1
|
Zhao X, Wang Y, Yuan B, Zhao H, Wang Y, Tan Z, Wang Z, Wu H, Li G, Song W, Gupta R, Tsuda K, Ma Z, Gao X, Gu Q. Temporally-coordinated bivalent histone modifications of BCG1 enable fungal invasion and immune evasion. Nat Commun 2024; 15:231. [PMID: 38182582 PMCID: PMC10770383 DOI: 10.1038/s41467-023-44491-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 12/15/2023] [Indexed: 01/07/2024] Open
Abstract
Bivalent histone modifications, including functionally opposite H3K4me3 and H3K27me3 marks simultaneously on the same nucleosome, control various cellular processes by fine-tuning the gene expression in eukaryotes. However, the role of bivalent histone modifications in fungal virulence remains elusive. By mapping the genome-wide landscape of H3K4me3 and H3K27me3 dynamic modifications in Fusarium graminearum (Fg) during invasion, we identify the infection-related bivalent chromatin-marked genes (BCGs). BCG1 gene, which encodes a secreted Fusarium-specific xylanase containing a G/Q-rich motif, displays the highest increase of bivalent modification during Fg infection. We report that the G/Q-rich motif of BCG1 is a stimulator of its xylanase activity and is essential for the full virulence of Fg. Intriguingly, this G/Q-rich motif is recognized by pattern-recognition receptors to trigger plant immunity. We discover that Fg employs H3K4me3 modification to induce BCG1 expression required for host cell wall degradation. After breaching the cell wall barrier, this active chromatin state is reset to bivalency by co-modifying with H3K27me3, which enables epigenetic silencing of BCG1 to escape from host immune surveillance. Collectively, our study highlights how fungal pathogens deploy bivalent epigenetic modification to achieve temporally-coordinated activation and suppression of a critical fungal gene, thereby facilitating successful infection and host immune evasion.
Collapse
Affiliation(s)
- Xiaozhen Zhao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Yiming Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Bingqin Yuan
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Hanxi Zhao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Yujie Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Zheng Tan
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Zhiyuan Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Huijun Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Gang Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Wei Song
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul, 02707, South Korea
| | - Kenichi Tsuda
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, the Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xuewen Gao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Qin Gu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China.
| |
Collapse
|
2
|
Studt-Reinhold L, Atanasoff-Kardjalieff AK, Berger H, Petersen C, Bachleitner S, Sulyok M, Fischle A, Humpf HU, Kalinina S, Søndergaard TE. H3K27me3 is vital for fungal development and secondary metabolite gene silencing, and substitutes for the loss of H3K9me3 in the plant pathogen Fusarium proliferatum. PLoS Genet 2024; 20:e1011075. [PMID: 38166117 PMCID: PMC10786395 DOI: 10.1371/journal.pgen.1011075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/12/2024] [Accepted: 11/20/2023] [Indexed: 01/04/2024] Open
Abstract
Facultative heterochromatin marked by histone H3 lysine 27 trimethylation (H3K27me3) is an important regulatory layer involved in secondary metabolite (SM) gene silencing and crucial for fungal development in the genus Fusarium. While this histone mark is essential in some (e.g., the rice pathogen Fusarium fujikuroi), it appears dispensable in other fusaria. Here, we show that deletion of FpKMT6 is detrimental but not lethal in the plant pathogen Fusarium proliferatum, a member of the Fusarium fujikuroi species complex (FFSC). Loss of FpKmt6 results in aberrant growth, and expression of a large set of previously H3K27me3-silenced genes is accompanied by increased H3K27 acetylation (H3K27ac) and an altered H3K36me3 pattern. Next, H3K9me3 patterns are affected in Δfpkmt6, indicating crosstalk between both heterochromatic marks that became even more obvious in a strain deleted for FpKMT1 encoding the H3K9-specific histone methyltransferase. In Δfpkmt1, all H3K9me3 marks present in the wild-type strain are replaced by H3K27me3, a finding that may explain the subtle phenotype of the Δfpkmt1 strain which stands in marked contrast to other filamentous fungi. A large proportion of SM-encoding genes is allocated with H3K27me3 in the wild-type strain and loss of H3K27me3 results in elevated expression of 49% of them. Interestingly, genes involved in the biosynthesis of the phytohormones gibberellins (GA) are among the most upregulated genes in Δfpkmt6. Although several FFSC members harbor GA biosynthetic genes, its production is largely restricted to F. fujikuroi, possibly outlining the distinct lifestyles of these notorious plant pathogens. We show that H3K27me3 is involved in GA gene silencing in F. proliferatum and at least one additional FFSC member, and thus, may serve as a regulatory layer for gene silencing under non-favoring conditions.
