1
|
Phyo Z, Yimcharoen M, Saikaew S, Butr-Indr B. Distinct gene expression patterns of mono-isoniazid resistant Mycobacterium tuberculosis uncover divergent responses to isoniazid in host-mimicked condition. Microb Pathog 2025; 198:107109. [PMID: 39547446 DOI: 10.1016/j.micpath.2024.107109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Isoniazid stands as a frontline antibiotic utilized in the treatment of tuberculosis (TB), predominantly impacting the mycolic acid component within the cell wall of Mycobacterium tuberculosis (Mtb). It also affects the formation of lipoarabinomannan (LAM), an essential glycolipid in the cell envelope of Mtb. Despite the effectiveness of antibiotics for TB treatment, drug tolerance development in mycobacteria frequently stems from their adaptation to the hostile environment within the host, leading to treatment failure. Herein, we investigate mycobacterial adaptation to the isoniazid exposure in the host-mimicked conditions by focusing on the stress response genes (virS, icl1, whiB3, tgs1) and LAM-related genes (lprG, p55, lmeA, mptA, embC). Mtb H37Rv and mono-isoniazid resistant (INH-R) strains were cultivated in the host-mimicked multi-stress condition (MS) with or without isoniazid and the relative expressions of these gene candidates were measured using real-time PCR. In the INH-R strain, treatment with isoniazid in multi-stress conditions caused significant upregulation of tgs1, and LAM precursor-lipomannan (LM) synthesis and its transport genes (lprG, p55, lmeA, embC). In the case of H37Rv, all LAM-related genes and tgs1 were downregulated whereas other stress response genes were upregulated, remarkably in icl1 and whiB3. These findings highlight differences in gene expression patterns between drug-sensitive and resistant strains in multi-stress environments with drug pressure. Notably, stress response genes, particularly tgs1, may play a crucial role in regulating LAM production in the INH-R strain in response to isoniazid exposure. This study enhances our understanding of the mechanisms underlying drug resistance, offering valuable insights that could contribute to the development of new strategies for treating and eliminating TB.
Collapse
Affiliation(s)
- Zayar Phyo
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Manita Yimcharoen
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sukanya Saikaew
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Bordin Butr-Indr
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
2
|
Yi X, Han J, Xu X, Wang Y, Zhang M, Zhu J, He Y. Taurine-mediated gene transcription and cell membrane permeability reinforced co-production of bioethanol and Monascus azaphilone pigments for a newly isolated Monascus purpureus. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:59. [PMID: 38702823 PMCID: PMC11069175 DOI: 10.1186/s13068-024-02511-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Taurine, a semi-essential micronutrient, could be utilized as a sulfur source for some bacteria; however, little is known about its effect on the accumulation of fermentation products. Here, it investigated the effect of taurine on co-production of bioethanol and Monascus azaphilone pigments (MonAzPs) for a fungus. RESULTS A newly isolated fungus of 98.92% identity with Monascus purpureus co-produced 23.43 g/L bioethanol and 66.12, 78.01 and 62.37 U/mL red, yellow and orange MonAzPs for 3 d in synthetic medium (SM). Taurine enhanced bioethanol titer, ethanol productivity and ethanol yield at the maximum by 1.56, 1.58 and 1.60 times than those of the control in corn stover hydrolysates (CSH), and red, yellow and orange MonAzPs were raised by 1.24, 1.26 and 1.29 times, respectively. Taurine was consumed extremely small quantities for M. purpureus and its promotional effect was not universal for the other two biorefinery fermenting strains. Taurine intensified the gene transcription of glycolysis (glucokinase, phosphoglycerate mutase, enolase and alcohol dehydrogenase) and MonAzPs biosynthesis (serine hydrolases, C-11-ketoreductase, FAD-dependent monooxygenase, 4-O-acyltransferase, deacetylase, NAD(P)H-dependent oxidoredutase, FAD-dependent oxidoredutase, enoyl reductase and fatty acid synthase) through de novo RNA-Seq assays. Furthermore, taurine improved cell membrane permeability through changing cell membrane structure by microscopic imaging assays. CONCLUSIONS Taurine reinforced co-production of bioethanol and MonAzPs by increasing gene transcription level and cell membrane permeability for M. purpureus. This work would offer an innovative, efficient and taurine-based co-production system for mass accumulation of the value-added biofuels and biochemicals from lignocellulosic biomass.
