterium tuberculosis (MTB). These regions concentrate vulnerable populations and constant population movements. Understanding the dynamics of the transmission of MTB is fundamental to propose control measures and to monitor drug resistance. We conducted a population-based prospective study of tuberculosis (TB) to evaluate molecular characteristics of MTB isolates circulating in Roraima, a state on the border of Venezuela and Guyana. Eighty isolates were genotyped by IS6110-RFLP (restriction fragment length polymorphism), spoligotyping, and 24-locus mycobacterial interspersed repetitive unit-variable number of repeats tandem (MIRU-VNTR). Drug susceptibility tests were performed by using the proportion method and GeneXpert® MTB/RIF (Cepheid, Sunnyvale, CA). Isolates showing a phenotypic resistance profile were submitted to polymerase chain reaction (PCR) and sequencing. Spoligotyping showed 40 distinct patterns with a high prevalence of Latin-American and Mediterranean (LAM), Haarlem (H), and the "ill-defined" T clades. Mycobacterial interspersed repetitive unit -VNTR and IS6110-RFLP showed clustering rates of 21.3% and 30%, respectively. Drug resistance was detected in 11 (15.1%) isolates, and all were found to have primary resistance; among these, six (8.2%) isolates were streptomycin mono-resistant, four (5.4%) isoniazid mono-resistant, and one (1.3%) multidrug resistant. This is the first study on the molecular epidemiology and drug resistance profile of MTB from Roraima. Herein, we describe high diversity of genetic profiles circulating in this region that may be driven by the introduction of new strain types because of large population flow in this region. In summary, our results showed that analyses of these circulating strains can contribute to a better understanding of TB epidemiology in the northern Brazilian border and be useful to establish public health policies on TB prevention.
Collapse
Affiliation(s)
- Mariana Bento Tatara
- Laboratory of Research in Health Science, Faculty of Health Science, Federal University of Grande Dourados, Dourados, Brazil
| | - João Perdigão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Miguel Viveiros
- Institute of Hygiene and Tropical Medicine (IHMT), Global Health and Tropical Medicine (GHTM), University NOVA of Lisbon, Lisbon, Portugal
| | - Afrânio Kritski
- School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kesia Esther da Silva
- Laboratory of Research in Health Science, Faculty of Health Science, Federal University of Grande Dourados, Dourados, Brazil
| | | | - Camila Camioli de Lima
- Laboratory of Research in Health Science, Faculty of Health Science, Federal University of Grande Dourados, Dourados, Brazil
| | - Paulo César Pereira Dos Santos
- Laboratory of Research in Health Science, Faculty of Health Science, Federal University of Grande Dourados, Dourados, Brazil
| | | | - Pedro Eduardo Almeida Silva
- Nucleus of Research in Medical Microbiology, Faculty of Medicine, Federal University of Rio Grande, Rio Grande, Brazil
| | - Pedro Gomes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | | | | | | - Isabel Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Julio Croda
- School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Brazil.,Oswaldo Cruz Foundation, Campo Grande, Brazil
| | | |
Collapse
|
46
|
Choudhury A, Fenster JA, Fankhauser RG, Kaar JL, Tenaillon O, Gill RT. CRISPR/Cas9 recombineering-mediated deep mutational scanning of essential genes in Escherichia coli. Mol Syst Biol 2020; 16:e9265. [PMID: 32175691 PMCID: PMC7073797 DOI: 10.15252/msb.20199265] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 01/14/2023] Open
Abstract
Deep mutational scanning can provide significant insights into the function of essential genes in bacteria. Here, we developed a high-throughput method for mutating essential genes of Escherichia coli in their native genetic context. We used Cas9-mediated recombineering to introduce a library of mutations, created by error-prone PCR, within a gene fragment on the genome using a single gRNA pre-validated for high efficiency. Tracking mutation frequency through deep sequencing revealed biases in the position and the number of the introduced mutations. We overcame these biases by increasing the homology arm length and blocking mismatch repair to achieve a mutation efficiency of 85% for non-essential genes and 55% for essential genes. These experiments also improved our understanding of poorly characterized recombineering process using dsDNA donors with single nucleotide changes. Finally, we applied our technology to target rpoB, the beta subunit of RNA polymerase, to study resistance against rifampicin. In a single experiment, we validate multiple biochemical and clinical observations made in the previous decades and provide insights into resistance compensation with the study of double mutants.
