1
|
Trujillo P, Garavaglia P, Alvarez G, Aduviri S, Domene C, Cannata J, Asciutto EK, García GA, Pickholz M. Insight from atomistic molecular dynamics simulations into the supramolecular assembly of the aldo-keto reductase from Trypanosoma cruzi. J Mol Model 2024; 30:346. [PMID: 39316137 DOI: 10.1007/s00894-024-06153-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
CONTEXT Currently, Chagas disease represents an important public health problem affecting more than 8 million people worldwide. The vector of this disease is the Trypanosoma cruzi (Tc) parasite. Our research specifically focuses on the structure and aggregation states of the enzyme aldo-keto reductase of Tc (TcAKR) reported in this parasite. TcAKR belongs to the aldo-keto reductase (AKR) superfamily, enzymes that catalyze redox reactions involved in crucial biological processes. While most AKRs are found in monomeric forms, some have been reported to form dimeric and tetrameric structures. This is the case for some TcAKR. To better understand how TcAKR multimers form and remain stable, we conducted a comprehensive computational analysis using molecular dynamics (MD) simulations. Our approach to elucidating the aggregation states of TcAKR involved two strategies. Initially, we explored the dynamic behaviour of pre-assembled TcAKR dimers. Subsequently, we examined the self-aggregation of eight monomers. This investigation led to the identification of crucial residues that contribute to the stabilization of protein-protein interactions. It was also found that TcAKRs can form stable supramolecular assemblies, with each monomer typically surrounded by three first neighbours. These findings align with experimental reports of tetrameric or more complex supramolecular structures. Our computational studies could guide further experimental investigations aiming at drug development and assist in designing strategies to modulate aggregation. METHOD Atomistic molecular dynamics simulations were carried out. The TcAKR 3D model structure was obtained by homology modelling using the Swiss Model for the TcAKR sequence (GenBank accession no. EU558869). Further, we checked the model with Alphafold2 and found a high degree of similarity between models. Several tools were used to build the dimers including CLUSPRO, GRAMM-Docking, Hdock, and Py-dock. Protein superstructures were built using the PACKMOL package. CHARMM-GUI was used to set up the simulation systems. GROMACS version 2020.5 was used to perform the simulations with the CHARMM36 force field for the protein and ions and the TIP3P model for water. Further analyses were performed using VMD, GROMACS, AMBER tools, MDLovoFit, bio3d, and in-house programs.
Collapse
Affiliation(s)
- Pablo Trujillo
- Department of Physics, Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
- CONICET-University of Buenos Aires, Physics Institute of Buenos Aires (IFIBA), Buenos Aires, Argentina
| | - Patricia Garavaglia
- National Institute of Parasitology "Dr. Mario Fatala Chaben" ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Guadalupe Alvarez
- School of Science and Technology, National University of San Martín (UNSAM), ICIFI, CONICET, San Martín, Argentina
| | - Sebastian Aduviri
- Department of Physics, Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
- CONICET-University of Buenos Aires, Physics Institute of Buenos Aires (IFIBA), Buenos Aires, Argentina
| | - Carmen Domene
- Department of Chemistry, University of Bath, 1 South Bldg, Claverton Down, Bath, BA27AY, UK
| | - Joaquín Cannata
- Institute for Biotechnological Research (IIB-INTECH) "Dr. Rodolfo A. Ugalde", National University of General San Martín-CONICET, San Martín, Argentina
| | - Eliana K Asciutto
- School of Science and Technology, National University of San Martín (UNSAM), ICIFI, CONICET, San Martín, Argentina
| | - Gabriela A García
- National Institute of Parasitology "Dr. Mario Fatala Chaben" ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Mónica Pickholz
- Department of Physics, Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina.
- CONICET-University of Buenos Aires, Physics Institute of Buenos Aires (IFIBA), Buenos Aires, Argentina.
| |
Collapse
|
2
|
Štěrbová K, Raisová Stuchlíková L, Rychlá N, Kohoutová K, Babičková M, Skálová L, Matoušková P. Phylogenetic and transcriptomic study of aldo-keto reductases in Haemonchus contortus and their inducibility by flubendazole. Int J Parasitol Drugs Drug Resist 2024; 25:100555. [PMID: 38996597 PMCID: PMC11296255 DOI: 10.1016/j.ijpddr.2024.100555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
Aldo-keto reductases (AKRs), a superfamily of NADP(H)-dependent oxidoreductases, catalyze the oxidoreduction of a wide variety of eobiotic and xenobiotic aldehydes and ketones. In mammals, AKRs play essential roles in hormone and xenobiotic metabolism, oxidative stress, and drug resistance, but little is known about these enzymes in the parasitic nematode Haemonchus contortus. In the present study, 22 AKR genes existing in the H. contortus genome were investigated and a phylogenetic analysis with comparison to AKRs in Caenorhabditis elegans, sheep and humans was conducted. The constitutive transcription levels of all AKRs were measured in eggs, larvae, and adults of H. contortus, and their expression was compared in a drug-sensitive strain (ISE) and a benzimidazole-resistant strain (IRE) previously derived from the sensitive strain by imposing benzimidazole selection pressure. In addition, the inducibility of AKRs by exposure of H. contortus adults to benzimidazole anthelmintic flubendazole in vitro was tested. Phylogenetic analysis demonstrated that the majority of AKR genes in H. contortus lack orthologues in the sheep genome, which is a favorable finding for considering AKRs as potential drug targets. Large differences in the expression levels of individual AKRs were observed, with AKR1, AKR3, AKR8, and AKR10 being the most highly expressed at most developmental stages. Significant changes in the expression of AKRs during the life cycle and pronounced sex differences were found. Comparing the IRE and ISE strains, three AKRs were upregulated, and seven AKRs were downregulated in adults. In addition, the expression of three AKRs was induced by flubendazole exposure in adults of the ISE strain. Based on these results, AKR1, AKR2, AKR3, AKR5, AKR10 and AKR19 in particular merit further investigation and functional characterization with respect to their potential involvement in drug biotransformation and anthelmintic resistance in H. contortus.