Collapse
Affiliation(s)
- Xia Yi
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China.
| | - Jianqi Han
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Xiaoyan Xu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Yilong Wang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Meng Zhang
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Jie Zhu
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China.
| | - Yucai He
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China.
| |
Collapse
|
3
|
Eskandarian HA, Chen YX, Toniolo C, Belardinelli JM, Palcekova Z, Hom L, Ashby PD, Fantner GE, Jackson M, McKinney JD, Javid B. Mechanical morphotype switching as an adaptive response in mycobacteria. SCIENCE ADVANCES 2024; 10:eadh7957. [PMID: 38170768 PMCID: PMC10776010 DOI: 10.1126/sciadv.adh7957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
Invading microbes face a myriad of cidal mechanisms of phagocytes that inflict physical damage to microbial structures. How intracellular bacterial pathogens adapt to these stresses is not fully understood. Here, we report the discovery of a virulence mechanism by which changes to the mechanical stiffness of the mycobacterial cell surface confer refraction to killing during infection. Long-term time-lapse atomic force microscopy was used to reveal a process of "mechanical morphotype switching" in mycobacteria exposed to host intracellular stress. A "soft" mechanical morphotype switch enhances tolerance to intracellular macrophage stress, including cathelicidin. Both pharmacologic treatment, with bedaquiline, and a genetic mutant lacking uvrA modified the basal mechanical state of mycobacteria into a soft mechanical morphotype, enhancing survival in macrophages. Our study proposes microbial cell mechanical adaptation as a critical axis for surviving host-mediated stressors.
Collapse
Affiliation(s)
- Haig Alexander Eskandarian
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA 94143, USA
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yu-Xiang Chen
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Chiara Toniolo
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Juan M. Belardinelli
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Zuzana Palcekova
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Lesley Hom
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Paul D. Ashby
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Georg E. Fantner
- School of Engineering, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - John D. McKinney
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Babak Javid
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
4
|
Bigi MM, Forrellad MA, García JS, Blanco FC, Vázquez CL, Bigi F. An update on Mycobacterium tuberculosis lipoproteins. Future Microbiol 2023; 18:1381-1398. [PMID: 37962486 DOI: 10.2217/fmb-2023-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/29/2023] [Indexed: 11/15/2023] Open
Abstract
Almost 3% of the proteins of Mycobacterium tuberculosis (M. tuberculosis), the main causative agent of human tuberculosis, are lipoproteins. These lipoproteins are characteristic of the mycobacterial cell envelope and participate in many mechanisms involved in the pathogenesis of M. tuberculosis. In this review, the authors provide an updated analysis of M. tuberculosis lipoproteins and categorize them according to their demonstrated or predicted functions, including transport of compounds to and from the cytoplasm, biosynthesis of the mycobacterial cell envelope, defense and resistance mechanisms, enzymatic activities and signaling pathways. In addition, this updated analysis revealed that at least 40% of M. tuberculosis lipoproteins are glycosylated.
Collapse
Affiliation(s)
- María M Bigi
- Instituto de Investigaciones Biomédicas, CONICET, Universidad de Buenos Aires, Paraguay 2155 (C1121ABG), Buenos Aires, Argentina
| | - Marina A Forrellad
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
| | - Julia S García
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
| | - Federico C Blanco
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
| | - Cristina L Vázquez
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
| | - Fabiana Bigi
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Argentina (INTA), N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
- Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, N. Repetto & de los Reseros, Hurlingham (1686), Buenos Aires, Argentina
| |
Collapse
|
5
|
Gaidhane IV, Biegas KJ, Erickson HE, Agarwal P, Chhonker YS, Ronning DR, Swarts BM. Chemical remodeling of the mycomembrane with chain-truncated lipids sensitizes mycobacteria to rifampicin. Chem Commun (Camb) 2023; 59:13859-13862. [PMID: 37929833 PMCID: PMC10872977 DOI: 10.1039/d3cc02364h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The outer mycomembrane of Mycobacterium tuberculosis and related pathogens is a robust permeability barrier that protects against antibiotic treatment. Here, we demonstrate that synthetic analogues of the mycomembrane biosynthetic precursor trehalose monomycolate bearing truncated lipid chains increase permeability of Mycobacterium smegmatis cells and sensitize them to treatment with the first-line anti-tubercular drug rifampicin. The reported strategy may be useful for enhancing entry of drugs and other molecules to mycobacterial cells, and represents a new way to study mycomembrane structure and function.