Collapse
Affiliation(s)
- Alaksh Choudhury
- Department of Chemical and Biological EngineeringUniversity of ColoradoBoulderCOUSA
- IAMEINSERMUniversité de ParisParisFrance
| | - Jacob A Fenster
- Department of Chemical and Biological EngineeringUniversity of ColoradoBoulderCOUSA
| | | | - Joel L Kaar
- Department of Chemical and Biological EngineeringUniversity of ColoradoBoulderCOUSA
| | | | - Ryan T Gill
- Department of Chemical and Biological EngineeringUniversity of ColoradoBoulderCOUSA
- Renewable & Sustainable Energy InstituteUniversity of ColoradoBoulderCOUSA
- Novo Nordisk Foundation Center for BiosustainabilityDanish Technical UniversityCopenhagenDenmark
| |
Collapse
|
47
|
Ndagi U, Falaki AA, Abdullahi M, Lawal MM, Soliman ME. Antibiotic resistance: bioinformatics-based understanding as a functional strategy for drug design. RSC Adv 2020; 10:18451-18468. [PMID: 35685616 PMCID: PMC9122625 DOI: 10.1039/d0ra01484b] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022] Open
Abstract
The use of antibiotics to manage infectious diseases dates back to ancient civilization, but the lack of a clear distinction between the therapeutic and toxic dose has been a major challenge. This precipitates the notion that antibiotic resistance was from time immemorial, principally because of a lack of adequate knowledge of therapeutic doses and continuous exposure of these bacteria to suboptimal plasma concentration of antibiotics. With the discovery of penicillin by Alexander Fleming in 1924, a milestone in bacterial infections' treatment was achieved. This forms the foundation for the modern era of antibiotic drugs. Antibiotics such as penicillins, cephalosporins, quinolones, tetracycline, macrolides, sulphonamides, aminoglycosides and glycopeptides are the mainstay in managing severe bacterial infections, but resistant strains of bacteria have emerged and hampered the progress of research in this field. Recently, new approaches to research involving bacteria resistance to antibiotics have appeared; these involve combining the molecular understanding of bacteria systems with the knowledge of bioinformatics. Consequently, many molecules have been developed to curb resistance associated with different bacterial infections. However, because of increased emphasis on the clinical relevance of antibiotics, the synergy between in silico study and in vivo study is well cemented and this facilitates the discovery of potent antibiotics. In this review, we seek to give an overview of earlier reviews and molecular and structural understanding of bacteria resistance to antibiotics, while focusing on the recent bioinformatics approach to antibacterial drug discovery. Understanding the evolution of antibiotic resistance at the molecular level as a functional tool for bioinformatic-based drug design.![]()
Collapse
Affiliation(s)
- Umar Ndagi
- Centre for Trans-Sahara Disease, Vaccine and Drug Research
- Ibrahim Badamasi Babangida University
- Lapai
- Nigeria
| | - Abubakar A. Falaki
- Department of Microbiology
- School of Agriculture and Applied Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Maryam Abdullahi
- Faculty of Pharmaceutical Sciences
- Ahmadu Bello University Zaria
- Nigeria
| | - Monsurat M. Lawal
- School of Laboratory Medicine and Medical Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Mahmoud E. Soliman
- Molecular Modeling and Drug Design Research Group
- School of Health Sciences
- University of KwaZulu Natal
- Durban 4001
- South Africa
| |
Collapse
|
48
|
Prajapati RK, Rosenqvist P, Palmu K, Mäkinen JJ, Malinen AM, Virta P, Metsä-Ketelä M, Belogurov GA. Oxazinomycin arrests RNA polymerase at the polythymidine sequences. Nucleic Acids Res 2019; 47:10296-10312. [PMID: 31495891 PMCID: PMC6821320 DOI: 10.1093/nar/gkz782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/13/2019] [Accepted: 08/31/2019] [Indexed: 02/06/2023] Open
Abstract
Oxazinomycin is a C-nucleoside antibiotic that is produced by Streptomyces hygroscopicus and closely resembles uridine. Here, we show that the oxazinomycin triphosphate is a good substrate for bacterial and eukaryotic RNA polymerases (RNAPs) and that a single incorporated oxazinomycin is rapidly extended by the next nucleotide. However, the incorporation of several successive oxazinomycins or a single oxazinomycin in a certain sequence context arrested a fraction of the transcribing RNAP. The addition of Gre RNA cleavage factors eliminated the transcriptional arrest at a single oxazinomycin and shortened the nascent RNAs arrested at the polythymidine sequences suggesting that the transcriptional arrest was caused by backtracking of RNAP along the DNA template. We further demonstrate that the ubiquitous C-nucleoside pseudouridine is also a good substrate for RNA polymerases in a triphosphorylated form but does not inhibit transcription of the polythymidine sequences. Our results collectively suggest that oxazinomycin functions as a Trojan horse substrate and its inhibitory effect is attributable to the oxygen atom in the position corresponding to carbon five of the uracil ring.