Collapse
Affiliation(s)
- Karolína Štěrbová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203/8, Hradec Králové, Czech Republic
| | - Lucie Raisová Stuchlíková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203/8, Hradec Králové, Czech Republic
| | - Nikola Rychlá
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203/8, Hradec Králové, Czech Republic
| | - Kateřina Kohoutová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203/8, Hradec Králové, Czech Republic
| | - Markéta Babičková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203/8, Hradec Králové, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203/8, Hradec Králové, Czech Republic
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203/8, Hradec Králové, Czech Republic.
| |
Collapse
|
3
|
Mejía-Jaramillo AM, Fernandez GJ, Ospina-Zapata H, Murillo AM, Jimenez DE, Gómez LA, Triana-Chávez O. PUF3 RNA binding protein of Trypanosoma cruzi regulates mitochondrial morphology and function. Heliyon 2024; 10:e32810. [PMID: 39022037 PMCID: PMC11252720 DOI: 10.1016/j.heliyon.2024.e32810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
The RNA-binding PUF proteins are post-transcriptional regulators found throughout the eukaryotic domain. In Trypanosoma cruzi, ten Puf genes termed Puf1 to Puf10 have been identified. Considering that the control of gene expression in this parasite is mainly at the post-transcriptional level, we characterized the PUF3 protein by knocking out and overexpressing the gene in T. cruzi epimastigotes and studied different genetic and biological features. The RNA-seq analyses in both genotypes showed significant changes in the number of regulated transcripts compared with wild-type parasites. Thus, the number of differentially expressed genes in the knockout (ΔTcPuf3) and the overexpressor (pTEXTcPuf3) were 238 and 187, respectively. In the knockout, a more significant proportion of genes was negatively regulated (166 out of 238). In contrast, in the overexpressor, positively regulated genes were predominant (149 out of 170). Additionally, when we predicted the subcellular location of the differentially expressed genes, the results revealed an important representation of nuclear genes encoding mitochondrial proteins. Therefore, we determined whether overexpression or knockout of TcPuf3 could lead to changes in both mitochondrial structure and cellular respiration. When mitochondria from ΔTcPuf3 and pTEXTcPuf3 parasites were analyzed by transmission electron microscopy (TEM), it was observed that the overexpressor had an abnormal mitochondrial morphology, evidenced by swelling. The results associated with cellular respiration showed that both the ΔTcPuf3 and pTEXTcPuf3 had a lower efficiency in routine respiration and the electron transport system capacity. Likewise, the mitochondria from overexpressing parasites showed a slight hyperpolarization. Additionally, several biological features, depending on the function of the mitochondria, were altered, such as growth, cell division, metacyclogenesis, ROS production, and response to benznidazole. In conclusion, our results suggest that although PUF3 is not an essential protein in T. cruzi, it influences mitochondrial transcripts, affecting mitochondrial morphology and function.
Collapse
Affiliation(s)
| | - Geysson Javier Fernandez
- Biología y Control de Enfermedades Infecciosas, BCEI, Universidad de Antioquia, Medellín, Colombia
| | - Hader Ospina-Zapata
- Biología y Control de Enfermedades Infecciosas, BCEI, Universidad de Antioquia, Medellín, Colombia
| | - Ana Milena Murillo
- Biología y Control de Enfermedades Infecciosas, BCEI, Universidad de Antioquia, Medellín, Colombia
| | - Dianny Elizabeth Jimenez
- Biología y Control de Enfermedades Infecciosas, BCEI, Universidad de Antioquia, Medellín, Colombia
| | - Luis A. Gómez
- Área de Ciencias Fundamentales, Universidad Eafit, Medellín, Colombia
| | - Omar Triana-Chávez
- Biología y Control de Enfermedades Infecciosas, BCEI, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
4
|
Ossowski MS, Gallardo JP, Niborski LL, Rodríguez-Durán J, Lapadula WJ, Juri Ayub M, Chadi R, Hernandez Y, Fernandez ML, Potenza M, Gómez KA. Characterization of Novel Trypanosoma cruzi-Specific Antigen with Potential Use in the Diagnosis of Chagas Disease. Int J Mol Sci 2024; 25:1202. [PMID: 38256275 PMCID: PMC10816184 DOI: 10.3390/ijms25021202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Chagas disease is caused by the parasite Trypanosoma cruzi. In humans, it evolves into a chronic disease, eventually resulting in cardiac, digestive, and/or neurological disorders. In the present study, we characterized a novel T. cruzi antigen named Tc323 (TcCLB.504087.20), recognized by a single-chain monoclonal antibody (scFv 6B6) isolated from the B cells of patients with cardiomyopathy related to chronic Chagas disease. Tc323, a ~323 kDa protein, is an uncharacterized protein showing putative quinoprotein alcohol dehydrogenase-like domains. A computational molecular docking study revealed that the scFv 6B6 binds to an internal domain of Tc323. Immunofluorescence microscopy and Western Blot showed that Tc323 is expressed in the main developmental forms of T. cruzi, localized intracellularly and exhibiting a membrane-associated pattern. According to phylogenetic analysis, Tc323 is highly conserved throughout evolution in all the lineages of T. cruzi so far identified, but it is absent in Leishmania spp. and Trypanosoma brucei. Most interestingly, only plasma samples from patients infected with T. cruzi and those with mixed infection with Leishmania spp. reacted against Tc323. Collectively, our findings demonstrate that Tc323 is a promising candidate for the differential serodiagnosis of chronic Chagas disease in areas where T. cruzi and Leishmania spp. infections coexist.