Collapse
Affiliation(s)
- Ishani V Gaidhane
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA.
| | - Kyle J Biegas
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA.
- Biochemistry, Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount Pleasant, MI, USA
| | - Helen E Erickson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Prachi Agarwal
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yashpal S Chhonker
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE, USA
| | - Donald R Ronning
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benjamin M Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA.
- Biochemistry, Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount Pleasant, MI, USA
| |
Collapse
|
6
|
Remm S, De Vecchis D, Schöppe J, Hutter CAJ, Gonda I, Hohl M, Newstead S, Schäfer LV, Seeger MA. Structural basis for triacylglyceride extraction from mycobacterial inner membrane by MFS transporter Rv1410. Nat Commun 2023; 14:6449. [PMID: 37833269 PMCID: PMC10576003 DOI: 10.1038/s41467-023-42073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Mycobacterium tuberculosis is protected from antibiotic therapy by a multi-layered hydrophobic cell envelope. Major facilitator superfamily (MFS) transporter Rv1410 and the periplasmic lipoprotein LprG are involved in transport of triacylglycerides (TAGs) that seal the mycomembrane. Here, we report a 2.7 Å structure of a mycobacterial Rv1410 homologue, which adopts an outward-facing conformation and exhibits unusual transmembrane helix 11 and 12 extensions that protrude ~20 Å into the periplasm. A small, very hydrophobic cavity suitable for lipid transport is constricted by a functionally important ion-lock likely involved in proton coupling. Combining mutational analyses and MD simulations, we propose that TAGs are extracted from the core of the inner membrane into the central cavity via lateral clefts present in the inward-facing conformation. The functional role of the periplasmic helix extensions is to channel the extracted TAG into the lipid binding pocket of LprG.
Collapse
Affiliation(s)
- Sille Remm
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
| | - Dario De Vecchis
- Center for Theoretical Chemistry, Ruhr University Bochum, Bochum, Germany
| | - Jendrik Schöppe
- Institute of Biochemistry, University of Zurich, Zürich, Switzerland
- Global Research Technologies, Novo Nordisk A/S, Måløv, Denmark
| | - Cedric A J Hutter
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
- Linkster Therapeutics, Zürich, Switzerland
| | - Imre Gonda
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
| | - Michael Hohl
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Simon Newstead
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
| | - Lars V Schäfer
- Center for Theoretical Chemistry, Ruhr University Bochum, Bochum, Germany.
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland.
- National Center for Mycobacteria, Zurich, Switzerland.
| |
Collapse
|
7
|
Wang S, Zhao X, Sun K, Bateer H, Wang W. The Genome Sequence of Brucella abortus vaccine strain A19 provides insights on its virulence attenuation compared to Brucella abortus strain 9-941. Gene 2022; 830:146521. [PMID: 35447245 DOI: 10.1016/j.gene.2022.146521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/20/2021] [Accepted: 04/15/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Brucellosis is a widespread disease that affects animals and humans. The live attenuated Brucella abortus A19 strain is used for vaccination against brucellosis in China. In addition, the main mechanisms supporting the residual toxicity of A19 have not been elucidated. Here, we performed a comprehensive comparative analysis of the genome-wide sequence of A19 against the whole genome sequences of the published virulent reference strain 9-941. The primary objective of this study was to identify candidate virulence genes by systematically comparing the genomic sequences between the two genomes. RESULTS This analysis revealed two deletion regions in the A19 genome, in which all included large fragments of 63 bp, and one of their gene function is related to ABC transporter permease protein. In addition, we have identified minor mutations in important virulence-related genes that can be used to determine the underlying mechanisms of virulence attenuation. The function of its virulence gene covers LysR family transcriptional regulator, outer membrane, MFS transporter and oxidoreductase etc. At the same time, a PCR differential diagnosis method was constructed, which can distinguish A19, S19 and most other commonly used Brucella viruent strains and vaccine strains. CONCLUSION The data may help to provide resources for further detailed analysis of mechanisms for other Brucella vaccines. It laid the foundation for further distinguishing between vaccine immunity and virulent strains infection.
