1
|
Li R, Lichstrahl MS, Zandi TA, Kahlert L, Townsend CA. The dabABC operon is a marker of C4-alkylated monobactam biosynthesis and responsible for ( 2S, 3R)-diaminobutyrate production. iScience 2024; 27:109202. [PMID: 38433893 PMCID: PMC10906522 DOI: 10.1016/j.isci.2024.109202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
Non-ribosomal peptide synthetases (NRPSs) assemble metabolites of medicinal and commercial value. Both serine and threonine figure prominently in these processes and separately can be converted to the additional NRPS building blocks 2,3-diaminopropionate (Dap) and 2,3-diaminobutyrate (Dab). Here we bring extensive bioinformatics, in vivo and in vitro experimentation to compose a unified view of the biosynthesis of these widely distributed non-canonical amino acids that both derive by pyridoxal-mediated β-elimination of the activated O-phosphorylated substrates followed by β-addition of an amine donor. By examining monobactam biosynthesis in Pseudomonas and in Burkholderia species where it is silent, we show that (2S,3R)-Dab synthesis depends on an l-threonine kinase (DabA), a β-replacement reaction with l-aspartate (DabB) and an argininosuccinate lyase-like protein (DabC). The growing clinical importance of monobactams to both withstand Ambler Class B metallo-β-lactamases and retain their antibiotic activity make reprogrammed precursor and NRPS synthesis of modified monobactams a feasible and attractive goal.
Collapse
Affiliation(s)
- Rongfeng Li
- Department of Chemistry, The Johns Hopkins University, 3400 N Charles St, Baltimore, MD, USA
| | - Michael S. Lichstrahl
- Department of Chemistry, The Johns Hopkins University, 3400 N Charles St, Baltimore, MD, USA
| | - Trevor A. Zandi
- T. C. Jenkins Department of Biophysics, The Johns Hopkins University, Baltimore, MD, USA
| | - Lukas Kahlert
- Department of Chemistry, The Johns Hopkins University, 3400 N Charles St, Baltimore, MD, USA
| | - Craig A. Townsend
- Department of Chemistry, The Johns Hopkins University, 3400 N Charles St, Baltimore, MD, USA
| |
Collapse
|
2
|
Balabanova L, Averianova L, Marchenok M, Son O, Tekutyeva L. Microbial and Genetic Resources for Cobalamin (Vitamin B12) Biosynthesis: From Ecosystems to Industrial Biotechnology. Int J Mol Sci 2021; 22:ijms22094522. [PMID: 33926061 PMCID: PMC8123684 DOI: 10.3390/ijms22094522] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Many microbial producers of coenzyme B12 family cofactors together with their metabolically interdependent pathways are comprehensively studied and successfully used both in natural ecosystems dominated by auxotrophs, including bacteria and mammals, and in the safe industrial production of vitamin B12. Metabolic reconstruction for genomic and metagenomic data and functional genomics continue to mine the microbial and genetic resources for biosynthesis of the vital vitamin B12. Availability of metabolic engineering techniques and usage of affordable and renewable sources allowed improving bioprocess of vitamins, providing a positive impact on both economics and environment. The commercial production of vitamin B12 is mainly achieved through the use of the two major industrial strains, Propionobacterium shermanii and Pseudomonas denitrificans, that involves about 30 enzymatic steps in the biosynthesis of cobalamin and completely replaces chemical synthesis. However, there are still unresolved issues in cobalamin biosynthesis that need to be elucidated for future bioprocess improvements. In the present work, we review the current state of development and challenges for cobalamin (vitamin B12) biosynthesis, describing the major and novel prospective strains, and the studies of environmental factors and genetic tools effecting on the fermentation process are reported.
Collapse
Affiliation(s)
- Larissa Balabanova
- Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, 690922 Vladivostok, Russia; (L.A.); (M.M.); (O.S.); (L.T.)
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia
- ARNIKA, Territory of PDA Nadezhdinskaya, 692481 Primorskiy Region, Russia
- Correspondence:
| | - Liudmila Averianova
- Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, 690922 Vladivostok, Russia; (L.A.); (M.M.); (O.S.); (L.T.)
- ARNIKA, Territory of PDA Nadezhdinskaya, 692481 Primorskiy Region, Russia
| | - Maksim Marchenok
- Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, 690922 Vladivostok, Russia; (L.A.); (M.M.); (O.S.); (L.T.)
- ARNIKA, Territory of PDA Nadezhdinskaya, 692481 Primorskiy Region, Russia
| | - Oksana Son
- Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, 690922 Vladivostok, Russia; (L.A.); (M.M.); (O.S.); (L.T.)
- ARNIKA, Territory of PDA Nadezhdinskaya, 692481 Primorskiy Region, Russia
| | - Liudmila Tekutyeva
- Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, 690922 Vladivostok, Russia; (L.A.); (M.M.); (O.S.); (L.T.)