Collapse
Affiliation(s)
- Micaela S. Ossowski
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires 1428, Argentina; (M.S.O.); (J.P.G.); (L.L.N.); (J.R.-D.)
| | - Juan Pablo Gallardo
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires 1428, Argentina; (M.S.O.); (J.P.G.); (L.L.N.); (J.R.-D.)
| | - Leticia L. Niborski
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires 1428, Argentina; (M.S.O.); (J.P.G.); (L.L.N.); (J.R.-D.)
| | - Jessica Rodríguez-Durán
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires 1428, Argentina; (M.S.O.); (J.P.G.); (L.L.N.); (J.R.-D.)
| | - Walter J. Lapadula
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis 5700, Argentina; (W.J.L.); (M.J.A.)
| | - Maximiliano Juri Ayub
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis 5700, Argentina; (W.J.L.); (M.J.A.)
| | - Raúl Chadi
- Hospital General de Agudos “Dr. Ignacio Pirovano”, Buenos Aires 1430, Argentina;
| | - Yolanda Hernandez
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, Buenos Aires 1063, Argentina; (Y.H.); (M.L.F.)
| | - Marisa L. Fernandez
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, Buenos Aires 1063, Argentina; (Y.H.); (M.L.F.)
| | - Mariana Potenza
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires 1428, Argentina; (M.S.O.); (J.P.G.); (L.L.N.); (J.R.-D.)
| | - Karina A. Gómez
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires 1428, Argentina; (M.S.O.); (J.P.G.); (L.L.N.); (J.R.-D.)
| |
Collapse
|
5
|
García-Torres I, De la Mora-De la Mora I, López-Velázquez G, Cabrera N, Flores-López LA, Becker I, Herrera-López J, Hernández R, Pérez-Montfort R, Enríquez-Flores S. Repurposing of rabeprazole as an anti- Trypanosoma cruzi drug that targets cellular triosephosphate isomerase. J Enzyme Inhib Med Chem 2023; 38:2231169. [PMID: 37401012 PMCID: PMC10351538 DOI: 10.1080/14756366.2023.2231169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023] Open
Abstract
Trypanosoma cruzi is the causative agent of American trypanosomiasis, which mainly affects populations in Latin America. Benznidazole is used to control the disease, with severe effects in patients receiving this chemotherapy. Previous studies have demonstrated the inhibition of triosephosphate isomerase from T. cruzi, but cellular enzyme inhibition has yet to be established. This study demonstrates that rabeprazole inhibits both cell viability and triosephosphate isomerase activity in T. cruzi epimastigotes. Our results show that rabeprazole has an IC50 of 0.4 µM, which is 14.5 times more effective than benznidazole. Additionally, we observed increased levels of methyl-glyoxal and advanced glycation end products after the inhibition of cellular triosephosphate isomerase by rabeprazole. Finally, we demonstrate that the inactivation mechanisms of rabeprazole on triosephosphate isomerase of T. cruzi can be achieved through the derivatization of three of its four cysteine residues. These results indicate that rabeprazole is a promising candidate against American trypanosomiasis.