Collapse
Affiliation(s)
- Ranjit K Prajapati
- Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland
| | - Petja Rosenqvist
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| | - Kaisa Palmu
- Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland
| | - Janne J Mäkinen
- Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland
| | - Anssi M Malinen
- Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland
| | - Pasi Virta
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| | - Mikko Metsä-Ketelä
- Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland
| | | |
Collapse
|
49
|
Pre-detection history of extensively drug-resistant tuberculosis in KwaZulu-Natal, South Africa. Proc Natl Acad Sci U S A 2019; 116:23284-23291. [PMID: 31659018 PMCID: PMC6859317 DOI: 10.1073/pnas.1906636116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antimicrobial-resistant (AMR) infections pose a major threat to global public health. Similar to other AMR pathogens, both historical and ongoing drug-resistant tuberculosis (TB) epidemics are characterized by transmission of a limited number of predominant Mycobacterium tuberculosis (Mtb) strains. Understanding how these predominant strains achieve sustained transmission, particularly during the critical period before they are detected via clinical or public health surveillance, can inform strategies for prevention and containment. In this study, we employ whole-genome sequence (WGS) data from TB clinical isolates collected in KwaZulu-Natal, South Africa to examine the pre-detection history of a successful strain of extensively drug-resistant (XDR) TB known as LAM4/KZN, first identified in a widely reported cluster of cases in 2005. We identify marked expansion of this strain concurrent with the onset of the generalized HIV epidemic 12 y prior to 2005, localize its geographic origin to a location in northeastern KwaZulu-Natal ∼400 km away from the site of the 2005 outbreak, and use protein structural modeling to propose a mechanism for how strain-specific rpoB mutations offset fitness costs associated with rifampin resistance in LAM4/KZN. Our findings highlight the importance of HIV coinfection, high preexisting rates of drug-resistant TB, human migration, and pathoadaptive evolution in the emergence and dispersal of this critical public health threat. We propose that integrating whole-genome sequencing into routine public health surveillance can enable the early detection and local containment of AMR pathogens before they achieve widespread dispersal.
Collapse
|
50
|
Pyta K, Janas A, Skrzypczak N, Schilf W, Wicher B, Gdaniec M, Bartl F, Przybylski P. Specific Interactions between Rifamycin Antibiotics and Water Influencing Ability To Overcome Natural Cell Barriers and the Range of Antibacterial Potency. ACS Infect Dis 2019; 5:1754-1763. [PMID: 31461259 DOI: 10.1021/acsinfecdis.9b00176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rifamycins are a group of macrocyclic antibiotics mainly used for the treatment of various bacterial infections including tuberculosis. Spectroscopic studies of rifamycins evidence the formation of temperature- and solvent-dependent equilibria between A-, B-, and C-type conformers in solutions. The B- and C-type conformers of rifamycin antibiotics are exclusively formed in the presence of water molecules. A- and B-type conformers exhibit a hydrophilic and "open" ansa-bridge nature whereas the C-type conformer is more lipophilic due to the presence of a "closed" ansa-bridge structure. The involvement of the lactam moiety of the ansa-bridge in intramolecular H-bonds within rifapentine and rifampicin implicates the formation of a more hydrophilic A-type conformer. In contrast to rifampicin and rifapentine, for rifabutin and rifaximin, the "free" lactam group enhances conformational flexibility of the ansa-bridge, thereby enabling interconversion between A- and C-type conformers. In turn, an equilibrium between A- and C-type conformers for rifamycins improves their adaptation to the changing nature of bacteria cell membranes, especially those of Gram-negative strains and/or to efflux pump systems.
Collapse
Affiliation(s)
- Krystian Pyta
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| | - Anna Janas
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| | - Natalia Skrzypczak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| | - Wojciech Schilf
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Barbara Wicher
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Maria Gdaniec
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| | - Franz Bartl
- Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät, Institut für Biologie, Biophysikalische Chemie, Invalidenstr. 42, 10099 Berlin, Germany
| | - Piotr Przybylski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| |
Collapse
|