1
|
Tang D, Chen Y, Chen H, Jia T, Chen Q, Yu Y. Multiple enzymatic activities of a Sir2-HerA system cooperate for anti-phage defense. Mol Cell 2023; 83:4600-4613.e6. [PMID: 38096825 DOI: 10.1016/j.molcel.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/14/2023] [Accepted: 11/13/2023] [Indexed: 12/24/2023]
Abstract
In response to the persistent exposure to phage infection, bacteria have evolved diverse antiviral defense mechanisms. In this study, we report a bacterial two-component defense system consisting of a Sir2 NADase and a HerA helicase. Cryo-electron microscopy reveals that Sir2 and HerA assemble into a ∼1 MDa supramolecular octadecamer. Unexpectedly, this complex exhibits various enzymatic activities, including ATPase, NADase, helicase, and nuclease, which work together in a sophisticated manner to fulfill the antiphage function. Therefore, we name this defense system "Nezha" after a divine warrior in Chinese mythology who employs multiple weapons to defeat enemies. Our findings demonstrate that Nezha could sense phage infections, self-activate to arrest cell growth, eliminate phage genomes, and subsequently deactivate to allow for cell recovery. Collectively, Nezha represents a paradigm of sophisticated and multifaceted strategies bacteria use to defend against viral infections.
Collapse
Affiliation(s)
- Dongmei Tang
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yijun Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tingting Jia
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yamei Yu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Parekh VJ, Węgrzyn G, Arluison V, Sinden RR. Genomic Instability of G-Quadruplex Sequences in Escherichia coli: Roles of DinG, RecG, and RecQ Helicases. Genes (Basel) 2023; 14:1720. [PMID: 37761860 PMCID: PMC10530614 DOI: 10.3390/genes14091720] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Guanine-rich DNA can fold into highly stable four-stranded DNA structures called G-quadruplexes (G4). Originally identified in sequences from telomeres and oncogene promoters, they can alter DNA metabolism. Indeed, G4-forming sequences represent obstacles for the DNA polymerase, with important consequences for cell life as they may lead to genomic instability. To understand their role in bacterial genomic instability, different G-quadruplex-forming repeats were cloned into an Escherichia coli genetic system that reports frameshifts and complete or partial deletions of the repeat when the G-tract comprises either the leading or lagging template strand during replication. These repeats formed stable G-quadruplexes in single-stranded DNA but not naturally supercoiled double-stranded DNA. Nevertheless, transcription promoted G-quadruplex formation in the resulting R-loop for (G3T)4 and (G3T)8 repeats. Depending on genetic background and sequence propensity for structure formation, mutation rates varied by five orders of magnitude. Furthermore, while in vitro approaches have shown that bacterial helicases can resolve G4, it is still unclear whether G4 unwinding is important in vivo. Here, we show that a mutation in recG decreased mutation rates, while deficiencies in the structure-specific helicases DinG and RecQ increased mutation rates. These results suggest that G-quadruplex formation promotes genetic instability in bacteria and that helicases play an important role in controlling this process in vivo.
Collapse
Affiliation(s)
- Virali J. Parekh
- Laboratory of DNA Structure and Mutagenesis, Department of Chemistry, Biology and Health Sciences, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA;
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, CEA Saclay, 91191 Gif-sur-Yvette, France
- UFR Sciences du Vivant, Université Paris Cité, 75006 Paris, France
| | - Richard R. Sinden
- Laboratory of DNA Structure and Mutagenesis, Department of Chemistry, Biology and Health Sciences, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA;
| |
Collapse
|
3
|
Mishra S, Kota S, Chaudhary R, Misra HS. Guanine quadruplexes and their roles in molecular processes. Crit Rev Biochem Mol Biol 2021; 56:482-499. [PMID: 34162300 DOI: 10.1080/10409238.2021.1926417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The role of guanine quadruplexes (G4) in fundamental biological processes like DNA replication, transcription, translation and telomere maintenance is recognized. G4 structure dynamics is regulated by G4 structure binding proteins and is thought to be crucial for the maintenance of genome integrity in both prokaryotic and eukaryotic cells. Growing research over the last decade has expanded the existing knowledge of the functional diversity of G4 (DNA and RNA) structures across the working models. The control of G4 structure dynamics using G4 binding drugs has been suggested as the putative targets in the control of cancer and bacterial pathogenesis. This review has brought forth the collections of recent information that indicate G4 (mostly G4 DNA) roles in microbial pathogenesis, DNA damaging stress response in bacteria and mammalian cells. Studies in mitochondrial gene function regulation by G4s have also been underscored. Finally, the interdependence of G4s and epigenetic modifications and their speculated medical implications through G4 interacting proteins has been discussed.