- ARNIKA, Territory of PDA Nadezhdinskaya, 692481 Primorskiy Region, Russia
| |
Collapse
|
3
|
Sokolovskaya OM, Shelton AN, Taga ME. Sharing vitamins: Cobamides unveil microbial interactions. Science 2020; 369:369/6499/eaba0165. [PMID: 32631870 DOI: 10.1126/science.aba0165] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microbial communities are essential to fundamental processes on Earth. Underlying the compositions and functions of these communities are nutritional interdependencies among individual species. One class of nutrients, cobamides (the family of enzyme cofactors that includes vitamin B12), is widely used for a variety of microbial metabolic functions, but these structurally diverse cofactors are synthesized by only a subset of bacteria and archaea. Advances at different scales of study-from individual isolates, to synthetic consortia, to complex communities-have led to an improved understanding of cobamide sharing. Here, we discuss how cobamides affect microbes at each of these three scales and how integrating different approaches leads to a more complete understanding of microbial interactions.
Collapse
Affiliation(s)
- Olga M Sokolovskaya
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Amanda N Shelton
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Michiko E Taga
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
4
|
Abstract
Modified tetrapyrroles are large macrocyclic compounds, consisting of diverse conjugation and metal chelation systems and imparting an array of colors to the biological structures that contain them. Tetrapyrroles represent some of the most complex small molecules synthesized by cells and are involved in many essential processes that are fundamental to life on Earth, including photosynthesis, respiration, and catalysis. These molecules are all derived from a common template through a series of enzyme-mediated transformations that alter the oxidation state of the macrocycle and also modify its size, its side-chain composition, and the nature of the centrally chelated metal ion. The different modified tetrapyrroles include chlorophylls, hemes, siroheme, corrins (including vitamin B12), coenzyme F430, heme d1, and bilins. After nearly a century of study, almost all of the more than 90 different enzymes that synthesize this family of compounds are now known, and expression of reconstructed operons in heterologous hosts has confirmed that most pathways are complete. Aside from the highly diverse nature of the chemical reactions catalyzed, an interesting aspect of comparative biochemistry is to see how different enzymes and even entire pathways have evolved to perform alternative chemical reactions to produce the same end products in the presence and absence of oxygen. Although there is still much to learn, our current understanding of tetrapyrrole biogenesis represents a remarkable biochemical milestone that is summarized in this review.
Collapse
Affiliation(s)
- Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| |
Collapse
|
5
|
Tavares NK, Stracey N, Brunold TC, Escalante-Semerena JC. The l-Thr Kinase/l-Thr-Phosphate Decarboxylase (CobD) Enzyme from Methanosarcina mazei Gö1 Contains Metallocenters Needed for Optimal Activity. Biochemistry 2019; 58:3260-3279. [PMID: 31268299 PMCID: PMC6667302 DOI: 10.1021/acs.biochem.9b00268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The MM2060 (cobD) gene from Methanosarcina mazei strain Gö1 encodes a protein (MmCobD) with l-threonine kinase (PduX) and l-threonine-O-3-phosphate decarboxylase (CobD) activities. In addition to the unexpected l-Thr kinase activity, MmCobD has an extended carboxy-terminal (C-terminal) region annotated as a putative metal-binding zinc finger-like domain. Here, we demonstrate that the C-terminus of MmCobD is a ferroprotein containing ∼25 non-heme iron atoms per monomer of protein. The absence of the C-terminus substantially reduces, but does not abolish, enzymatic activities in vitro and in vivo. Single-residue substitutions of C-terminal putative Fe-binding cysteinyl and histidinyl residues resulted in the loss of Fe and changes in enzyme activity levels. Salmonella enterica ΔpduX and ΔcobD strains were used as heterologous hosts to assess coenzyme B12 biosynthesis as a function of 17 MmCobD variants tested. Some of the latter displayed 5-fold higher enzymatic activity in vitro and enhanced the growth rate of the S. enterica strains that synthesized them. Most of the MmCobD variants tested were up to 6-fold less active in vitro and supported slow growth rates of the S. enterica strains that synthesized them; some substitutions abolished enzyme activity. MmCobD exhibited an ultraviolet-visible absorption spectrum consistent with [4Fe-4S] clusters that appeared to be susceptible to oxidation by H2O2 and reduction by sodium dithionite. The presence of FeS clusters in MmCobD was corroborated by electron paramagnetic resonance and magnetic circular dichroism studies. Collectively, our results suggest that MmCobD contains one or more diamagnetic [4Fe-4S]2+ center(s) that may play a structural or regulatory role.
Collapse
Affiliation(s)
- Norbert K. Tavares
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA
| | - Nuru Stracey
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706 USA
| | - Thomas C Brunold
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706 USA
| | | |
Collapse
|