1
|
Espinoza Miranda SS, Abbaszade G, Hess WR, Drescher K, Saliba AE, Zaburdaev V, Chai L, Dreisewerd K, Grünberger A, Westendorf C, Müller S, Mascher T. Resolving spatiotemporal dynamics in bacterial multicellular populations: approaches and challenges. Microbiol Mol Biol Rev 2025:e0013824. [PMID: 39853129 DOI: 10.1128/mmbr.00138-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025] Open
Abstract
SUMMARYThe development of multicellularity represents a key evolutionary transition that is crucial for the emergence of complex life forms. Although multicellularity has traditionally been studied in eukaryotes, it originates in prokaryotes. Coordinated aggregation of individual cells within the confines of a colony results in emerging, higher-level functions that benefit the population as a whole. During colony differentiation, an almost infinite number of ecological and physiological population-forming forces are at work, creating complex, intricate colony structures with divergent functions. Understanding the assembly and dynamics of such populations requires resolving individual cells or cell groups within such macroscopic structures. Addressing how each cell contributes to the collective action requires pushing the resolution boundaries of key technologies that will be presented in this review. In particular, single-cell techniques provide powerful tools for studying bacterial multicellularity with unprecedented spatial and temporal resolution. These advancements include novel microscopic techniques, mass spectrometry imaging, flow cytometry, spatial transcriptomics, single-bacteria RNA sequencing, and the integration of spatiotemporal transcriptomics with microscopy, alongside advanced microfluidic cultivation systems. This review encourages exploring the synergistic potential of the new technologies in the study of bacterial multicellularity, with a particular focus on individuals in differentiated bacterial biofilms (colonies). It highlights how resolving population structures at the single-cell level and understanding their respective functions can elucidate the overarching functions of bacterial multicellular populations.
Collapse
Affiliation(s)
| | | | - Wolfgang R Hess
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | | | - Antoine-Emmanuel Saliba
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany
| | - Vasily Zaburdaev
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Liraz Chai
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Alexander Grünberger
- Microsystems in Bioprocess Engineering (μBVT), Institute of Process Engineering in Life Sciences (BLT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Christian Westendorf
- Peter Debye Institute for Soft Matter Physics, Leipzig University, Leipzig, Germany
| | - Susann Müller
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Thorsten Mascher
- General Microbiology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
2
|
Velasco-Gomariz M, Sulzer J, Faber F, Fröhlich K. An sRNA overexpression library reveals AbnZ as a negative regulator of an essential translocation module in Caulobacter crescentus. Nucleic Acids Res 2025; 53:gkae1139. [PMID: 39657128 PMCID: PMC11724286 DOI: 10.1093/nar/gkae1139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/26/2024] [Accepted: 11/03/2024] [Indexed: 12/17/2024] Open
Abstract
Small RNAs (sRNAs) play a crucial role in modulating target gene expression through short base-pairing interactions and serve as integral components of many stress response pathways and regulatory circuits in bacteria. Transcriptome analyses have facilitated the annotation of dozens of sRNA candidates in the ubiquitous environmental model bacterium Caulobacter crescentus, but their physiological functions have not been systematically investigated so far. To address this gap, we have established CauloSOEP, a multi-copy plasmid library of C. crescentus sRNAs, which can be studied in a chosen genetic background and under select conditions. Demonstrating the power of CauloSOEP, we identified sRNA AbnZ to impair cell viability and morphology. AbnZ is processed from the 3' end of the polycistronic abn mRNA encoding the tripartite envelope-spanning efflux pump AcrAB-NodT. A combinatorial approach revealed the essential membrane translocation module TamAB as a target of AbnZ, implying that growth inhibition by AbnZ is linked to repression of this system.