Collapse
Affiliation(s)
- Shuyi Wang
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture/College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Inner Mongolia Autonomous Region Comprehensive Center for Disease Control and Prevention, Hohhot, Inner Mongolia 010031, China
| | - Xueliang Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Ke Sun
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture/College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Huhe Bateer
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture/College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Wenlong Wang
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture/College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China.
| |
Collapse
|
8
|
Frelet-Barrand A. Lactococcus lactis, an Attractive Cell Factory for the Expression of Functional Membrane Proteins. Biomolecules 2022; 12:180. [PMID: 35204681 PMCID: PMC8961550 DOI: 10.3390/biom12020180] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 01/27/2023] Open
Abstract
Membrane proteins play key roles in most crucial cellular processes, ranging from cell-to-cell communication to signaling processes. Despite recent improvements, the expression of functionally folded membrane proteins in sufficient amounts for functional and structural characterization remains a challenge. Indeed, it is still difficult to predict whether a protein can be overproduced in a functional state in some expression system(s), though studies of high-throughput screens have been published in recent years. Prokaryotic expression systems present several advantages over eukaryotic ones. Among them, Lactococcus lactis (L. lactis) has emerged in the last two decades as a good alternative expression system to E. coli. The purpose of this chapter is to describe L. lactis and its tightly inducible system, NICE, for the effective expression of membrane proteins from both prokaryotic and eukaryotic origins.
Collapse
Affiliation(s)
- Annie Frelet-Barrand
- FEMTO-ST Institute, UMR 6174, CNRS, Université Bourgogne Franche-Comté, 15B Avenue des Montboucons, CEDEX, 25030 Besançon, France
| |
Collapse
|
9
|
Abekura F, Park J, Lim H, Kim H, Choi H, Lee M, Kim C. Mycobacterium tuberculosis
glycolipoprotein LprG inhibits inflammation through NF‐κB signaling of ERK1/2 and JNK in LPS‐induced murine macrophage cells. J Cell Biochem 2022; 123:772-781. [DOI: 10.1002/jcb.30220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 12/20/2021] [Accepted: 01/10/2022] [Indexed: 12/18/2022]
Affiliation(s)
- Fukushi Abekura
- Department of Biological Sciences SungKyunKwan University Suwon Kyunggi‐Do Republic of Korea
| | - Junyoung Park
- Department of Biological Sciences SungKyunKwan University Suwon Kyunggi‐Do Republic of Korea
| | - Hakseong Lim
- Department of Biological Sciences SungKyunKwan University Suwon Kyunggi‐Do Republic of Korea
| | - Hee‐Do Kim
- Department of Biological Sciences SungKyunKwan University Suwon Kyunggi‐Do Republic of Korea
| | - Hyunju Choi
- Department of Biological Sciences SungKyunKwan University Suwon Kyunggi‐Do Republic of Korea
| | - Moon‐Jo Lee
- Department of Herb Science Dong‐Eui Institute of Technology Busan Republic of Korea
| | - Cheorl‐Ho Kim
- Department of Biological Sciences SungKyunKwan University Suwon Kyunggi‐Do Republic of Korea
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Samsung Medical Center Seoul South Korea
| |
Collapse
|
10
|