Collapse
Affiliation(s)
- Itzhel García-Torres
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, CDMX, México
| | | | | | - Nallely Cabrera
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, CDMX, México
| | - Luis Antonio Flores-López
- CONAHCYT Instituto Nacional de Pediatría, Laboratorio de Biomoléculas y Salud Infantil, CDMX, México
| | - Ingeborg Becker
- Centro de Medicina Tropical, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, México
| | - Juliana Herrera-López
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, México
| | - Roberto Hernández
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, México
| | - Ruy Pérez-Montfort
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, CDMX, México
| | - Sergio Enríquez-Flores
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, CDMX, México
| |
Collapse
|
6
|
Lima DA, Gonçalves LO, Reis-Cunha JL, Guimarães PAS, Ruiz JC, Liarte DB, Murta SMF. Transcriptomic analysis of benznidazole-resistant and susceptible Trypanosoma cruzi populations. Parasit Vectors 2023; 16:167. [PMID: 37217925 DOI: 10.1186/s13071-023-05775-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/16/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Chagas disease (CD), caused by the parasite Trypanosoma cruzi, is a serious public health concern in Latin America. Nifurtimox and benznidazole (BZ), the only two drugs currently approved for the treatment of CD, have very low efficacies in the chronic phase of the disease and several toxic side effects. Trypanosoma cruzi strains that are naturally resistant to both drugs have been reported. We performed a comparative transcriptomic analysis of wild-type and BZ-resistant T. cruzi populations using high-throughput RNA sequencing to elucidate the metabolic pathways related to clinical drug resistance and identify promising molecular targets for the development of new drugs for treating CD. METHODS All complementary DNA (cDNA) libraries were constructed from the epimastigote forms of each line, sequenced and analysed using the Prinseq and Trimmomatic tools for the quality analysis, STAR as the aligner for mapping the reads against the reference genome (T. cruzi Dm28c-2018), the Bioconductor package EdgeR for statistical analysis of differential expression and the Python-based library GOATools for the functional enrichment analysis. RESULTS The analytical pipeline with an adjusted P-value of < 0.05 and fold-change > 1.5 identified 1819 transcripts that were differentially expressed (DE) between wild-type and BZ-resistant T. cruzi populations. Of these, 1522 (83.7%) presented functional annotations and 297 (16.2%) were assigned as hypothetical proteins. In total, 1067 transcripts were upregulated and 752 were downregulated in the BZ-resistant T. cruzi population. Functional enrichment analysis of the DE transcripts identified 10 and 111 functional categories enriched for the up- and downregulated transcripts, respectively. Through functional analysis we identified several biological processes potentially associated with the BZ-resistant phenotype: cellular amino acid metabolic processes, translation, proteolysis, protein phosphorylation, RNA modification, DNA repair, generation of precursor metabolites and energy, oxidation-reduction processes, protein folding, purine nucleotide metabolic processes and lipid biosynthetic processes. CONCLUSIONS The transcriptomic profile of T. cruzi revealed a robust set of genes from different metabolic pathways associated with the BZ-resistant phenotype, proving that T. cruzi resistance mechanisms are multifactorial and complex. Biological processes associated with parasite drug resistance include antioxidant defenses and RNA processing. The identified transcripts, such as ascorbate peroxidase (APX) and iron superoxide dismutase (Fe-SOD), provide important information on the resistant phenotype. These DE transcripts can be further evaluated as molecular targets for new drugs against CD.
Collapse
Affiliation(s)
- Davi Alvarenga Lima
- Genômica Funcional de Parasitos, Instituto René Rachou (IRR/Fiocruz Minas), Av. Augusto de Lima 1715, Belo Horizonte, MG, CEP 30190-002, Brazil
| | - Leilane Oliveira Gonçalves
- Informática de Biossistemas, Genômica e Bioengenharia, Instituto René Rachou (IRR/Fiocruz Minas), Belo Horizonte, MG, Brazil
| | | | - Paul Anderson Souza Guimarães
- Informática de Biossistemas, Genômica e Bioengenharia, Instituto René Rachou (IRR/Fiocruz Minas), Belo Horizonte, MG, Brazil
| | - Jeronimo Conceição Ruiz
- Informática de Biossistemas, Genômica e Bioengenharia, Instituto René Rachou (IRR/Fiocruz Minas), Belo Horizonte, MG, Brazil
| | | | - Silvane Maria Fonseca Murta
- Genômica Funcional de Parasitos, Instituto René Rachou (IRR/Fiocruz Minas), Av. Augusto de Lima 1715, Belo Horizonte, MG, CEP 30190-002, Brazil.
| |
Collapse
|
7
|
Muñoz-Calderón A, Ramírez JL, Díaz-Bello Z, Alarcón de Noya B, Noya O, Schijman AG. Genetic Characterization of Trypanosoma cruzi I Populations from an Oral Chagas Disease Outbreak in Venezuela: Natural Resistance to Nitroheterocyclic Drugs. ACS Infect Dis 2023; 9:582-592. [PMID: 36780430 DOI: 10.1021/acsinfecdis.2c00569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The oral transmission of Chagas disease (oCD) in Venezuela announced its appearance in 2007. Different from other populations affected by oCD and despite close supervision during treatment with nitroheterocyclic drugs, the result was treatment failure. We studied genetic features of natural bloodstream parasite populations and populations after treatment of nine patients of this outbreak. In total, we studied six hemoculture isolates, eight Pre-Tx blood samples, and 17 samples collected at two or three Post-Tx time-points between 2007 and 2015. Parasitic loads were determined by quantitative polymerase chain reaction (qPCR), and discrete typing units (DTU), minicircle signatures, and Tcntr-1 gene sequences were searched from blood samples and hemocultures. Half-maximal inhibitory concentration (IC50) values were measured from the hemocultures. All patients were infected by TcI. Significant decrease in parasitic loads was observed between Pre-Tx and Post-Tx samples, suggesting the evolution from acute to chronic phase of Chagas disease. 60% of intra-DTU-I variability was observed between Pre-Tx and Post-Tx minicircle signatures in the general population, and 43 single-nucleotide polymorphisms (SNPs) were detected in a total of 12 Tcntr-1 gene sequences, indicative of a polyclonal source of infection. SNPs in three post-Tx samples produced stop codons giving rise to putative truncated proteins or displaced open reading frames, which would render resistance genes. IC50 values varied from 5.301 ± 1.973 to 104.731 ± 4.556 μM, demonstrating a wide range of susceptibility. The poor drug response in the Pre-Tx parasite populations may be associated with the presence of naturally resistant parasite clones. Therefore, any information that can be obtained on drug susceptibility from in vitro assays, in vivo assays, or molecular characterization of natural populations of Trypanosoma cruzi becomes essential when therapeutic guidelines are designed in a given geographical area.