Collapse
Affiliation(s)
| | - Johannes Sulzer
- Julius-Maximilians-University of Würzburg, Faculty of Medicine, Institute for Hygiene and Microbiology, 97080 Würzburg, Germany
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for RNA‐based Infection Research (HIRI), 97080 Würzburg, Germany
| | - Franziska Faber
- Julius-Maximilians-University of Würzburg, Faculty of Medicine, Institute for Hygiene and Microbiology, 97080 Würzburg, Germany
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for RNA‐based Infection Research (HIRI), 97080 Würzburg, Germany
| | - Kathrin S Fröhlich
- Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
- Microverse Cluster, Friedrich Schiller University, 07743 Jena, Germany
| |
Collapse
|
3
|
Molnár D, Surányi ÉV, Trombitás T, Füzesi D, Hirmondó R, Toth J. Genetic stability of Mycobacterium smegmatis under the stress of first-line antitubercular agents. eLife 2024; 13:RP96695. [PMID: 39565350 DOI: 10.7554/elife.96695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
The sustained success of Mycobacterium tuberculosis as a pathogen arises from its ability to persist within macrophages for extended periods and its limited responsiveness to antibiotics. Furthermore, the high incidence of resistance to the few available antituberculosis drugs is a significant concern, especially since the driving forces of the emergence of drug resistance are not clear. Drug-resistant strains of Mycobacterium tuberculosis can emerge through de novo mutations, however, mycobacterial mutation rates are low. To unravel the effects of antibiotic pressure on genome stability, we determined the genetic variability, phenotypic tolerance, DNA repair system activation, and dNTP pool upon treatment with current antibiotics using Mycobacterium smegmatis. Whole-genome sequencing revealed no significant increase in mutation rates after prolonged exposure to first-line antibiotics. However, the phenotypic fluctuation assay indicated rapid adaptation to antibiotics mediated by non-genetic factors. The upregulation of DNA repair genes, measured using qPCR, suggests that genomic integrity may be maintained through the activation of specific DNA repair pathways. Our results, indicating that antibiotic exposure does not result in de novo adaptive mutagenesis under laboratory conditions, do not lend support to the model suggesting antibiotic resistance development through drug pressure-induced microevolution.
Collapse
Affiliation(s)
- Dániel Molnár
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School of Biology and Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Éva Viola Surányi
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Tamás Trombitás
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Dóra Füzesi
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School of Biology and Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Rita Hirmondó
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Judit Toth
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
4
|
Ahmadi A, Courtney M, Ren C, Ingalls B. A benchmarked comparison of software packages for time-lapse image processing of monolayer bacterial population dynamics. Microbiol Spectr 2024; 12:e0003224. [PMID: 38980028 PMCID: PMC11302142 DOI: 10.1128/spectrum.00032-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/26/2024] [Indexed: 07/10/2024] Open
Abstract
Time-lapse microscopy offers a powerful approach for analyzing cellular activity. In particular, this technique is valuable for assessing the behavior of bacterial populations, which can exhibit growth and intercellular interactions in a monolayer. Such time-lapse imaging typically generates large quantities of data, limiting the options for manual investigation. Several image-processing software packages have been developed to facilitate analysis. It can thus be a challenge to identify the software package best suited to a particular research goal. Here, we compare four software packages that support the analysis of 2D time-lapse images of cellular populations: CellProfiler, SuperSegger-Omnipose, DeLTA, and FAST. We compare their performance against benchmarked results on time-lapse observations of Escherichia coli populations. Performance varies across the packages, with each of the four outperforming the others in at least one aspect of the analysis. Not surprisingly, the packages that have been in development for longer showed the strongest performance. We found that deep learning-based approaches to object segmentation outperformed traditional approaches, but the opposite was true for frame-to-frame object tracking. We offer these comparisons, together with insight into usability, computational efficiency, and feature availability, as a guide to researchers seeking image-processing solutions. IMPORTANCE Time-lapse microscopy provides a detailed window into the world of bacterial behavior. However, the vast amount of data produced by these techniques is difficult to analyze manually. We have analyzed four software tools designed to process such data and compared their performance, using populations of commonly studied bacterial species as our test subjects. Our findings offer a roadmap to scientists, helping them choose the right tool for their research. This comparison bridges a gap between microbiology and computational analysis, streamlining research efforts.