Collapse
Affiliation(s)
- Lena Studt-Reinhold
- University of Natural Resources and Life Sciences, Vienna, Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, Tulln an der Donau, Austria
| | - Anna K. Atanasoff-Kardjalieff
- University of Natural Resources and Life Sciences, Vienna, Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, Tulln an der Donau, Austria
| | - Harald Berger
- University of Natural Resources and Life Sciences, Vienna, Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, Tulln an der Donau, Austria
| | - Celine Petersen
- Aalborg University, Department of Chemistry and Bioscience, Aalborg, Denmark
| | - Simone Bachleitner
- University of Natural Resources and Life Sciences, Vienna, Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, Tulln an der Donau, Austria
| | - Michael Sulyok
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, Institute of Bioanalytics and Agro-Metabolomics, Tulln an der Donau, Austria
| | - Alica Fischle
- University of Münster, Institute of Food Chemistry, Münster, Germany
| | - Hans-Ulrich Humpf
- University of Münster, Institute of Food Chemistry, Münster, Germany
| | - Svetlana Kalinina
- University of Münster, Institute of Food Chemistry, Münster, Germany
| | | |
Collapse
|
3
|
Richardson KA, de Bonth ACM, Beechey-Gradwell Z, Kadam S, Cooney LJ, Nelson KA, Cookson R, Winichayakul S, Reid M, Anderson P, Crowther T, Zou X, Maher D, Xue H, Scott RW, Allan A, Johnson RD, Card SD, Mace WJ, Roberts NJ, Bryan G. Epichloë fungal endophyte interactions in perennial ryegrass (Lolium perenne L.) modified to accumulate foliar lipids for increased energy density. BMC PLANT BIOLOGY 2023; 23:636. [PMID: 38072924 PMCID: PMC10712098 DOI: 10.1186/s12870-023-04635-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Commercial cultivars of perennial ryegrass infected with selected Epichloë fungal endophytes are highly desirable in certain pastures as the resulting mutualistic association has the capacity to confer agronomic benefits (such as invertebrate pest deterrence) largely due to fungal produced secondary metabolites (e.g., alkaloids). In this study, we investigated T2 segregating populations derived from two independent transformation events expressing diacylglycerol acyltransferase (DGAT) and cysteine oleosin (CO) genes designed to increase foliar lipid and biomass accumulation. These populations were either infected with Epichloë festucae var. lolii strain AR1 or Epichloë sp. LpTG-3 strain AR37 to examine relationships between the introduced trait and the endophytic association. Here we report on experiments designed to investigate if expression of the DGAT + CO trait in foliar tissues of perennial ryegrass could negatively impact the grass-endophyte association and vice versa. Both endophyte and plant characters were measured under controlled environment and field conditions. RESULTS Expected relative increases in total fatty acids of 17-58% accrued as a result of DGAT + CO expression with no significant difference between the endophyte-infected and non-infected progeny. Hyphal growth in association with DGAT + CO expression appeared normal when compared to control plants in a growth chamber. There was no significant difference in mycelial biomass for both strains AR1 and AR37, however, Epichloë-derived alkaloid concentrations were significantly lower on some occasions in the DGAT + CO plants compared to the corresponding null-segregant progenies, although these remained within the reported range for bioactivity. CONCLUSIONS These results suggest that the mutualistic association formed between perennial ryegrass and selected Epichloë strains does not influence expression of the host DGAT + CO technology, but that endophyte performance may be reduced under some circumstances. Further investigation will now be required to determine the preferred genetic backgrounds for introgression of the DGAT + CO trait in combination with selected endophyte strains, as grass host genetics is a major determinant to the success of the grass-endophyte association in this species.
