1
|
Zhu J, Liu M, Kang J, Wang S, Zha Z, Zhan Y, Wang Z, Li J, Cai D, Chen S. Engineering Bacillus licheniformis as industrial chassis for efficient bioproduction from starch. BIORESOURCE TECHNOLOGY 2024; 406:131061. [PMID: 38960005 DOI: 10.1016/j.biortech.2024.131061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/11/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Starch is an attractive feedstock in biorefinery processes, while the low natural conversion rate of most microorganisms limits its applications. Herein, starch metabolic pathway was systematically investigated using Bacillus licheniformis DW2 as the host organism. Initially, the effects of overexpressing amylolytic enzymes on starch hydrolysis were evaluated. Subsequently, the transmembrane transport system and intracellular degradation module were modified to accelerate the uptake of hydrolysates and their further conversion to glucose-6-phosphate. The DW2-derived strains exhibited robust growth in starch medium, and productivity of bacitracin and subtilisin were improved by 38.5% and 32.6%, with an 32.3% and 22.9% increase of starch conversion rate, respectively. Lastly, the employment of engineering strategies enabled another B. licheniformis WX-02 to produce poly-γ-glutamic acid from starch with a 2.1-fold increase of starch conversion rate. This study not only provided excellent B. licheniformis chassis for sustainable bioproduction from starch, but shed light on researches of substrate utilization.
Collapse
Affiliation(s)
- Jiang Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Min Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Jianling Kang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Shiyi Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Ziyan Zha
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Yangyang Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Zhi Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, Hubei, PR China
| | - Junhui Li
- Lifecome Biochemistry Co. Ltd, Nanping, 353400, PR China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China.
| |
Collapse
|
2
|
Cai X, Qin J, Li X, Yuan T, Yan B, Cai J. LipR functions as an intracellular pH regulator in Bacillus thuringiensis under glucose conditions. MLIFE 2023; 2:58-72. [PMID: 38818337 PMCID: PMC10989752 DOI: 10.1002/mlf2.12055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/06/2022] [Accepted: 12/07/2022] [Indexed: 06/01/2024]
Abstract
Intracellular pH critically affects various biological processes, and an appropriate cytoplasmic pH is essential for ensuring bacterial growth. Glucose is the preferred carbon source for most heterotrophs; however, excess glucose often causes the accumulation of acidic metabolites, lowering the intracellular pH and inhibiting bacterial growth. Bacillus thuringiensis can effectively cope with glucose-induced stress; unfortunately, little is known about the regulators involved in this process. Here, we document that the target of the dual-function sRNA YhfH, the lipR gene, encodes a LacI-family transcription factor LipR as an intracellular pH regulator when B. thuringiensis BMB171 is suddenly exposed to glucose. Under glucose conditions, lipR deletion leads to early growth arrest by causing a rapid decrease in intracellular pH (~5.4). Then, the direct targets and a binding motif (GAWAWCRWTWTCAT) of LipR were identified based on the electrophoretic mobility shift assay, the DNase-I footprinting assay, and RNA sequencing, and the gapN gene encoding a key enzyme in glycolysis was directly inhibited by LipR. Furthermore, Ni2+ is considered a possible effector for LipR. In addition to YhfH, the lipR expression was coregulated by itself, CcpA, and AbrB. Our study reveals that LipR plays a balancing role between glucose metabolism and intracellular pH in B. thuringiensis subjected to glucose stress.
Collapse
Affiliation(s)
- Xia Cai
- Department of Microbiology, College of Life SciencesNankai UniversityTianjinChina
- School of Life Science and EngineeringLanzhou University of TechnologyLanzhouChina
| | - Jiaxin Qin
- Department of Microbiology, College of Life SciencesNankai UniversityTianjinChina
| | - Xuelian Li
- Department of Microbiology, College of Life SciencesNankai UniversityTianjinChina
| | - Taoxiong Yuan
- Department of Microbiology, College of Life SciencesNankai UniversityTianjinChina
| | - Bing Yan
- Department of Microbiology, College of Life SciencesNankai UniversityTianjinChina
| | - Jun Cai
- Department of Microbiology, College of Life SciencesNankai UniversityTianjinChina
- Key Laboratory of Molecular Microbiology and TechnologyMinistry of EducationTianjinChina
- Tianjin Key Laboratory of Microbial Functional GenomicsTianjinChina
| |
Collapse
|
3
|
Conwell M, Dooley J, Naughton PJ. Enterococcal biofilm - a nidus for antibiotic resistance transfer? J Appl Microbiol 2022; 132:3444-3460. [PMID: 34990042 PMCID: PMC9306868 DOI: 10.1111/jam.15441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/03/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022]
Abstract
Enterococci, important agents of hospital acquired infection, are listed on the WHO list of multi-drug resistant pathogens commonly encountered in hospital acquired infections are now of increasing importance, due to the development of strains resistant to multiple antibiotics. Enterococci are also important microorganisms in the environment and their presence is frequently used as an indicator of faecal pollution. Their success is related to their ability to survive within a broad range of habitats and the ease by which they acquire mobile genetic elements, including plasmids, from other bacteria. The enterococci are frequently present within a bacterial biofilm which provides stability and protection to the bacterial population along with an opportunity for a variety of bacterial interactions. Enterococci can accept extrachromosomal DNA both from within its own species and from other bacterial species and this is enhanced by the proximity of the donor and recipient strains. It is this exchange of genetic material that makes the role of biofilm such an important aspect of the success of enterococci. There remain many questions regarding the most suitable model systems to study enterococci in biofilm and regarding the transfer of genetic material including antibiotic resistance in these biofilms. This review focuses on some important aspects of biofilm in the context of horizontal gene transfer (HGT) in enterococci.