Remm S, Earp JC, Dick T, Dartois V, Seeger MA. Critical discussion on drug efflux in Mycobacterium tuberculosis. FEMS Microbiol Rev 2021; 46:6391500. [PMID: 34637511 PMCID: PMC8829022 DOI: 10.1093/femsre/fuab050] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) can withstand months of antibiotic treatment. An important goal of tuberculosis research is to shorten the treatment to reduce the burden on patients, increase adherence to the drug regimen and thereby slow down the spread of drug resistance. Inhibition of drug efflux pumps by small molecules has been advocated as a promising strategy to attack persistent Mtb and shorten therapy. Although mycobacterial drug efflux pumps have been broadly investigated, mechanistic studies are scarce. In this critical review, we shed light on drug efflux in its larger mechanistic context by considering the intricate interplay between membrane transporters annotated as drug efflux pumps, membrane energetics, efflux inhibitors and cell wall biosynthesis processes. We conclude that a great wealth of data on mycobacterial transporters is insufficient to distinguish by what mechanism they contribute to drug resistance. Recent studies suggest that some drug efflux pumps transport structural lipids of the mycobacterial cell wall and that the action of certain drug efflux inhibitors involves dissipation of the proton motive force, thereby draining the energy source of all active membrane transporters. We propose recommendations on the generation and interpretation of drug efflux data to reduce ambiguities and promote assigning novel roles to mycobacterial membrane transporters.
Collapse
Affiliation(s)
- Sille Remm
- Institute of Medical Microbiology, University of Zürich, Switzerland
| | - Jennifer C Earp
- Institute of Medical Microbiology, University of Zürich, Switzerland
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA.,Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA.,Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zürich, Switzerland
| |
Collapse
|
11
|
Waturuocha UW, P. J. A, Singh KK, Malhotra V, Krishna MS, Saini DK. A high-frequency single nucleotide polymorphism in the MtrB sensor kinase in clinical strains of Mycobacterium tuberculosis alters its biochemical and physiological properties. PLoS One 2021; 16:e0256664. [PMID: 34529706 PMCID: PMC8445491 DOI: 10.1371/journal.pone.0256664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/11/2021] [Indexed: 11/19/2022] Open
Abstract
The DNA polymorphisms found in clinical strains of Mycobacterium tuberculosis drive altered physiology, virulence, and pathogenesis in them. Although the lineages of these clinical strains can be traced back to common ancestor/s, there exists a plethora of difference between them, compared to those that have evolved in the laboratory. We identify a mutation present in ~80% of clinical strains, which maps in the HATPase domain of the sensor kinase MtrB and alters kinase and phosphatase activities, and affects its physiological role. The changes conferred by the mutation were probed by in-vitro biochemical assays which revealed changes in signaling properties of the sensor kinase. These changes also affect bacterial cell division rates, size and membrane properties. The study highlights the impact of DNA polymorphisms on the pathophysiology of clinical strains and provides insights into underlying mechanisms that drive signal transduction in pathogenic bacteria.
Collapse
Affiliation(s)
- Uchenna Watson Waturuocha
- Department of Studies in Zoology, Manasagangotri, University of Mysore, Mysore, India
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Athira P. J.