Collapse
Affiliation(s)
- Arturo Muñoz-Calderón
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Ingeniería Genética y Biología Molecular "Dr. Héctor Torres", Buenos Aires CP1428ADN, Argentina
| | - José Luis Ramírez
- Centro de Biotecnología, Fundación Instituto de Estudios Avanzados, Caracas CP1080, Venezuela
| | - Zoraida Díaz-Bello
- Instituto de Medicina Tropical "Dr. Félix Pifano", Facultad de Medicina, Universidad Central de Venezuela, Caracas CP1050, Venezuela
| | - Belkisyolé Alarcón de Noya
- Instituto de Medicina Tropical "Dr. Félix Pifano", Facultad de Medicina, Universidad Central de Venezuela, Caracas CP1050, Venezuela
| | - Oscar Noya
- Instituto de Medicina Tropical "Dr. Félix Pifano", Facultad de Medicina, Universidad Central de Venezuela, Caracas CP1050, Venezuela.,Centro de Estudios sobre Malaria, Instituto de Altos Estudios, Ministerio del Poder Popular para la Salud, Caracas CP1050, Venezuela
| | - Alejandro G Schijman
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Ingeniería Genética y Biología Molecular "Dr. Héctor Torres", Buenos Aires CP1428ADN, Argentina
| |
Collapse
|
8
|
Zhan Y, Xu H, Tan HT, Ho YS, Yang D, Chen S, Ow DSW, Lv X, Wei F, Bi X, Chen S. Systematic Adaptation of Bacillus licheniformis to 2-Phenylethanol Stress. Appl Environ Microbiol 2023; 89:e0156822. [PMID: 36752618 PMCID: PMC9972911 DOI: 10.1128/aem.01568-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/12/2023] [Indexed: 02/09/2023] Open
Abstract
The compound 2-phenylethanol (2-PE) is a bulk flavor and fragrance with a rose-like aroma that can be produced by microbial cell factories, but its cellular toxicity inhibits cellular growth and limits strain performance. Specifically, the microbe Bacillus licheniformis has shown a strong tolerance to 2-PE. Understanding these tolerance mechanisms is crucial for achieving the hyperproduction of 2-PE. In this report, the mechanisms of B. licheniformis DW2 resistance to 2-PE were studied by multi-omics technology coupled with physiological and molecular biological approaches. 2-PE induced reactive oxygen species formation and affected nucleic acid, ribosome, and cell wall synthesis. To manage 2-PE stress, the antioxidant and global stress response systems were activated; the repair system of proteins and homeostasis of the ion and osmotic were initiated. Furthermore, the tricarboxylic acid cycle and NADPH synthesis pathways were upregulated; correspondingly, scanning electron microscopy revealed that cell morphology was changed. These results provide deeper insights into the adaptive mechanisms of B. licheniformis to 2-PE and highlight the potential targets for genetic manipulation to enhance 2-PE resistance. IMPORTANCE The ability to tolerate organic solvents is essential for bacteria producing these chemicals with high titer, yield, and productivity. As exemplified by 2-PE, bioproduction of 2-PE represents a promising alternative to chemical synthesis and plant extraction approaches, but its toxicity hinders successful large-scale microbial production. Here, a multi-omics approach is employed to systematically study the mechanisms of B. licheniformis DW2 resistance to 2-PE. As a 2-PE-tolerant strain, B. licheniformis displays multifactorial mechanisms of 2-PE tolerance, including activating global stress response and repair systems, increasing NADPH supply, changing cell morphology and membrane composition, and remodeling metabolic pathways. The current work yields novel insights into the mechanisms of B. licheniformis resistance to 2-PE. This knowledge can also be used as a clue for improving bacterial performances to achieve industrial-scale production of 2-PE and potentially applied to the production of other relevant organic solvents, such as tyrosol and hydroxytyrosol.
Collapse
Affiliation(s)
- Yangyang Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei, People’s Republic of China
| | - Haixia Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei, People’s Republic of China
| | - Hween Tong Tan
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ying Swan Ho
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Dongxiao Yang
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Shuwen Chen
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Dave Siak-Wei Ow
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xin Lv
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, People’s Republic of China
| | - Fang Wei
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, People’s Republic of China
| | - Xuezhi Bi
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
9
|
Díaz-Viraqué F, Chiribao ML, Paes-Vieira L, Machado MR, Faral-Tello P, Tomasina R, Trochine A, Robello C. New Insights into the Role of the Trypanosoma cruzi Aldo-Keto Reductase TcAKR. Pathogens 2023; 12:pathogens12010085. [PMID: 36678433 PMCID: PMC9860839 DOI: 10.3390/pathogens12010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Chagas disease is a zoonotic infectious disease caused by the protozoan parasite Trypanosoma cruzi. It is distributed worldwide, affecting around 7 million people; there is no effective treatment, and it constitutes a leading cause of disability and premature death in the Americas. Only two drugs are currently approved for the treatment, Benznidazole and Nifurtimox, and both have to be activated by reducing the nitro-group. The T. cruzi aldo-keto reductase (TcAKR) has been related to the metabolism of benznidazole. TcAKR has been extensively studied, being most efforts focused on characterizing its implication in trypanocidal drug metabolism; however, little is known regarding its biological role. Here, we found that TcAKR is confined, throughout the entire life cycle, into the parasite mitochondria providing new insights into its biological function. In particular, in epimastigotes, TcAKR is associated with the kinetoplast, which suggests additional roles of the protein. The upregulation of TcAKR, which does not affect TcOYE expression, was correlated with an increase in PGF2α, suggesting that this enzyme is related to PGF2α synthesis in T. cruzi. Structural analysis showed that TcAKR contains a catalytic tetrad conserved in the AKR superfamily. Finally, we found that TcAKR is also involved in Nfx metabolization.
