1
|
Carnes J, McDermott SM, Stuart K. RNA editing catalytic complexes edit multiple mRNA sites non-processively in Trypanosoma brucei. Mol Biochem Parasitol 2023; 256:111596. [PMID: 37742784 DOI: 10.1016/j.molbiopara.2023.111596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
RNA editing generates mature mitochondrial mRNAs in T. brucei by extensive uridine insertion and deletion at numerous editing sites (ESs) as specified by guide RNAs (gRNAs). The editing is performed by three RNA Editing Catalytic Complexes (RECCs) which each have a different endonuclease in addition to 12 proteins in common resulting in RECC1 that is specific for deletion ESs and RECC2 and RECC3 that are specific for insertion ESs. Thus, different RECCs are required for editing of mRNA sequence regions where single gRNAs specify a combination of insertion and deletion ESs. We investigated how the three different RECCs might edit combinations of insertion and deletion ESs that are specified by single gRNAs by testing whether their endonuclease compositions are stable or dynamic during editing. We analyzed in vivo BirA* proximity labeling and found that the endonucleases remain associated with their set of common RECC proteins during editing when expressed at normal physiological levels. We also found that overexpression of endonuclease components resulted in minor effects on RECCs but did not affect growth. Thus, the protein stoichiometries that exist within each RECC can be altered by perturbations of RECC expression levels. These results indicate that editing of consecutive insertion and deletion ESs occurs by successive engagement and disengagement of RECCs, i.e., is non-processive, which is likely the case for consecutive pairs of insertion or deletion ESs. This clarifies the nature of the complex patterns of partially edited mRNAs that occur in vivo.
Collapse
Affiliation(s)
- Jason Carnes
- Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Suzanne M McDermott
- Seattle Children's Research Institute, Seattle, WA 98109, USA; Departments of Pediatrics and Global Health, University of Washington, Seattle, WA 98195, USA
| | - Kenneth Stuart
- Seattle Children's Research Institute, Seattle, WA 98109, USA; Departments of Pediatrics and Global Health, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
2
|
Glockzin K, Kostomiris D, Minnow YVT, Suthagar K, Clinch K, Gai S, Buckler JN, Schramm VL, Tyler PC, Meek TD, Katzfuss A. Kinetic Characterization and Inhibition of Trypanosoma cruzi Hypoxanthine–Guanine Phosphoribosyltransferases. Biochemistry 2022; 61:2088-2105. [PMID: 36193631 PMCID: PMC9536471 DOI: 10.1021/acs.biochem.2c00312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Chagas disease, caused by the parasitic protozoan Trypanosoma cruzi, affects over 8 million people
worldwide. Current antiparasitic treatments for Chagas disease are
ineffective in treating advanced, chronic stages of the disease, and
are noted for their toxicity. Like most parasitic protozoa, T. cruzi is unable to synthesize purines de novo, and relies on the salvage of preformed purines
from the host. Hypoxanthine–guanine phosphoribosyltransferases
(HGPRTs) are enzymes that are critical for the salvage of preformed
purines, catalyzing the formation of inosine monophosphate (IMP) and
guanosine monophosphate (GMP) from the nucleobases hypoxanthine and
guanine, respectively. Due to the central role of HGPRTs in purine
salvage, these enzymes are promising targets for the development of
new treatment methods for Chagas disease. In this study, we characterized
two gene products in the T. cruzi CL
Brener strain that encodes enzymes with functionally identical HGPRT
activities in vitro: TcA (TcCLB.509693.70) and TcC
(TcCLB.506457.30). The TcC isozyme was kinetically characterized to
reveal mechanistic details on catalysis, including identification
of the rate-limiting step(s) of catalysis. Furthermore, we identified
and characterized inhibitors of T. cruzi HGPRTs originally developed as transition-state analogue inhibitors
(TSAIs) of Plasmodium falciparum hypoxanthine–guanine–xanthine
phosphoribosyltransferase (PfHGXPRT), where the most
potent compound bound to T. cruzi HGPRT
with low nanomolar affinity. Our results validated the repurposing
of TSAIs to serve as selective inhibitors for orthologous molecular
targets, where primary and secondary structures as well as putatively
common chemical mechanisms are conserved.
Collapse
Affiliation(s)
- Kayla Glockzin
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, Texas 77843-2128, United States
| | - Demetrios Kostomiris
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, Texas 77843-2128, United States
| | - Yacoba V. T. Minnow
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461-1602, United States
| | - Kajitha Suthagar
- Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand
| | - Keith Clinch
- Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand
| | - Sinan Gai
- Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand
| | - Joshua N. Buckler
- Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand
| | - Vern L. Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461-1602, United States
| | - Peter C. Tyler
- Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand
| | - Thomas D. Meek
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, Texas 77843-2128, United States
| | - Ardala Katzfuss
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, Texas 77843-2128, United States
| |
Collapse
|
3
|
Gerasimov ES, Ramirez-Barrios R, Yurchenko V, Zimmer SL. Trypanosoma cruzi strain and starvation-driven mitochondrial RNA editing and transcriptome variability. RNA (NEW YORK, N.Y.) 2022; 28:993-1012. [PMID: 35470233 PMCID: PMC9202582 DOI: 10.1261/rna.079088.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/07/2022] [Indexed: 05/09/2023]
Abstract
Trypanosoma cruzi is a unicellular protistan parasitic species that is comprised of strains and isolates exhibiting high levels of genetic and metabolic variability. In the insect vector, it is known to be highly responsive to starvation, a signal for progression to a life stage in which it can infect mammalian cells. Most mRNAs encoded in its mitochondrion require the targeted insertion and deletion of uridines to become translatable transcripts. This study defined differences in uridine-insertion/deletion RNA editing among three strains and established the mechanism whereby abundances of edited (and, thus, translatable) mitochondrial gene products increase during starvation. Our approach utilized our custom T-Aligner toolkit to describe transcriptome-wide editing events and reconstruct editing products from high-throughput sequencing data. We found that the relative abundance of mitochondrial transcripts and the proportion of mRNAs that are edited varies greatly between analyzed strains, a characteristic that could potentially impact metabolic capacity. Starvation typically led to an increase in overall editing activity rather than affecting a specific step in the process. We also determined that transcripts CR3, CR4, and ND3 produce multiple open reading frames that, if translated, would generate different proteins. Finally, we quantitated the inherent flexibility of editing in T. cruzi and found it to be higher relative to that in a related trypanosomatid lineage. Over time, new editing domains or patterns could prove advantageous to the organism and become more widespread within individual transcriptomes or among strains.
Collapse
Affiliation(s)
- Evgeny S Gerasimov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051, Russia
| | - Roger Ramirez-Barrios
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota 55812, USA
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow 119435, Russia
| | - Sara L Zimmer
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota 55812, USA
| |
Collapse
|