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Krishna Kumar Singh
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Vandana Malhotra
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, Delhi, India
| | - M. S. Krishna
- Department of Studies in Zoology, Manasagangotri, University of Mysore, Mysore, India
| | - Deepak Kumar Saini
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
- * E-mail:
| |
Collapse
|
12
|
Effect of the deletion of lprG and p55 genes in the K10 strain of Mycobacterium avium subspecies paratuberculosis. Res Vet Sci 2021; 138:1-10. [PMID: 34087563 DOI: 10.1016/j.rvsc.2021.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 04/23/2021] [Accepted: 05/25/2021] [Indexed: 11/21/2022]
Abstract
The lprG-p55 operon of Mycobacterium tuberculosis, M. bovis and M. avium strain D4ER has been identified as a virulence factor involved in the transport of toxic compounds. LprG is a lipoprotein that modulates the host immune response against mycobacteria, whereas P55 is an efflux pump that provides resistance to several drugs. In the present study we search for, and characterize, lprg and p55, putative virulence genes in Mycobacterium avium subsp. paratuberculosis (MAP) to generate a live-attenuated strain of MAP that may be useful in the future as live-attenuated vaccine. For this purpose, we generated and evaluated two mutants of MAP strain K10: one mutant lacking the lprG gene (ΔlprG) and the other lacking both genes lprG and p55 (ΔlprG-p55). None of the mutant strains showed altered susceptibility to first-line and second-line antituberculosis drugs or ethidium bromide, only the double mutant had two-fold increase in clarithromycin susceptibility compared with the wild-type strain. The deletion of lprG and of lprG-p55 reduced the replication of MAP in bovine macrophages; however, only the mutant in lprG-p55 grew faster in liquid media and showed reduced viability in macrophages and in a mouse model. Considering that the deletion of both genes lprG-p55, but not that of lprG alone, showed a reduced replication in vivo, we can speculate that p55 contributes to the survival of MAP in this animal model.
Collapse
|
13
|
Bai L, Parkin LA, Zhang H, Shum R, Previti ML, Seeliger JC. Dimethylaminophenyl Hydrazides as Inhibitors of the Lipid Transport Protein LprG in Mycobacteria. ACS Infect Dis 2020; 6:637-648. [PMID: 32053347 PMCID: PMC7436943 DOI: 10.1021/acsinfecdis.9b00497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Assembly of the bacterial cell wall requires not only the biosynthesis of cell wall components but also the transport of these metabolites to the cell exterior for assembly into polymers and membranes required for bacterial viability and virulence. LprG is a cell wall protein that is required for the virulence of Mycobacterium tuberculosis and is associated with lipid transport to the outer lipid layer or mycomembrane. Motivated by available cocrystal structures of LprG with lipids, we searched for potential inhibitors of LprG by performing a computational docking screen of ∼250 000 commercially available small molecules. We identified several structurally related dimethylaminophenyl hydrazides that bind to LprG with moderate micromolar affinity and inhibit mycobacterial growth in a LprG-dependent manner. We found that mutation of F123 within the binding cavity of LprG conferred resistance to one of the most potent compounds. These findings provide evidence that the large hydrophobic substrate-binding pocket of LprG can be realistically and specifically targeted by small-molecule inhibitors.
Collapse
Affiliation(s)
- Lu Bai
- Department of Chemistry, Stony Brook University, 100
Nicolls Road, Stony Brook, NY 11794
| | - Lia A. Parkin
- Department of Microbiology and Immunology, Stony Brook
University, 100 Nicolls Road, Stony Brook, NY 11794
| | - Hong Zhang
- Department of Chemistry, Stony Brook University, 100
Nicolls Road, Stony Brook, NY 11794
| | - Rebecca Shum
- Department of Biochemistry and Cell Biology, Stony Brook
University, 100 Nicolls Road, Stony Brook, NY 11794
| | - Mary L. Previti
- Department of Pharmacological Sciences, Stony Brook
University, 100 Nicolls Road, Stony Brook, NY 11794
| | - Jessica C. Seeliger
- Department of Pharmacological Sciences, Stony Brook
University, 100 Nicolls Road, Stony Brook, NY 11794
| |
Collapse
|
14
|
Arnold FM, Weber MS, Gonda I, Gallenito MJ, Adenau S, Egloff P, Zimmermann I, Hutter CAJ, Hürlimann LM, Peters EE, Piel J, Meloni G, Medalia O, Seeger MA. The ABC exporter IrtAB imports and reduces mycobacterial siderophores. Nature 2020; 580:413-417. [PMID: 32296173 PMCID: PMC7170716 DOI: 10.1038/s41586-020-2136-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/24/2020] [Indexed: 12/17/2022]
Abstract
Intracellular replication of the deadly pathogen Mycobacterium tuberculosis relies on the production of small organic molecules called siderophores to scavenge iron from host proteins1. M. tuberculosis produces two classes of siderophores, lipid-bound mycobactin and soluble carboxymycobactin2, 3. Functional studies revealed that iron-loaded carboxymycobactin is imported into the cytoplasm by the ABC transporter IrtAB4, which features an additional cytoplasmic siderophore interaction domain (SID)5. However, IrtAB’s predicted ABC exporter fold seemingly contradicts its import function. Here, we show that membrane-reconstituted IrtAB is sufficient to import mycobactins, which are then reduced by the SID to facilitate iron release. Structure determination by X-ray crystallography and cryo-EM confirms IrtAB’s ABC exporter fold, but also reveals structural peculiarities at the transmembrane region of IrtAB resulting in a partially collapsed inward-facing substrate binding cavity. The SID is positioned in close proximity to the inner membrane leaflet, which allows the reduction of membrane-inserted mycobactin. Enzymatic ATPase activity and in vivo growth assays show that IrtAB prefers mycobactin over carboxymycobactin as its substrate. Our study provides insights into an unusual ABC exporter that evolved as highly specialized siderophore import machinery in mycobacteria.