Collapse
Grants
- contract C10X1603 Ministry of Business, Innovation and Employment
- contract C10X1603 Ministry of Business, Innovation and Employment
- contract C10X1603 Ministry of Business, Innovation and Employment
- contract C10X1603 Ministry of Business, Innovation and Employment
- contract C10X1603 Ministry of Business, Innovation and Employment
- contract C10X1603 Ministry of Business, Innovation and Employment
- contract C10X1603 Ministry of Business, Innovation and Employment
- contract C10X1603 Ministry of Business, Innovation and Employment
- contract C10X1603 Ministry of Business, Innovation and Employment
- contract C10X1603 Ministry of Business, Innovation and Employment
- contract C10X1603 Ministry of Business, Innovation and Employment
- contract C10X1603 Ministry of Business, Innovation and Employment
- contract C10X1603 Ministry of Business, Innovation and Employment
- contract C10X1603 Ministry of Business, Innovation and Employment
- contract C10X1603 Ministry of Business, Innovation and Employment
- contract C10X1603 Ministry of Business, Innovation and Employment
- contract C10X1603 Ministry of Business, Innovation and Employment
- contract C10X1603 Ministry of Business, Innovation and Employment
- AgResearch Strategic Science Investment Fund
Collapse
Affiliation(s)
- Kim A Richardson
- Resilient Agriculture, AgResearch Ltd, Palmerston North, 4442, New Zealand.
| | | | | | - Suhas Kadam
- Division of Plant Sciences & Technology, University of Missouri, Columbia, 65201, MO, USA
- Present address: SGS North America, Crop Sciences, Brookings, SD, 57006, USA
| | - Luke J Cooney
- Resilient Agriculture, AgResearch Ltd, Palmerston North, 4442, New Zealand
| | - Kelly A Nelson
- Division of Plant Sciences & Technology, University of Missouri, Novelty, 63460, MO, USA
| | - Ruth Cookson
- Resilient Agriculture, AgResearch Ltd, Palmerston North, 4442, New Zealand
| | | | - Michele Reid
- Resilient Agriculture, AgResearch Ltd, Palmerston North, 4442, New Zealand
| | - Philip Anderson
- Resilient Agriculture, AgResearch Ltd, Palmerston North, 4442, New Zealand
| | - Tracey Crowther
- Resilient Agriculture, AgResearch Ltd, Palmerston North, 4442, New Zealand
| | - Xiuying Zou
- Resilient Agriculture, AgResearch Ltd, Palmerston North, 4442, New Zealand
| | - Dorothy Maher
- Resilient Agriculture, AgResearch Ltd, Palmerston North, 4442, New Zealand
| | - Hong Xue
- Resilient Agriculture, AgResearch Ltd, Palmerston North, 4442, New Zealand
| | - Richard W Scott
- Resilient Agriculture, AgResearch Ltd, Palmerston North, 4442, New Zealand
| | - Anne Allan
- Resilient Agriculture, AgResearch Ltd, Palmerston North, 4442, New Zealand
| | - Richard D Johnson
- Resilient Agriculture, AgResearch Ltd, Palmerston North, 4442, New Zealand
| | - Stuart D Card
- Resilient Agriculture, AgResearch Ltd, Palmerston North, 4442, New Zealand
| | - Wade J Mace
- Resilient Agriculture, AgResearch Ltd, Palmerston North, 4442, New Zealand
| | - Nicholas J Roberts
- Resilient Agriculture, AgResearch Ltd, Palmerston North, 4442, New Zealand
| | - Gregory Bryan
- Resilient Agriculture, AgResearch Ltd, Palmerston North, 4442, New Zealand
| |
Collapse
|
4
|
Luciano-Rosario D, Barda O, Tannous J, Frawley D, Bayram Ö, Prusky D, Sionov E, Keller NP. The histone demethylase KdmB is part of a trimeric protein complex and mediates virulence and mycotoxin production in Penicillium expansum. Fungal Genet Biol 2023; 169:103837. [PMID: 37722619 PMCID: PMC10755807 DOI: 10.1016/j.fgb.2023.103837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023]
Abstract
Epigenetic modification of chromosome structure has increasingly been associated with alterations in secondary metabolism and sporulation defects in filamentous fungal pathogens. Recently, the epigenetic reader protein SntB was shown to govern virulence, spore production and mycotoxin synthesis in the fruit pathogen Penicillium expansum. Through immunoprecipitation-coupled mass spectrometry, we found that SntB is a member of a protein complex with KdmB, a histone demethylase and the essential protein RpdA, a histone deacetylase. Deletion of kdmB phenocopied some but not all characteristics of the ΔsntB mutant. KdmB deletion strains exhibited reduced lesion development on Golden Delicious apples and this was accompanied by decreased production of patulin and citrinin in host tissue. In addition, ΔkdmB mutants were sensitive to several cell wall stressors which possibly contributed to the decreased virulence observed on apples. Slight differences in spore production and germination rates of ΔkdmB mutants in vitro did not impact overall diameter growth in culture.