Collapse
Affiliation(s)
- Atiyeh Ahmadi
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Matthew Courtney
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Carolyn Ren
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Brian Ingalls
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
5
|
Haufschild T, Kallscheuer N, Hammer J, Kohn T, Kabuu M, Jogler M, Wohlfarth N, Rohde M, van Teeseling MCF, Jogler C. An untargeted cultivation approach revealed Pseudogemmatithrix spongiicola gen. nov., sp. nov., and sheds light on the gemmatimonadotal mode of cell division: binary fission. Sci Rep 2024; 14:16764. [PMID: 39034380 PMCID: PMC11271474 DOI: 10.1038/s41598-024-67408-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024] Open
Abstract
Members of the phylum Gemmatimonadota can account for up to 10% of the phylogenetic diversity in bacterial communities. However, a detailed investigation of their cell biology and ecological roles is restricted by currently only six characterized species. By combining low-nutrient media, empirically determined inoculation volumes and long incubation times in a 96-well plate cultivation platform, we isolated two strains from a limnic sponge that belong to this under-studied phylum. The characterization suggests that the two closely related strains constitute a novel species of a novel genus, for which we introduce the name Pseudogemmatithrix spongiicola. The here demonstrated isolation of novel members from an under-studied bacterial phylum substantiates that the cultivation platform can provide access to axenic bacterial cultures from various environmental samples. Similar to previously described members of the phylum, the novel isolates form spherical appendages at the cell poles that were believed to be daughter cells resulting from asymmetric cell division by budding. However, time-lapse microscopy experiments and quantitative image analysis showed that the spherical appendages never grew or divided. Although the role of these spherical cells remains enigmatic, our data suggests that cells of the phylum Gemmatimonadota divide via FtsZ-based binary fission with different division plane localization patterns than in other bacterial phyla.
Collapse
Affiliation(s)
- Tom Haufschild
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Nicolai Kallscheuer
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Jonathan Hammer
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Timo Kohn
- Leibniz Institute DSMZ, Brunswick, Germany
| | - Moses Kabuu
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Mareike Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Nicole Wohlfarth
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Muriel C F van Teeseling
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Christian Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
6
|
Billini M, Hoffmann T, Kühn J, Bremer E, Thanbichler M. The cytoplasmic phosphate level has a central regulatory role in the phosphate starvation response of Caulobacter crescentus. Commun Biol 2024; 7:772. [PMID: 38926609 PMCID: PMC11208175 DOI: 10.1038/s42003-024-06469-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
In bacteria, the availability of environmental inorganic phosphate is typically sensed by the conserved PhoR-PhoB two-component signal transduction pathway, which uses the flux through the PstSCAB phosphate transporter as a readout of the extracellular phosphate level to control phosphate-responsive genes. While the sensing of environmental phosphate is well-investigated, the regulatory effects of cytoplasmic phosphate are unclear. Here, we disentangle the physiological and transcriptional responses of Caulobacter crescentus to changes in the environmental and cytoplasmic phosphate levels by uncoupling phosphate uptake from the activity of the PstSCAB system, using an additional, heterologously produced phosphate transporter. This approach reveals a two-pronged response of C. crescentus to phosphate limitation, in which PhoR-PhoB signaling mostly facilitates the utilization of alternative phosphate sources, whereas the cytoplasmic phosphate level controls the morphological and physiological adaptation of cells to growth under global phosphate limitation. These findings open the door to a comprehensive understanding of phosphate signaling in bacteria.
Collapse
Affiliation(s)
- Maria Billini
- Department of Biology, University of Marburg, 35043, Marburg, Germany
- Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Tamara Hoffmann
- Department of Biology, University of Marburg, 35043, Marburg, Germany
- Center for Synthetic Microbiology, 35043, Marburg, Germany
| | - Juliane Kühn
- Department of Biology, University of Marburg, 35043, Marburg, Germany
| | - Erhard Bremer
- Department of Biology, University of Marburg, 35043, Marburg, Germany
- Center for Synthetic Microbiology, 35043, Marburg, Germany
| | - Martin Thanbichler
- Department of Biology, University of Marburg, 35043, Marburg, Germany.
- Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany.
- Center for Synthetic Microbiology, 35043, Marburg, Germany.
| |
Collapse
|
7
|
Ramming L, Stukenberg D, Sánchez Olmos MDC, Glatter T, Becker A, Schindler D. Rationally designed chromosome fusion does not prevent rapid growth of Vibrio natriegens. Commun Biol 2024; 7:519. [PMID: 38698198 PMCID: PMC11066055 DOI: 10.1038/s42003-024-06234-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/23/2024] [Indexed: 05/05/2024] Open
Abstract
DNA replication is essential for the proliferation of all cells. Bacterial chromosomes are replicated bidirectionally from a single origin of replication, with replication proceeding at about 1000 bp per second. For the model organism, Escherichia coli, this translates into a replication time of about 40 min for its 4.6 Mb chromosome. Nevertheless, E. coli can propagate by overlapping replication cycles with a maximum short doubling time of 20 min. The fastest growing bacterium known, Vibrio natriegens, is able to replicate with a generation time of less than 10 min. It has a bipartite genome with chromosome sizes of 3.2 and 1.9 Mb. Is simultaneous replication from two origins a prerequisite for its rapid growth? We fused the two chromosomes of V. natriegens to create a strain carrying one chromosome with a single origin of replication. Compared to the parental, this strain showed no significant deviation in growth rate. This suggests that the split genome is not a prerequisite for rapid growth.