Collapse
Affiliation(s)
- Florencia Díaz-Viraqué
- Laboratorio de Interacciones Hospedero Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - María Laura Chiribao
- Laboratorio de Interacciones Hospedero Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
- Departamento de Bioquímica, Facultad de Medicina Universidad de la República, Montevideo 11400, Uruguay
| | - Lisvane Paes-Vieira
- Laboratorio de Interacciones Hospedero Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Matias R. Machado
- Unidad de Proteínas Recombinantes, Institut Pasteur de Montevideo, Montevideo 11300, Uruguay
| | - Paula Faral-Tello
- Laboratorio de Interacciones Hospedero Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Ramiro Tomasina
- Laboratory of Apicomplexan Biology, Institut Pasteur de Montevideo and Departamento de Parasitología, Facultad de Medicina Universidad de la República, Montevideo 11300, Uruguay
| | - Andrea Trochine
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), CONICET-Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche 8400, Argentina
| | - Carlos Robello
- Laboratorio de Interacciones Hospedero Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
- Departamento de Bioquímica, Facultad de Medicina Universidad de la República, Montevideo 11400, Uruguay
- Correspondence:
| |
Collapse
|
10
|
Almeida-Silva J, Menezes DS, Fernandes JMP, Almeida MC, Vasco-Dos-Santos DR, Saraiva RM, Viçosa AL, Perez SAC, Andrade SG, Suarez-Fontes AM, Vannier-Santos MA. The repositioned drugs disulfiram/diethyldithiocarbamate combined to benznidazole: Searching for Chagas disease selective therapy, preventing toxicity and drug resistance. Front Cell Infect Microbiol 2022; 12:926699. [PMID: 35967878 PMCID: PMC9372510 DOI: 10.3389/fcimb.2022.926699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/27/2022] [Indexed: 12/20/2022] Open
Abstract
Chagas disease (CD) affects at least 6 million people in 21 South American countries besides several thousand in other nations all over the world. It is estimated that at least 14,000 people die every year of CD. Since vaccines are not available, chemotherapy remains of pivotal relevance. About 30% of the treated patients cannot complete the therapy because of severe adverse reactions. Thus, the search for novel drugs is required. Here we tested the benznidazole (BZ) combination with the repositioned drug disulfiram (DSF) and its derivative diethyldithiocarbamate (DETC) upon Trypanosoma cruzi in vitro and in vivo. DETC-BZ combination was synergistic diminishing epimastigote proliferation and enhancing selective indexes up to over 10-fold. DETC was effective upon amastigotes of the BZ- partially resistant Y and the BZ-resistant Colombiana strains. The combination reduced proliferation even using low concentrations (e.g., 2.5 µM). Scanning electron microscopy revealed membrane discontinuities and cell body volume reduction. Transmission electron microscopy revealed remarkable enlargement of endoplasmic reticulum cisternae besides, dilated mitochondria with decreased electron density and disorganized kinetoplast DNA. At advanced stages, the cytoplasm vacuolation apparently impaired compartmentation. The fluorescent probe H2-DCFDA indicates the increased production of reactive oxygen species associated with enhanced lipid peroxidation in parasites incubated with DETC. The biochemical measurement indicates the downmodulation of thiol expression. DETC inhibited superoxide dismutase activity on parasites was more pronounced than in infected mice. In order to approach the DETC effects on intracellular infection, peritoneal macrophages were infected with Colombiana trypomastigotes. DETC addition diminished parasite numbers and the DETC-BZ combination was effective, despite the low concentrations used. In the murine infection, the combination significantly enhanced animal survival, decreasing parasitemia over BZ. Histopathology revealed that low doses of BZ-treated animals presented myocardial amastigote, not observed in combination-treated animals. The picrosirius collagen staining showed reduced myocardial fibrosis. Aminotransferase de aspartate, Aminotransferase de alanine, Creatine kinase, and urea plasma levels demonstrated that the combination was non-toxic. As DSF and DETC can reduce the toxicity of other drugs and resistance phenotypes, such a combination may be safe and effective.