Collapse
Affiliation(s)
| | - Omer Barda
- Institute of Postharvest and Food Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Joanna Tannous
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Dean Frawley
- Faculty of Science and Engineering, National University of Ireland Maynooth, Kildare, Ireland
| | - Özgür Bayram
- Faculty of Science and Engineering, National University of Ireland Maynooth, Kildare, Ireland
| | - Dov Prusky
- Institute of Postharvest and Food Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Edward Sionov
- Institute of Postharvest and Food Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Nancy P Keller
- Department of Plant Pathology, University of Wisconsin, Madison, WI, USA; Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
5
|
Mohamed NZ, Shaban L, Safan S, El-Sayed ASA. Physiological and metabolic traits of Taxol biosynthesis of endophytic fungi inhabiting plants: Plant-microbial crosstalk, and epigenetic regulators. Microbiol Res 2023; 272:127385. [PMID: 37141853 DOI: 10.1016/j.micres.2023.127385] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 05/06/2023]
Abstract
Attenuating the Taxol productivity of fungi with the subculturing and storage under axenic conditions is the challenge that halts the feasibility of fungi to be an industrial platform for Taxol production. This successive weakening of Taxol productivity by fungi could be attributed to the epigenetic down-regulation and molecular silencing of most of the gene clusters encoding Taxol biosynthetic enzymes. Thus, exploring the epigenetic regulating mechanisms controlling the molecular machinery of Taxol biosynthesis could be an alternative prospective technology to conquer the lower accessibility of Taxol by the potent fungi. The current review focuses on discussing the different molecular approaches, epigenetic regulators, transcriptional factors, metabolic manipulators, microbial communications and microbial cross-talking approaches on restoring and enhancing the Taxol biosynthetic potency of fungi to be industrial platform for Taxol production.
Collapse
Affiliation(s)
- Nabil Z Mohamed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Lamis Shaban
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| | - Samia Safan
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
6
|
Contreras SM, Zambrano Siri RT, Rivera EM, Cristaldi C, Kamenetzky L, Kim K, Clemente M, Ocampo J, Vanagas L, Angel SO. Architecture, Chromatin and Gene Organization of Toxoplasma gondii Subtelomeres. EPIGENOMES 2022; 6:29. [PMID: 36135316 PMCID: PMC9498087 DOI: 10.3390/epigenomes6030029] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Subtelomeres (ST) are chromosome regions that separate telomeres from euchromatin and play relevant roles in various biological processes of the cell. While their functions are conserved, ST structure and genetic compositions are unique to each species. This study aims to identify and characterize the subtelomeric regions of the 13 Toxoplasma gondii chromosomes of the Me49 strain. Here, STs were defined at chromosome ends based on poor gene density. The length of STs ranges from 8.1 to 232.4 kbp, with a gene density of 0.049 genes/kbp, lower than the Me49 genome (0.15 kbp). Chromatin organization showed that H3K9me3, H2A.X, and H3.3 are highly enriched near telomeres and the 5' end of silenced genes, decaying in intensity towards euchromatin. H3K4me3 and H2A.Z/H2B.Z are shown to be enriched in the 5' end of the ST genes. Satellite DNA was detected in almost all STs, mainly the sat350 family and a novel satellite named sat240. Beyond the STs, only short dispersed fragments of sat240 and sat350 were found. Within STs, there were 12 functional annotated genes, 59 with unknown functions (Hypothetical proteins), 15 from multigene FamB, and 13 from multigene family FamC. Some genes presented low interstrain synteny associated with the presence of satellite DNA. Orthologues of FamB and FamC were also detected in Neospora caninum and Hammondia hammondi. A re-analysis of previous transcriptomic data indicated that ST gene expression is strongly linked to the adaptation to different situations such as extracellular passage (evolve and resequencing study) and changes in metabolism (lack of acetyl-CoA cofactor). In conclusion, the ST region of the T. gondii chromosomes was defined, the STs genes were determined, and it was possible to associate them with high interstrain plasticity and a role in the adaptability of T. gondii to environmental changes.