Collapse
Affiliation(s)
- Lea Ramming
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Daniel Stukenberg
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | | | - Timo Glatter
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Anke Becker
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Daniel Schindler
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
8
|
Wurzbacher CE, Haufschild T, Hammer J, van Teeseling MCF, Kallscheuer N, Jogler C. Planctoellipticum variicoloris gen. nov., sp. nov., a novel member of the family Planctomycetaceae isolated from wastewater of the aeration lagoon of a sugar processing plant in Northern Germany. Sci Rep 2024; 14:5741. [PMID: 38459238 PMCID: PMC10923784 DOI: 10.1038/s41598-024-56373-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/05/2024] [Indexed: 03/10/2024] Open
Abstract
In the present study, we characterise a strain isolated from the wastewater aeration lagoon of a sugar processing plant in Schleswig (Northern Germany) by Heinz Schlesner. As a pioneer in planctomycetal research, he isolated numerous strains belonging to the phylum Planctomycetota from aquatic habitats around the world. Phylogenetic analyses show that strain SH412T belongs to the family Planctomycetaceae and shares with 91.6% the highest 16S rRNA gene sequence similarity with Planctopirus limnophila DSM 3776T. Its genome has a length of 7.3 Mb and a G + C content of 63.6%. Optimal growth of strain SH412T occurs at pH 7.0-7.5 and 28 °C with its pigmentation depending on sunlight exposure. Strain SH412T reproduces by polar asymmetric division ("budding") and forms ovoid cells. The cell size determination was performed using a semi-automatic pipeline, which we first evaluated with the model species P. limnophila and then applied to strain SH412T. Furthermore, the data acquired during time-lapse analyses suggests a lifestyle switch from flagellated daughter cells to non-flagellated mother cells in the subsequent cycle. Based on our data, we suggest that strain SH412T represents a novel species within a novel genus, for which we propose the name Planctoellipticum variicoloris gen. nov., sp. nov., with strain SH412T (= CECT 30430T = STH00996T, the STH number refers to the Jena Microbial Resource Collection JMRC) as the type strain of the new species.
Collapse
Affiliation(s)
- Carmen E Wurzbacher
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Tom Haufschild
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Jonathan Hammer
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Muriel C F van Teeseling
- Junior Research Group "Prokaryotic Cell Biology", Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Nicolai Kallscheuer
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Christian Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
9
|
Patino R, Kühn MJ, Macmillan H, Inclan YF, Chavez I, Von Dollen J, Johnson JR, Swaney DL, Krogan NJ, Persat A, Engel JN. Spatial control of sensory adaptation modulates mechanosensing in Pseudomonas aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582188. [PMID: 38464290 PMCID: PMC10925122 DOI: 10.1101/2024.02.27.582188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Sensory signaling pathways use adaptation to dynamically respond to changes in their environment. Here, we report the mechanism of sensory adaptation in the Pil-Chp mechanosensory system, which the important human pathogen Pseudomonas aeruginosa uses to sense mechanical stimuli during surface exploration. Using biochemistry, genetics, and cell biology, we discovered that the enzymes responsible for adaptation, a methyltransferase and a methylesterase, are segregated to opposing cell poles as P. aeruginosa explore surfaces. By coordinating the localization of both enzymes, we found that the Pil-Chp response regulators influence local receptor methylation, the molecular basis of bacterial sensory adaptation. We propose a model in which adaptation during mechanosensing spatially resets local receptor methylation, and thus Pil-Chp signaling, to modulate the pathway outputs, which are involved in P. aeruginosa virulence. Despite decades of bacterial sensory adaptation studies, our work has uncovered an unrecognized mechanism that bacteria use to achieve adaptation to sensory stimuli.