Collapse
Affiliation(s)
- Juliana Almeida-Silva
- Innovations in Therapies, Education and Bioproducts Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Diego Silva Menezes
- Parasite Biology Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, BA, Brazil
| | - Juan Mateus Pereira Fernandes
- Innovations in Therapies, Education and Bioproducts Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Márcio Cerqueira Almeida
- Parasite Biology Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, BA, Brazil
| | - Deyvison Rhuan Vasco-Dos-Santos
- Innovations in Therapies, Education and Bioproducts Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Roberto Magalhães Saraiva
- Laboratory of Clinical Research on Chagas Disease, Evandro Chagas Infectious Disease Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Alessandra Lifsitch Viçosa
- Experimental Pharmacotechnics Laboratory, Department of Galenic Innovation, Institute of Drug Technology - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Sandra Aurora Chavez Perez
- Project Management Technical Assistance, Institute of Drug Technology - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Sônia Gumes Andrade
- Experimental Chagas Disease Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, BA, Brazil
| | - Ana Márcia Suarez-Fontes
- Innovations in Therapies, Education and Bioproducts Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Marcos André Vannier-Santos
- Innovations in Therapies, Education and Bioproducts Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
11
|
Sensibilidad in vitro a benznidazol, nifurtimox y posaconazol de cepas de Trypanosoma cruzi de Paraguay. BIOMÉDICA 2020; 40:749-763. [PMID: 33275352 PMCID: PMC7808768 DOI: 10.7705/biomedica.5187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Indexed: 11/21/2022]
Abstract
Introducción. Trypanosoma cruzi, agente causal de la enfermedad de Chagas, exhibe una sustancial heterogeneidad fenotípica y genotípica que puede influir en las variaciones epidemiológicas y clínicas de la enfermedad, así como en la sensibilidad a los fármacos utilizados en el tratamiento. Objetivo. Evaluar la sensibilidad in vitro al benznidazol, el nifurtimox y el posaconazol de 40 cepas clonadas de T. cruzi de Paraguay, con distintos genotipos, huéspedes y localidades de origen. Materiales y métodos. En su estado epimastigote, los parásitos se incubaron en medio de cultivo LIT (Liver Infusion Tryptose) con diferentes concentraciones de cada fármaco en ensayos por triplicado. El grado de sensibilidad se estimó a partir de las concentraciones inhibitorias del 50 y el 90% (IC50 e IC90) y se obtuvieron los valores promedio y la desviación estándar de cada cepa y fármaco. La significación estadística entre grupos se determinó mediante análisis de varianzas con el test no paramétrico de Wilcoxon/Kruskal-Wallis y valores de p<0,05. Resultados. Se observó un amplio rango de respuesta a los fármacos. Se identificaron dos grupos de parásitos (A y B) con diferencias significativas en la sensibilidad al benznidazol (p<0,0001), y tres grupos (A, B, C) en cuanto a la sensibilidad al nifurtimox y el posaconazol (p<0,0001). Conclusiones. En general, las cepas fueron más sensibles al nifurtimox que al benznidazol y el posaconazol. Estas diferencias evidencian la heterogeneidad de las poblaciones de T cruzi que circulan en Paraguay, lo que debe considerarse en el tratamiento y el seguimiento de las personas afectadas.
Collapse
|
12
|
Pacheco-Lugo LA, Sáenz-García JL, Díaz-Olmos Y, Netto-Costa R, Brant RSC, DaRocha WD. CREditing: a tool for gene tuning in Trypanosoma cruzi. Int J Parasitol 2020; 50:1067-1077. [PMID: 32858036 DOI: 10.1016/j.ijpara.2020.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/30/2022]
Abstract
The genetic manipulation of Trypanosoma cruzi continues to be a challenge, mainly due to the lack of available and efficient molecular tools. The CRE-lox recombination system is a site-specific recombinase technology, widely used method of achieving conditional targeted deletions, inversions, insertions, gene activation, translocation, and other modifications in chromosomal or episomal DNA. In the present study, the CRE-lox system was adapted to expand the current genetic toolbox for this hard-to-manipulate parasite. For this, evaluations of whether direct protein delivery of CRE recombinase through electroporation could improve CRE-mediated recombination in T. cruzi were performed. CRE recombinase was fused to the C-terminus of T. cruzi histone H2B, which carries the nuclear localization signal and is expressed in the prokaryotic system. The fusion protein was affinity purified and directly introduced into epimastigotes and tissue culture-derived trypomastigotes. This enabled the control of gene expression as demonstrated by turning on a tandem dimer fluorescent protein reporter gene that had been previously transfected into parasites, achieving CRE-mediated recombination in up to 85% of parasites. This system was further tested for its ability to turn off gene expression, remove selectable markers integrated into the genome, and conditionally knock down the nitroreductase gene, which is involved in drug resistance. Additionally, CREditing also enabled the control of gene expression in tissue culture trypomastigotes, which are more difficult to transfect than epimastigotes. The considerable advances in genomic manipulation of T. cruzi shown in this study can be used by others to aid in the greater understanding of this parasite through gain- or loss-of-function approaches.
Collapse
Affiliation(s)
- Lisandro A Pacheco-Lugo
- Laboratório de Genômica Funcional de Parasitos (GFP), Universidade Federal de Paraná, Paraná, Brazil; Facultad de Ciencias Básicas Biomédicas, Universidad Simón Bolívar, Barranquilla, Colombia
| | - José L Sáenz-García
- Laboratório de Genômica Funcional de Parasitos (GFP), Universidade Federal de Paraná, Paraná, Brazil
| | - Yirys Díaz-Olmos
- Instituto Carlos Chagas, Fiocruz-Paraná, Paraná, Brazil; Facultad de Ciencias de la Salud, Universidad del Norte, Barranquilla, Colombia
| | | | - Rodrigo S C Brant
- Laboratório de Genômica Funcional de Parasitos (GFP), Universidade Federal de Paraná, Paraná, Brazil
| | - Wanderson D DaRocha
- Laboratório de Genômica Funcional de Parasitos (GFP), Universidade Federal de Paraná, Paraná, Brazil.