Collapse
Affiliation(s)
- Susana M. Contreras
- Laboratorio de Parasitología Molecular, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús 7130, Argentina
| | - Romina T. Zambrano Siri
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires C1428ADN, Argentina
| | - Elías M. Rivera
- Laboratorio de Parasitología Molecular, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús 7130, Argentina
| | - Constanza Cristaldi
- Laboratorio de Parasitología Molecular, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús 7130, Argentina
| | - Laura Kamenetzky
- Laboratorio de Genómica y Bioinformática de Patógenos, iB3|Instituto de Biociencias, Biotecnología y Biología traslacional, Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
| | - Kami Kim
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Marina Clemente
- Laboratorio de Molecular Farming y Vacunas, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús 7130, Argentina
| | - Josefina Ocampo
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires C1428ADN, Argentina
| | - Laura Vanagas
- Laboratorio de Parasitología Molecular, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús 7130, Argentina
| | - Sergio O. Angel
- Laboratorio de Parasitología Molecular, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús 7130, Argentina
| |
Collapse
|
7
|
Etier A, Dumetz F, Chéreau S, Ponts N. Post-Translational Modifications of Histones Are Versatile Regulators of Fungal Development and Secondary Metabolism. Toxins (Basel) 2022; 14:toxins14050317. [PMID: 35622565 PMCID: PMC9145779 DOI: 10.3390/toxins14050317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/16/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Chromatin structure is a major regulator of DNA-associated processes, such as transcription, DNA repair, and replication. Histone post-translational modifications, or PTMs, play a key role on chromatin dynamics. PTMs are involved in a wide range of biological processes in eukaryotes, including fungal species. Their deposition/removal and their underlying functions have been extensively investigated in yeasts but much less in other fungi. Nonetheless, the major role of histone PTMs in regulating primary and secondary metabolisms of filamentous fungi, including human and plant pathogens, has been pinpointed. In this review, an overview of major identified PTMs and their respective functions in fungi is provided, with a focus on filamentous fungi when knowledge is available. To date, most of these studies investigated histone acetylations and methylations, but the development of new methodologies and technologies increasingly allows the wider exploration of other PTMs, such as phosphorylation, ubiquitylation, sumoylation, and acylation. Considering the increasing number of known PTMs and the full range of their possible interactions, investigations of the subsequent Histone Code, i.e., the biological consequence of the combinatorial language of all histone PTMs, from a functional point of view, are exponentially complex. Better knowledge about histone PTMs would make it possible to efficiently fight plant or human contamination, avoid the production of toxic secondary metabolites, or optimize the industrial biosynthesis of certain beneficial compounds.
Collapse
|
8
|
Differential regulation and production of secondary metabolites among isolates of the fungal wheat pathogen Zymoseptoria tritici. Appl Environ Microbiol 2022; 88:e0229621. [PMID: 35108092 PMCID: PMC8939313 DOI: 10.1128/aem.02296-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of the wheat pathogenic fungus, Zymoseptoria tritici, represents extensive presence-absence variation in gene content. Here, we addressed variation in biosynthetic gene clusters (BGCs) content and biochemical profiles among three isolates. We analysed secondary metabolite properties based on genome, transcriptome and metabolome data. The isolates represent highly distinct genome architecture, but harbor similar repertoire of BGCs. Expression profiles for most BGCs show comparable patterns of regulation among the isolates, suggesting a conserved "biochemical infection program". For all three isolates, we observed a strong up-regulation of a putative abscisic acid (ABA) gene cluster during biotrophic host colonization, indicating that Z. tritici potentially interfere with host defenses by the biosynthesis of this phytohormone. Further, during in vitro growth the isolates show similar metabolomes congruent with the predicted BGC content. We assessed if secondary metabolite production is regulated by histone methylation using a mutant impaired in formation of facultative heterochromatin (H3K27me3). In contrast to other ascomycete fungi, chromatin modifications play a less prominent role in regulation of secondary metabolites. In summary, we show that Z. tritici has a conserved program of secondary metabolite production contrasting the immense variation in effector expression, some of these metabolites might play a key role during host colonization. Importance Zymoseptoria tritici is one of the most devastating pathogens of wheat. So far the molecular determinants of virulence and their regulation are poorly understood. Previous studies have focused on proteinasous virulence factors and their extensive diversity. In this study, we focus on secondary metabolites produced by Z. tritici. Using a comparative framework, we here characterize core and non-core metabolites produced by Z. tritici by combining genome, transcriptome and metabolome datasets. Our findings indicate highly conserved biochemical profiles contrasting genetic and phenotypic diversity of the field isolates investigated here. This discovery has relevance for future crop protection strategies.