Collapse
Affiliation(s)
- Fabian M Arnold
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Miriam S Weber
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Imre Gonda
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Marc J Gallenito
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA
| | - Sophia Adenau
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Pascal Egloff
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.,Linkster Therapeutics, Zurich, Switzerland
| | - Iwan Zimmermann
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.,Linkster Therapeutics, Zurich, Switzerland
| | - Cedric A J Hutter
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Lea M Hürlimann
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Eike E Peters
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Jörn Piel
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
15
|
Guo Q, Chen J, Zhang S, Zou Y, Zhang Y, Huang D, Zhang Z, Li B, Chu H. Efflux Pumps Contribute to Intrinsic Clarithromycin Resistance in Clinical, Mycobacterium abscessus Isolates. Infect Drug Resist 2020; 13:447-454. [PMID: 32104016 PMCID: PMC7024787 DOI: 10.2147/idr.s239850] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 02/01/2020] [Indexed: 12/27/2022] Open
Abstract
Purpose The emergence of clarithromycin resistance is a challenge in treating Mycobacterium abscessus infections. Known mechanisms that contribute to intrinsic clarithromycin resistance focus on rrl gene-related mutations, but resistant clinical isolates often exhibit an inconsistent rrl genotype. Patients and Methods In this study, 194 clinical Mycobacterium abscessus isolates were collected from patients with lung infections and the whole genome of each isolate was sequenced. A comprehensive examination of the molecular mechanisms underlying intrinsic clarithromycin resistance was performed, combining MIC determination, comparative genome sequence analysis and qRT-PCR. Results Of the 194 isolates, 13 (6.7%) were clarithromycin resistant; only seven of these harbored a rrl 2270/2271 mutation. The remaining six resistant isolates did not exhibit a specific resistance-associated mutation in the clarithromycin target-site genes, rrl, rplC, rplD and rplV, or in the rrl modification gene erm(41). qRT-PCR analysis showed that the increased expression of the efflux pump genes, MAB_2355c, MAB_1409c and MAB_1846, as well as their positive regulatory gene whiB7, consistently correlated with increased clarithromycin resistance. The presence of efflux pump inhibitors significantly decreased the MIC of clarithromycin for nonsusceptible isolates, especially the intrinsic resistant isolates that exhibited no rrl 2270/2271 mutation. Conclusion These findings indicate that efflux pumps play a prominent role in the intrinsic resistance of M. abscessus to clarithromycin, complementing other known resistance mechanisms.