| |
Collapse
|
13
|
Cancela M, Paes JA, Moura H, Barr JR, Zaha A, Ferreira HB. Unraveling oxidative stress response in the cestode parasite Echinococcus granulosus. Sci Rep 2019; 9:15876. [PMID: 31685918 PMCID: PMC6828748 DOI: 10.1038/s41598-019-52456-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/18/2019] [Indexed: 01/19/2023] Open
Abstract
Cystic hydatid disease (CHD) is a worldwide neglected zoonotic disease caused by Echinococcus granulosus. The parasite is well adapted to its host by producing protective molecules that modulate host immune response. An unexplored issue associated with the parasite's persistence in its host is how the organism can survive the oxidative stress resulting from parasite endogenous metabolism and host defenses. Here, we used hydrogen peroxide (H2O2) to induce oxidative stress in E. granulosus protoescoleces (PSCs) to identify molecular pathways and antioxidant responses during H2O2 exposure. Using proteomics, we identified 550 unique proteins; including 474 in H2O2-exposed PSCs (H-PSCs) samples and 515 in non-exposed PSCs (C-PSCs) samples. Larger amounts of antioxidant proteins, including GSTs and novel carbonyl detoxifying enzymes, such as aldo-keto reductase and carbonyl reductase, were detected after H2O2 exposure. Increased concentrations of caspase-3 and cathepsin-D proteases and components of the 26S proteasome were also detected in H-PSCs. Reduction of lamin-B and other caspase-substrate, such as filamin, in H-PSCs suggested that molecular events related to early apoptosis were also induced. We present data that describe proteins expressed in response to oxidative stress in a metazoan parasite, including novel antioxidant enzymes and targets with potential application to treatment and prevention of CHD.
Collapse
Affiliation(s)
- Martín Cancela
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil. .,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil. .,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil.
| | - Jéssica A Paes
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Hercules Moura
- Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - John R Barr
- Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Arnaldo Zaha
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil
| | - Henrique B Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil. .,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil. .,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil. .,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil.
| |
Collapse
|
14
|
Moreira DDS, Duarte AP, Pais FSM, da Silva-Pereira RA, Romanha AJ, Schenkman S, Murta SMF. Overexpression of eukaryotic initiation factor 5A (eIF5A) affects susceptibility to benznidazole in Trypanosoma cruzi populations. Mem Inst Oswaldo Cruz 2018; 113:e180162. [PMID: 30066751 PMCID: PMC6060400 DOI: 10.1590/0074-02760180162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/04/2018] [Indexed: 11/22/2022] Open
Abstract
Eukaryotic initiation factor 5A (eIF5A) is a conserved protein with an essential role in translation elongation. Using one and two-dimensional western blotting, we showed that the eIF5A protein level was 2-fold lower in benznidazole (BZ)-resistant (BZR and 17LER) Trypanosoma cruzi populations than in their respective susceptible counterparts (BZS and 17WTS). To confirm the role of eIF5A in BZ resistance, we transfected BZS and 17WTS with the wild-type eIF5A or mutant eIF5A-S2A (in which serine 2 was replaced by alanine). Upon overexpressing eIF5A, both susceptible lines became approximately 3- and 5-fold more sensitive to BZ. In contrast, the eIF5A-S2A mutant did not alter its susceptibility to BZ. These data suggest that BZ resistance might arise from either decreasing the translation of proteins that require eIF5A, or as a consequence of differential levels of precursors for the hypusination reactions (e.g., spermidine and trypanothione), both of which alter BZ's effects in the parasite.
Collapse
Affiliation(s)
| | - Ana Paula Duarte
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Belo Horizonte, MG, Brasil
| | | | | | - Alvaro José Romanha
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Belo Horizonte, MG, Brasil
| | - Sergio Schenkman
- Universidade Federal de São Paulo, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brasil
| | | |
Collapse
|
15
|
Trypanosoma cruzi: death phenotypes induced by ortho-naphthoquinone substrates of the aldo-keto reductase (TcAKR). Role of this enzyme in the mechanism of action of β-lapachone. Parasitology 2018; 145:1251-1259. [DOI: 10.1017/s0031182018000045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractSeveral ortho-naphthoquinones (o-NQs) have trypanocidal activity against Trypanosoma cruzi, the aetiological agent of Chagas disease. Previously, we demonstrated that the aldo-keto reductase from this parasite (TcAKR) reduces o-NQs, such as β-lapachone (β-Lap) and 9,10-phenanthrenequinone (9,10-PQ), with concomitant reactive oxygen species (ROS) production. Recent characterization of TcAKR activity and expression in two T. cruzi strains, CL Brener and Nicaragua, showed that TcAKR expression is 2.2-fold higher in CL Brener than in Nicaragua. Here, we studied the trypanocidal effect and induction of several death phenotypes by β-Lap and 9,10-PQ in epimastigotes of these two strains. The CL Brener strain was more resistant to both o-NQs than Nicaragua, indicating that greater TcAKR activity is unlikely to be a major influence on o-NQ toxicity. Evaluation of changes in ROS production, mitochondrial membrane potential, phosphatidylserine exposure and monodansylcadaverine labelling evidenced that β-Lap and 9,10-PQ induce different death phenotypes depending on the combination of drug and T. cruzi strain analysed. To study whether TcAKR participates in o-NQ activation in intact parasites, β-Lap and 9,10-PQ trypanocidal effect was next evaluated in TcAKR-overexpressing parasites. Only β-Lap was more effective and induced greater ROS production in TcAKR-overexpressing epimastigotes than in controls, suggesting that TcAKR may participate in β-Lap activation.
Collapse
|
16
|
Franco J, Scarone L, Comini MA. Drugs and Drug Resistance in African and American Trypanosomiasis. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2018. [DOI: 10.1016/bs.armc.2018.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|