Collapse
|
9
|
Bachleitner S, Sulyok M, Sørensen JL, Strauss J, Studt L. The H4K20 methyltransferase Kmt5 is involved in secondary metabolism and stress response in phytopathogenic Fusarium species. Fungal Genet Biol 2021; 155:103602. [PMID: 34214671 DOI: 10.1016/j.fgb.2021.103602] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 02/08/2023]
Abstract
Fusarium fujikuroi and Fusarium graminearum are agronomically important plant pathogens, both infecting important staple food plants and thus leading to huge economic losses worldwide. F.fujikuroi belongs to the Fusarium fujikuroi species complex (FFSC) and causes bakanae disease on rice, whereas F.graminearum, a member of the Fusarium graminearum species complex (FGSC), is the causal agent of Fusarium Head Blight (FHB) disease on wheat, barley and maize. In recent years, the importance of chromatin regulation became evident in the plant-pathogen interaction. Several processes, including posttranslational modifications of histones, have been described as regulators of virulence and the biosynthesis of secondary metabolites. In this study, we have functionally characterised methylation of lysine 20 histone 4 (H4K20me) in both Fusarium species. We identified the respective genes solely responsible for H4K20 mono-, di- and trimethylation in F.fujikuroi (FfKMT5) and F.graminearum (FgKMT5). We show that loss of Kmt5 affects colony growth in F.graminearum while this is not the case for F.fujikuroi. Similarly, FgKmt5 is required for full virulence in F.graminearum as Δfgkmt5 is hypovirulent on wheat, whereas the F.fujikuroi Δffkmt5 strain did not deviate from the wild type during rice infection. Lack of Kmt5 had distinct effects on the secondary metabolism in both plant pathogens with the most pronounced effects on fusarin biosynthesis in F.fujikuroi and zearalenone biosynthesis in F.graminearum. Next to this, loss of Kmt5 resulted in an increased tolerance towards oxidative and osmotic stress in both species.
Collapse
Affiliation(s)
- Simone Bachleitner
- Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria
| | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, Tulln 3430, Austria
| | - Jens Laurids Sørensen
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, DK-9000 Aalborg, Denmark
| | - Joseph Strauss
- Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria
| | - Lena Studt
- Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
| |
Collapse
|
10
|
Lukito Y, Lee K, Noorifar N, Green KA, Winter DJ, Ram A, Hale TK, Chujo T, Cox MP, Johnson LJ, Scott B. Regulation of host-infection ability in the grass-symbiotic fungus Epichloë festucae by histone H3K9 and H3K36 methyltransferases. Environ Microbiol 2020; 23:2116-2131. [PMID: 33350014 DOI: 10.1111/1462-2920.15370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/02/2020] [Accepted: 12/19/2020] [Indexed: 01/30/2023]
Abstract
Recent studies have identified key genes that control the symbiotic interaction between Epichloë festucae and Lolium perenne. Here we report on the identification of specific E. festucae genes that control host infection. Deletion of setB, which encodes a homologue of the H3K36 histone methyltransferase Set2/KMT3, reduced histone H3K36 trimethylation and led to severe defects in colony growth and hyphal development. The E. festucae ΔclrD mutant, which lacks the gene encoding the homologue of the H3K9 methyltransferase KMT1, displays similar developmental defects. Both mutants are completely defective in their ability to infect L. perenne. Alleles that complement the culture and plant phenotypes of both mutants also complement the histone methylation defects. Co-inoculation of either ΔsetB or ΔclrD with the wild-type strain enables these mutants to colonize the host. However, successful colonization by the mutants resulted in death or stunting of the host plant. Transcriptome analysis at the early infection stage identified four fungal candidate genes, three of which encode small-secreted proteins, that are differentially regulated in these mutants compared to wild type. Deletion of crbA, which encodes a putative carbohydrate binding protein, resulted in significantly reduced host infection rates by E. festucae.
