1
|
Holmes CL, Albin OR, Mobley HLT, Bachman MA. Bloodstream infections: mechanisms of pathogenesis and opportunities for intervention. Nat Rev Microbiol 2024:10.1038/s41579-024-01105-2. [PMID: 39420097 DOI: 10.1038/s41579-024-01105-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/19/2024]
Abstract
Bloodstream infections (BSIs) are common in hospitals, often life-threatening and increasing in prevalence. Microorganisms in the blood are usually rapidly cleared by the immune system and filtering organs but, in some cases, they can cause an acute infection and trigger sepsis, a systemic response to infection that leads to circulatory collapse, multiorgan dysfunction and death. Most BSIs are caused by bacteria, although fungi also contribute to a substantial portion of cases. Escherichia coli, Staphylococcus aureus, coagulase-negative Staphylococcus, Klebsiella pneumoniae and Candida albicans are leading causes of BSIs, although their prevalence depends on patient demographics and geographical region. Each species is equipped with unique factors that aid in the colonization of initial sites and dissemination and survival in the blood, and these factors represent potential opportunities for interventions. As many pathogens become increasingly resistant to antimicrobials, new approaches to diagnose and treat BSIs at all stages of infection are urgently needed. In this Review, we explore the prevalence of major BSI pathogens, prominent mechanisms of BSI pathogenesis, opportunities for prevention and diagnosis, and treatment options.
Collapse
Affiliation(s)
- Caitlyn L Holmes
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Owen R Albin
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Harry L T Mobley
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael A Bachman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
VanOtterloo LM, Macias LA, Powers MJ, Brodbelt JS, Trent MS. Characterization of Acinetobacter baumannii core oligosaccharide synthesis reveals novel aspects of lipooligosaccharide assembly. mBio 2024; 15:e0301323. [PMID: 38349180 PMCID: PMC10936431 DOI: 10.1128/mbio.03013-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/12/2024] [Indexed: 03/14/2024] Open
Abstract
A fundamental feature of Gram-negative bacteria is their outer membrane that protects the cell against environmental stressors. This defense is predominantly due to its asymmetry, with glycerophospholipids located in the inner leaflet and lipopolysaccharide (LPS) or lipooligosaccharide (LOS) confined to the outer leaflet. LPS consists of a lipid A anchor, a core oligosaccharide, and a distal O-antigen while LOS lacks O-antigen. While LPS/LOS is typically essential for growth, this is not the case for Acinetobacter baumannii. Despite this unique property, the synthesis of the core oligosaccharide of A. baumannii LOS is not well-described. Here, we characterized the LOS chemotypes of A. baumannii strains with mutations in a predicted core oligosaccharide locus via tandem mass spectrometry. This allowed for an extensive identification of genes required for core assembly that can be exploited to generate precise structural LOS modifications in many A. baumannii strains. We further investigated two chemotypically identical yet phenotypically distinct mutants, ∆2903 and ∆lpsB, that exposed a possible link between LOS and the peptidoglycan cell wall-two cell envelope components whose coordination has not yet been described in A. baumannii. Selective reconstruction of the core oligosaccharide via expression of 2903 and LpsB revealed that these proteins rely on each other for the unusual tandem transfer of two residues, KdoIII and N-acetylglucosaminuronic acid. The data presented not only allow for better usage of A. baumannii as a tool to study outer membrane integrity but also provide further evidence for a novel mechanism of core oligosaccharide assembly. IMPORTANCE Acinetobacter baumannii is a multidrug-resistant pathogen that produces lipooligosaccharide (LOS), a glycolipid that confers protective asymmetry to the bacterial outer membrane. The core oligosaccharide is a ubiquitous component of LOS that typically follows a well-established model of synthesis. In addition to providing an extensive analysis of the genes involved in the synthesis of the core region, we demonstrate that this organism has evidently diverged from the long-held archetype of core synthesis. Moreover, our data suggest that A. baumannii LOS assembly is important for cell division and likely intersects with the synthesis of the peptidoglycan cell wall, another essential component of the Gram-negative cell envelope. This connection between LOS and cell wall synthesis provides an intriguing foundation for a unique method of outer membrane biogenesis and cell envelope coordination.