Collapse
Affiliation(s)
- Shruti Mishra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute (DAE Deemed to be University), Mumbai, India
| | - Swathi Kota
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute (DAE Deemed to be University), Mumbai, India
| | - Reema Chaudhary
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute (DAE Deemed to be University), Mumbai, India
| | - H S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute (DAE Deemed to be University), Mumbai, India
| |
Collapse
|
4
|
Jeong SW, Kim MK, Zhao L, Yang SK, Jung JH, Lim HM, Lim S. Effects of Conserved Wedge Domain Residues on DNA Binding Activity of Deinococcus radiodurans RecG Helicase. Front Genet 2021; 12:634615. [PMID: 33613647 PMCID: PMC7889586 DOI: 10.3389/fgene.2021.634615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
Deinococcus radiodurans is extremely resistant to ionizing radiation and has an exceptional ability to repair DNA damage caused by various DNA-damaging agents. D. radiodurans uses the same DNA-repair strategies as other prokaryotes, but certain proteins involved in the classical DNA repair machinery have characteristics different from their counterparts. RecG helicase, which unwinds a variety of branched DNA molecules, such as Holliday junctions (HJ) and D-loops, plays important roles in DNA repair, recombination, and replication. Primary sequence analysis of RecG from a number of bacterial species revealed that three amino acids (QPW) in the DNA-binding wedge domain (WD) are well-conserved across the Deinococcus RecG proteins. Interactions involving these conserved residues and DNA substrates were predicted in modeled domain structures of D. radiodurans RecG (DrRecG). Compared to the WD of Escherichia coli RecG protein (EcRecG) containing FSA amino acids corresponding to QPW in DrRecG, the HJ binding activity of DrRecG-WD was higher than that of EcRecG-WD. Reciprocal substitution of FSA and QPW increased and decreased the HJ binding activity of the mutant WDs, EcRecG-WDQPW, and DrRecG-WDFSA, respectively. Following γ-irradiation treatment, the reduced survival rate of DrRecG mutants (ΔrecG) was fully restored by the expression of DrRecG, but not by that of EcRecG. EcRecGQPW also enhanced γ-radioresistance of ΔrecG, whereas DrRecGFSA did not. ΔrecG cells complemented in trans by DrRecG and EcRecGQPW reconstituted an intact genome within 3 h post-irradiation, as did the wild-type strain, but ΔrecG with EcRecG and DrRecGFSA exhibited a delay in assembly of chromosomal fragments induced by γ-irradiation. These results suggested that the QPW residues facilitate the association of DrRecG with DNA junctions, thereby enhancing the DNA repair efficiency of DrRecG.