Collapse
Affiliation(s)
- Yonathan Lukito
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand.,Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand.,Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Kate Lee
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| | - Nazanin Noorifar
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Kimberly A Green
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - David J Winter
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Arvina Ram
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Tracy K Hale
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Tetsuya Chujo
- Research and Development Center, Mayekawa Mfg. Co., Ltd, Tokyo, Japan
| | - Murray P Cox
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| | - Linda J Johnson
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Barry Scott
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| |
Collapse
|
11
|
Caradus JR, Johnson LJ. Epichloë Fungal Endophytes-From a Biological Curiosity in Wild Grasses to an Essential Component of Resilient High Performing Ryegrass and Fescue Pastures. J Fungi (Basel) 2020; 6:E322. [PMID: 33261217 PMCID: PMC7720123 DOI: 10.3390/jof6040322] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022] Open
Abstract
The relationship between Epichloë endophytes found in a wide range of temperate grasses spans the continuum from antagonistic to mutualistic. The diversity of asexual mutualistic types can be characterised by the types of alkaloids they produce in planta. Some of these are responsible for detrimental health and welfare issues of ruminants when consumed, while others protect the host plant from insect pests and pathogens. In many temperate regions they are an essential component of high producing resilient tall fescue and ryegrass swards. This obligate mutualism between fungus and host is a seed-borne technology that has resulted in several commercial products being used with high uptake rates by end-user farmers, particularly in New Zealand and to a lesser extent Australia and USA. However, this has not happened by chance. It has been reliant on multi-disciplinary research teams undertaking excellent science to understand the taxonomic relationships of these endophytes, their life cycle, symbiosis regulation at both the cellular and molecular level, and the impact of secondary metabolites, including an understanding of their mammalian toxicity and bioactivity against insects and pathogens. Additionally, agronomic trials and seed biology studies of these microbes have all contributed to the delivery of robust and efficacious products. The supply chain from science, through seed companies and retailers to the end-user farmer needs to be well resourced providing convincing information on the efficacy and ensuring effective quality control to result in a strong uptake of these Epichloë endophyte technologies in pastoral agriculture.
Collapse
Affiliation(s)
- John R. Caradus
- Grasslanz Technology Ltd., Palmerston North PB11008, New Zealand
| | | |
Collapse
|
12
|
Bachleitner S, Sørensen JL, Gacek-Matthews A, Sulyok M, Studt L, Strauss J. Evidence of a Demethylase-Independent Role for the H3K4-Specific Histone Demethylases in Aspergillus nidulans and Fusarium graminearum Secondary Metabolism. Front Microbiol 2019; 10:1759. [PMID: 31456754 PMCID: PMC6700381 DOI: 10.3389/fmicb.2019.01759] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022] Open
Abstract
Fungi produce a plethora of secondary metabolites (SMs) involved in cellular protection, defense, and signaling. Like other metabolic processes, transcription of SM biosynthesis genes is tightly regulated to prevent an unnecessary use of resources. Genes involved in SM biosynthesis are usually physically linked, arranged in secondary metabolite gene clusters (SMGCs). Research over the last decades has shown that chromatin structure and posttranslational modifications (PTMs) of histones represent important layers of SMGC regulation. For instance, trimethylation of histone H3 lysine 4 (H3K4me3) is a PTM typically associated with promoter regions of actively transcribed genes. Previously, we have shown that the H3K4me3-specific, JmjC domain-containing histone demethylase KdmB functions not only in repression but also in activation of secondary metabolism in Aspergillus nidulans, suggesting that KdmB has additional functions apart from histone demethylation. In this study, we identified demethylase-independent functions of KdmB in transcriptional regulation of SM gene clusters. Furthermore, we show that this activating and demethylase-independent role of the H3K4 demethylase is also conserved in the phytopathogenic fungus Fusarium graminearum. Lack of FgKdm5 resulted in significant downregulation of five of seven analyzed SMs, whereby only one SMGC depends on a functional JmjC-domain. In A. nidulans strains deficient in H3K4 methylation, i.e., cclA∆, largely phenocopied kdmB∆, while this is not the case for most of the SMs analyzed in Fusarium spp. Notably, KdmB could not rescue the demethylase function in ∆fgkdm5 but restored all demethylase-independent phenotypes.
Collapse
Affiliation(s)
- Simone Bachleitner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Jens Laurids Sørensen
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Aalborg, Denmark
| | - Agnieszka Gacek-Matthews
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Michael Sulyok
- Department for Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Lena Studt
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| |
Collapse
|