Collapse
Affiliation(s)
- Leah M. VanOtterloo
- Department of Microbiology, College of Art and Sciences, University of Georgia, Athens, Georgia, USA
| | - Luis A. Macias
- Department of Chemistry, University of Texas at Austin, Austin, Texas, USA
| | - Matthew J. Powers
- Department of Microbiology, College of Art and Sciences, University of Georgia, Athens, Georgia, USA
| | | | - M. Stephen Trent
- Department of Microbiology, College of Art and Sciences, University of Georgia, Athens, Georgia, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
3
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
4
|
Abstract
Small molecule adjuvants that enhance the activity of established antibiotics represent promising agents in the battle against antibiotic resistance. Adjuvants generally act by inhibiting antibiotic resistance processes, and specifying the process acted on is a critical step in defining an adjuvant's mechanism of action. This step is typically carried out biochemically by identifying molecules that bind adjuvants and then inferring their roles in resistance. Here, we present a complementary genetic strategy based on identifying mutations that both sensitize cells to antibiotic and make them "adjuvant blind." We tested the approach in Acinetobacter baumannii AB5075 using two adjuvants: a well-characterized β-lactamase inhibitor (avibactam) and a compound enhancing outer membrane permeability (aryl 2-aminoimidazole AI-1). The avibactam studies showed that the adjuvant potentiated one β-lactam (ceftazidime) through action on a single β-lactamase (GES-14) and a second (meropenem) by targeting two different enzymes (GES-14 and OXA-23). Mutations impairing disulfide bond formation (DsbAB) also reduced potentiation, possibly by impairing β-lactamase folding. Mutations reducing AI-1 potentiation of canonical Gram-positive antibiotics (vancomycin and clarithromycin) blocked lipooligosaccharide (LOS/LPS) synthesis or its acyl modification. The results indicate that LOS-mediated outer membrane impermeability is targeted by the adjuvant and show the importance of acylation in the resistance. As part of the study, we employed Acinetobacter baylyi as a model to verify the generality of the A. baumannii results and identified the principal resistance genes for ceftazidime, meropenem, vancomycin, and clarithromycin in A. baumannii AB5075. Overall, the work provides a foundation for analyzing adjuvant action using a comprehensive genetic approach. IMPORTANCE One strategy to confront the antibiotic resistance crisis is through the development of adjuvant compounds that increase the efficacy of established drugs. A key step in the development of a natural product adjuvant as a drug is identifying the resistance process it undermines to enhance antibiotic activity. Previous procedures designed to accomplish this have relied on biochemical identification of cell components that bind adjuvant. Here, we present a complementary strategy based on identifying mutations that eliminate adjuvant activity.
Collapse
|
5
|
Kasimova AA, Arbatsky NP, Timoshina OY, Shneider MM, Shashkov AS, Chizhov AO, Popova AV, Hall RM, Kenyon JJ, Knirel YA. The K26 capsular polysaccharide from Acinetobacter baumannii KZ-1098: Structure and cleavage by a specific phage depolymerase. Int J Biol Macromol 2021; 191:182-191. [PMID: 34537298 DOI: 10.1016/j.ijbiomac.2021.09.073] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/03/2021] [Accepted: 09/12/2021] [Indexed: 12/23/2022]
Abstract
The KL26 gene cluster responsible for the synthesis of the K26 capsular polysaccharide (CPS) of Acinetobacter baumannii includes rmlBDAC genes for l-rhamnose (l-Rhap) synthesis, tle to generate 6-deoxy-l-talose (l-6dTalp) from l-Rhap, and a manC gene for D-mannose (D-Manp) that is rare in Acinetobacter CPS. K26 CPS material was isolated from A. baumannii isolate KZ-1098, and studied by sugar analysis, Smith degradation, and one and two-dimensional 1H and 13C NMR spectroscopy before and after O-deacetylation with aqueous ammonia. The following structure of the branched hexasaccharide repeating unit of the CPS was established: →2)-β-D-Manp-1→4-β-D-Glcp-1→3-α-L-6dTalp-1→3-β-D-GlcpNAc-(1→3↑14│Acα-L-Rhap-2←1-α-D-Glcp The structural depolymerase of phage vB_AbaP_APK26 cleaved selectively the β-GlcpNAc-(1 → 2)-α-Manp linkage in the K26 CPS formed by WzyK26 to give monomer, dimer, and trimer of the CPS repeating unit, which were characterized by high-resolution electrospray ionization mass spectrometry as well as 1H and 13C NMR spectroscopy. The wzyK26 gene responsible for this linkage and the manC gene were only found in six A. baumannii genomes carrying KL26 and one carrying the novel KL148 gene cluster, indicating the rare occurrence of β-GlcpNAc-(1 → 2)-α-Manp in A. baumannii CPS structures. However, K26 shares a β-d-Glcp-(1 → 3)-α-l-6dTalp-(1 → 3)-β-d-GlcpNAc trisaccharide fragment with a group of related A. baumannii CPSs that have varying patterns of acetylation of l-6dTalp.