Collapse
Affiliation(s)
- Qi Guo
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Tongji University School of Medicine, Shanghai 200092, People's Republic of China
| | - Jianhui Chen
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Tongji University School of Medicine, Shanghai 200092, People's Republic of China
| | - Shaoyan Zhang
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| | - Yuzhen Zou
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Tongji University School of Medicine, Shanghai 200092, People's Republic of China
| | - Yongjie Zhang
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Tongji University School of Medicine, Shanghai 200092, People's Republic of China
| | - Dongdong Huang
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| | - Zhemin Zhang
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| | - Bing Li
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| | - Haiqing Chu
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| |
Collapse
|
16
|
Ung KL, Alsarraf HMAB, Olieric V, Kremer L, Blaise M. Crystal structure of the aminoglycosides N-acetyltransferase Eis2 from Mycobacterium abscessus. FEBS J 2019; 286:4342-4355. [PMID: 31254444 DOI: 10.1111/febs.14975] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/22/2019] [Accepted: 06/27/2019] [Indexed: 01/01/2023]
Abstract
Mycobacterium abscessus is an emerging human pathogen that is notorious for being one of the most drug-resistant species of Mycobacterium. It has developed numerous strategies to overcome the antibiotic stress response, limiting treatment options and leading to frequent therapeutic failure. The panel of aminoglycosides (AG) usually used in the treatment of M. abscessus pulmonary infections is restricted by chemical modification of the drugs by the N-acetyltransferase Eis2 protein (Mabs_Eis2). This enzyme acetylates the primary amine of AGs, preventing these antibiotics from binding ribosomal RNA and thereby impairing their activity. In this study, the high-resolution crystal structures of Mabs_Eis2 in its apo- and cofactor-bound forms were solved. The structural analysis of Mabs_Eis2, supported by the kinetic characterization of the enzyme, highlights the large substrate specificity of the enzyme. Furthermore, in silico docking and biochemical approaches attest that Mabs_Eis2 modifies clinically relevant drugs such as kanamycin and amikacin, with a better efficacy for the latter. In line with previous biochemical and in vivo studies, our work suggests that Mabs_Eis2 represents an attractive pharmacological target to be further explored. The high-resolution crystal structures presented here may pave the way to the design of Eis2-specific inhibitors with the potential to counteract the intrinsic resistance levels of M. abscessus to an important class of clinically important antibiotics. DATABASE: Structural data are available in the PDB database under the accession numbers: 6RFY, 6RFX and 6RFT.
Collapse
Affiliation(s)
- Kien Lam Ung
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, France
| | - Husam M A B Alsarraf
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, France
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, France.,INSERM, IRIM, Montpellier, France
| | - Mickaël Blaise
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, France
| |
Collapse
|
17
|
Ganapathy US, Dartois V, Dick T. Repositioning rifamycins for Mycobacterium abscessus lung disease. Expert Opin Drug Discov 2019; 14:867-878. [PMID: 31195849 DOI: 10.1080/17460441.2019.1629414] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: The treatment of Mycobacterium abscessus lung disease faces significant challenges due to intrinsic antibiotic resistance. New drugs are needed to cure this incurable disease. The key anti-tubercular rifamycin, rifampicin, suffers from low potency against M. abscessus and is not used clinically. Recently, another member of the rifamycin class, rifabutin, was shown to be active against the opportunistic pathogen. Areas covered: In this review, the authors discuss the rifamycins as a reemerging drug class for treating M. abscessus infections. The authors focus on the differential potency of rifampicin and rifabutin against M. abscessus in the context of intrinsic antibiotic resistance and bacterial uptake and metabolism. Reports of rifamycin-based drug synergies and rifamycin potentiation by host-directed therapy are evaluated. Expert opinion: While repurposing rifabutin for M. abscessus lung disease may provide some immediate relief, the repositioning (chemical optimization) of rifamycins offers long-term potential for improving clinical outcomes. Repositioning will require a multifaceted approach involving renewed screening of rifamycin libraries, medicinal chemistry to improve 'bacterial cell pharmacokinetics', better models of bacterial pathophysiology and infection, and harnessing of drug synergies and host-directed therapy towards the development of a better drug regimen.
Collapse
Affiliation(s)
- Uday S Ganapathy
- a Center for Discovery and Innovation, Hackensack Meridian Health , Nutley , NJ , USA
| | - Véronique Dartois
- a Center for Discovery and Innovation, Hackensack Meridian Health , Nutley , NJ , USA
| | - Thomas Dick
- a Center for Discovery and Innovation, Hackensack Meridian Health , Nutley , NJ , USA
| |
Collapse
|