Collapse
Affiliation(s)
- Sun-Wook Jeong
- Radiation Research Division, Korea Atomic Energy Research Institute, Jeongeup, South Korea.,Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Min-Kyu Kim
- Radiation Research Division, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Lei Zhao
- Radiation Research Division, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Seul-Ki Yang
- Radiation Research Division, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Jong-Hyun Jung
- Radiation Research Division, Korea Atomic Energy Research Institute, Jeongeup, South Korea.,Department of Radiation Science and Technology, University of Science and Technology, Daejeon, South Korea
| | - Heon-Man Lim
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Sangyong Lim
- Radiation Research Division, Korea Atomic Energy Research Institute, Jeongeup, South Korea.,Department of Radiation Science and Technology, University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
5
|
Maurya GK, Chaudhary R, Pandey N, Misra HS. Molecular insights into replication initiation in a multipartite genome harboring bacterium Deinococcus radiodurans. J Biol Chem 2021; 296:100451. [PMID: 33626388 PMCID: PMC7988490 DOI: 10.1016/j.jbc.2021.100451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 11/23/2022] Open
Abstract
Deinococcus radiodurans harbors a multipartite ploid genome system consisting of two chromosomes and two plasmids present in multiple copies. How these discrete genome elements are maintained and inherited is not well understood. PprA, a pleiotropic protein involved in radioresistance, has been characterized for its roles in DNA repair, genome segregation, and cell division in this bacterium. Here, we show that PprA regulates ploidy of chromosome I and II and inhibits the activity of drDnaA, the initiator protein in D. radiodurans. We found that pprA deletion resulted in an increased genomic content and ploidy of both the chromosomal elements. Expression of PprA in trans rescued the phenotypes of the pprA mutant. To understand the molecular mechanism underlying these phenotypes, we characterized drDnaA and drDnaB. As expected for an initiator protein, recombinant drDnaA showed sequence-specific interactions with the putative oriC sequence in chromosome I (oriCI). Both drDnaA and drDnaB showed ATPase activity, also typical of initiator proteins, but only drDnaB exhibited 5'→3' dsDNA helicase activity in vitro. drDnaA and drDnaB showed homotypic and heterotypic interactions with each other, which were perturbed by PprA. Interestingly, PprA has inhibited the ATPase activity of drDnaA but showed no effect on the activity of drDnaB. Regulation of chromosome copy number and inhibition of the initiator protein functions by PprA strongly suggest that it plays a role as a checkpoint regulator of the DNA replication initiation in D. radiodurans perhaps through its interaction with the replication initiation machinery.
Collapse
Affiliation(s)
- Ganesh K Maurya
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India; Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Reema Chaudhary
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India; Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Neha Pandey
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India; Life Sciences, University of Mumbai, Mumbai, India
| | - Hari S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India; Life Sciences, Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
6
|
Xue ZY, Wu WQ, Zhao XC, Kumar A, Ran X, Zhang XH, Zhang Y, Guo LJ. Single-molecule probing the duplex and G4 unwinding patterns of a RecD family helicase. Int J Biol Macromol 2020; 164:902-910. [PMID: 32693146 DOI: 10.1016/j.ijbiomac.2020.07.158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 10/23/2022]
Abstract
RecD family helicases play an important role in prokaryotic genome stability and serve as the structural models for studying superfamily 1B (SF1B) helicases. However, RecD-catalyzed duplex DNA unwinding behavior and the underlying mechanism are still elusive. RecD family helicases share a common proto-helicase with eukaryotic Pif1 family helicases, which are well known for their outstanding G-quadruplex (G4) unwinding ability. However, there are still controversial points as to whether and how RecD helicases unfold G4 structures. Here, single-molecule fluorescence resonance energy transfer (smFRET) and magnetic tweezers (MT) were used to study Deinococcus radiodurans RecD2 (DrRecD2)-mediated duplex DNA unwinding and resolution of G4 structures. A symmetric, repetitive unwinding phenomenon was observed on duplex DNA, revealed from the strand switch and translocation of one monomer. Furthermore, we found that DrRecD2 was able to unwind both parallel and antiparallel G4 structures without obvious topological preferences. Surprisingly, the unwinding properties of RecD on duplex and G4 DNA are different from those of Pif1. The findings provide an example, in which the patterns of two molecules derived from a common ancestor deviate during evolution, and they are of significance for understanding the unwinding mechanism and function of SF1B helicases.
Collapse
Affiliation(s)
- Zhen-Yong Xue
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475001, China
| | - Wen-Qiang Wu
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475001, China.
| | - Xiao-Cong Zhao
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Arvind Kumar
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475001, China
| | - Xia Ran
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475001, China
| | - Xing-Hua Zhang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Yu Zhang
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475001, China
| | - Li-Jun Guo
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475001, China.
| |
Collapse
|