Collapse
Affiliation(s)
- M Conwell
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA
| | - Jsg Dooley
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA
| | - P J Naughton
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA
| |
Collapse
|
4
|
Wang R, Sun F, Ren C, Zhai L, Xiong R, Yang Y, Yang W, Yi R, Li C, Zhao X. Hunan insect tea polyphenols provide protection against gastric injury induced by HCl/ethanol through an antioxidant mechanism in mice. Food Funct 2020; 12:747-760. [PMID: 33367402 DOI: 10.1039/d0fo02677h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The purposes of this study were to explore the preventive and treatment effects of Hunan insect tea polyphenols (HITPs) on gastric injury in mice induced by HCl/ethanol and to investigate their molecular mechanisms of action. Both HITPs and ranitidine inhibited the formation and further deterioration of gastric mucosal lesions, reduced the secretion of gastric juice, and raised gastric juice pH compared to the control. The HITPs-H treated group had lower serum levels of motilin, substance P, and endothelin than the control group, but they had higher serum levels of vasoactive intestinal peptide and somatostatin. Mice treated with HITPs had lower serum levels of cytokines interleukin (IL)-6, IL-12, tumor necrosis factor-α (TNF-α), and interferon-γ than the control group. The activities of superoxide dismutase (SOD), nitric oxide, and glutathione peroxidase (GSH-Px) were higher in the gastric tissues of HITP-treated mice, but the malondialdehyde content was lower. Quantitative PCR analysis indicated that the mRNA expression of occludin, epidermal growth factor (EGF), EGF receptor (EGFR), vascular EGF (VEGF), inhibitor kappaB-α, cuprozinc-superoxide dismutase, manganese-superoxide dismutase, GSH-Px, neuronal nitric oxide synthase, and endothelial NOS increased significantly in the gastric tissues of HITP-treated mice. However, the activated B cell, inducible NOS, cyclooxygenase-2, TNF-α, IL-1 beta, and IL-6 mRNA expression levels in the HITPs group were lower than those in the control group. The protective effect of a high concentration (200 mg per kg bw) of HITPs on gastric injury induced by HCl/ethanol was stronger than that of a low concentration (100 mg per kg bw) of HITPs. High-performance liquid chromatography (HPLC) revealed that the HITPs contained cryptochlorogenic acid, (-)-epicatechin gallate, and isochlorogenic acid C. Taken together, our findings indicate that the HITPs played a role in the prevention of gastric damage. The antioxidant effect of the HITPs contributed to their potential value in the prevention and treatment of gastric injury. HITPs have broad prospects as biologically active substances for food development.
Collapse
Affiliation(s)
- Ranran Wang
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Enterococcus faecalis Maltodextrin Gene Regulation by Combined Action of Maltose Gene Regulator MalR and Pleiotropic Regulator CcpA. Appl Environ Microbiol 2020; 86:AEM.01147-20. [PMID: 32680872 DOI: 10.1128/aem.01147-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/08/2020] [Indexed: 01/13/2023] Open
Abstract
Enterococci are Gram-positive bacteria present in the healthy human microbiota, but they are also a leading cause of nosocomial infections. Maltodextrin utilization by Enterococcus faecalis has been identified as an important factor for colonization of mammalians hosts. Here, we show that the LacI/GalR transcriptional regulator MalR, the maltose gene regulator, is also the main regulator of the operons encoding an ABC transporter (mdxEFG) and three metabolic enzymes (mmdH-gmdH-mmgT) required for the uptake and catabolism of maltotetraose and longer maltodextrins. The utilization of maltose and maltodextrins is consequently coordinated and induced by the disaccharide maltose, which binds to MalR. Carbon catabolite repression of the mdxEFG and mmdH-gmdH-mmgT operons is mediated by both P-Ser-HPr/MalR and P-Ser-HPr/CcpA. The latter complex exerts only moderate catabolite repression, which became visible when comparing maltodextrin operon expression levels of a malR - mutant (with a mutant allele for the malR gene) and a malR - ΔccpA double mutant grown in the presence of maltose, which is transported via a phosphotransferase system and, thus, favors the formation of P-Ser-HPr. Moreover, maltodextrin transport via MdxEFG slows rapidly when glucose is added, suggesting an additional regulation via inducer exclusion. This complex regulation of metabolic operons likely allows E. faecalis to fine-tune gene expression in response to changing environmental conditions.IMPORTANCE Enterococcus faecalis represents a leading cause of hospital-acquired infections worldwide. Several studies highlighted the importance of carbohydrate metabolism in the infection process of this bacterium. The genes required for maltodextrin metabolism are particularly induced during mouse infection and, therefore, should play an important role for pathogenesis. Since no data were hitherto available concerning the regulation of expression of the maltodextrin operons, we have conducted experiments to study the underlying mechanisms.
Collapse
|