Collapse
Affiliation(s)
- Anastasiya A Kasimova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay P Arbatsky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Olga Y Timoshina
- M. M. Shemyakin & Y. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail M Shneider
- M. M. Shemyakin & Y. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | - Alexander O Chizhov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | - Anastasiya V Popova
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, Russia
| | - Ruth M Hall
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, Australia.
| | - Johanna J Kenyon
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology. Brisbane, Australia.
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
6
|
Acinetobacter baumannii K106 and K112: Two Structurally and Genetically Related 6-Deoxy-l-talose-Containing Capsular Polysaccharides. Int J Mol Sci 2021; 22:ijms22115641. [PMID: 34073255 PMCID: PMC8199413 DOI: 10.3390/ijms22115641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
Whole genome sequences of two Acinetobacter baumannii clinical isolates, 48-1789 and MAR24, revealed that they carry the KL106 and KL112 capsular polysaccharide (CPS) biosynthesis gene clusters, respectively, at the chromosomal K locus. The KL106 and KL112 gene clusters are related to the previously described KL11 and KL83 gene clusters, sharing genes for the synthesis of l-rhamnose (l-Rhap) and 6-deoxy-l-talose (l-6dTalp). CPS material isolated from 48-1789 and MAR24 was studied by sugar analysis and Smith degradation along with one- and two-dimensional 1H and 13C NMR spectroscopy. The structures of K106 and K112 oligosaccharide repeats (K units) l-6dTalp-(1→3)-D-GlcpNAc tetrasaccharide fragment share the responsible genes in the respective gene clusters. The K106 and K83 CPSs also have the same linkage between K units. The KL112 cluster includes an additional glycosyltransferase gene, Gtr183, and the K112 unit includes α l-Rhap side chain that is not found in the K106 structure. K112 further differs in the linkage between K units formed by the Wzy polymerase, and a different wzy gene is found in KL112. However, though both KL106 and KL112 share the atr8 acetyltransferase gene with KL83, only K83 is acetylated.
Collapse
|
7
|
Mike LA, Stark AJ, Forsyth VS, Vornhagen J, Smith SN, Bachman MA, Mobley HLT. A systematic analysis of hypermucoviscosity and capsule reveals distinct and overlapping genes that impact Klebsiella pneumoniae fitness. PLoS Pathog 2021; 17:e1009376. [PMID: 33720976 PMCID: PMC7993769 DOI: 10.1371/journal.ppat.1009376] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/25/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
Hypervirulent K. pneumoniae (hvKp) is a distinct pathotype that causes invasive community-acquired infections in healthy individuals. Hypermucoviscosity (hmv) is a major phenotype associated with hvKp characterized by copious capsule production and poor sedimentation. Dissecting the individual functions of CPS production and hmv in hvKp has been hindered by the conflation of these two properties. Although hmv requires capsular polysaccharide (CPS) biosynthesis, other cellular factors may also be required and some fitness phenotypes ascribed to CPS may be distinctly attributed to hmv. To address this challenge, we systematically identified genes that impact capsule and hmv. We generated a condensed, ordered transposon library in hypervirulent strain KPPR1, then evaluated the CPS production and hmv phenotypes of the 3,733 transposon mutants, representing 72% of all open reading frames in the genome. We employed forward and reverse genetic screens to evaluate effects of novel and known genes on CPS biosynthesis and hmv. These screens expand our understanding of core genes that coordinate CPS biosynthesis and hmv, as well as identify central metabolism genes that distinctly impact CPS biosynthesis or hmv, specifically those related to purine metabolism, pyruvate metabolism and the TCA cycle. Six representative mutants, with varying effect on CPS biosynthesis and hmv, were evaluated for their impact on CPS thickness, serum resistance, host cell association, and fitness in a murine model of disseminating pneumonia. Altogether, these data demonstrate that hmv requires both CPS biosynthesis and other cellular factors, and that hmv and CPS may serve distinct functions during pathogenesis. The integration of hmv and CPS to the metabolic status of the cell suggests that hvKp may require certain nutrients to specifically cause deep tissue infections.
Collapse
Affiliation(s)
- Laura A. Mike
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Andrew J. Stark
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Valerie S. Forsyth
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jay Vornhagen
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sara N. Smith
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Michael A. Bachman
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Harry L. T. Mobley
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|