Collapse
|
10
|
Pöhl S, Osorio-Valeriano M, Cserti E, Harberding J, Hernandez-Tamayo R, Biboy J, Sobetzko P, Vollmer W, Graumann PL, Thanbichler M. A dynamic bactofilin cytoskeleton cooperates with an M23 endopeptidase to control bacterial morphogenesis. eLife 2024; 12:RP86577. [PMID: 38294932 PMCID: PMC10945521 DOI: 10.7554/elife.86577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
Bactofilins have emerged as a widespread family of cytoskeletal proteins with important roles in bacterial morphogenesis, but their precise mode of action is still incompletely understood. In this study, we identify the bactofilin cytoskeleton as a key regulator of cell growth in the stalked budding alphaproteobacterium Hyphomonas neptunium. We show that, in this species, bactofilin polymers localize dynamically to the stalk base and the bud neck, with their absence leading to unconstrained growth of the stalk and bud compartments, indicating a central role in the spatial regulation of cell wall biosynthesis. Database searches reveal that bactofilin genes are often clustered with genes for cell wall hydrolases of the M23 peptidase family, suggesting a functional connection between these two types of proteins. In support of this notion, we find that the H. neptunium M23 peptidase homolog LmdC interacts directly with bactofilin in vitro and is required for proper cell shape in vivo. Complementary studies in the spiral-shaped alphaproteobacterium Rhodospirillum rubrum again reveal a close association of its bactofilin and LmdC homologs, which co-localize at the inner curve of the cell, modulating the degree of cell curvature. Collectively, these findings demonstrate that bactofilins and M23 peptidases form a conserved functional module that promotes local changes in the mode of cell wall biosynthesis, thereby driving cell shape determination in morphologically complex bacteria.
Collapse
Affiliation(s)
- Sebastian Pöhl
- Department of Biology, University of Marburg, Marburg, GermanyMarburgGermany
| | - Manuel Osorio-Valeriano
- Department of Biology, University of Marburg, Marburg, GermanyMarburgGermany
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Emöke Cserti
- Department of Biology, University of Marburg, Marburg, GermanyMarburgGermany
| | - Jannik Harberding
- Department of Biology, University of Marburg, Marburg, GermanyMarburgGermany
| | - Rogelio Hernandez-Tamayo
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
- Department of Chemistry, University of MarburgMarburgGermany
- Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle UniversityNewcastle upon TyneUnited Kingdom
| | | | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle UniversityNewcastle upon TyneUnited Kingdom
- Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
| | - Peter L Graumann
- Department of Chemistry, University of MarburgMarburgGermany
- Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | - Martin Thanbichler
- Department of Biology, University of Marburg, Marburg, GermanyMarburgGermany
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| |
Collapse
|
11
|
Kumar G, Kallscheuer N, Kashif M, Ahamad S, Jagadeeshwari U, Pannikurungottu S, Haufschild T, Kabuu M, Sasikala C, Jogler C, Ramana CV. Gemmata algarum, a Novel Planctomycete Isolated from an Algal Mat, Displays Antimicrobial Activity. Mar Drugs 2023; 22:10. [PMID: 38276648 PMCID: PMC10817699 DOI: 10.3390/md22010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Axenic cultures of two strains, JC673T and JC717, both belonging to the phylum Planctomycetota, were isolated from distinct geographical locations in India. Strain JC673T was obtained from algal mats of a wetland situated in the state of Kerala, India, while strain JC717 originated from the Central Marine Fisheries Research Institute (CMFRI), state of Tamil Nadu, India. The two strains share 99.9% 16S rRNA gene sequence similarity and are most closely related to Gemmata obscuriglobus UQM 2246T (99.3% 16S rRNA gene sequence identity). The newly isolated strains are Gram-negative, grow aerobically and tolerate up to 4% (w/v) NaCl and a pH of up to 9.0. Cells are spherical and form pink-pigmented colonies. The respiratory quinone is MK-6. Major fatty acids are C18:0, C16:1ω5c and C16:0. Polar lipids include phosphatidylcholine, phosphatidylethanolamine, several unidentified amino lipids, unidentified phospholipids, additional unidentified lipids, and an unidentified choline lipid. The polyamine spermidine is produced by the two strains. The strains have a genome size of about 8.2 Mb with a DNA G+C content of 67.6%. Solvent-based culture extracts of the isolates showed antimicrobial activity against three bacterial test strains. Their phylogenetic position along with differences in morphological, physiological, and genomic features support the classification as a new species of the genus Gemmata, for which we propose the name Gemmata algarum sp. nov. Strain JC673T (=KCTC 72851T = NBRC 114340T) and JC717 are the type and non-type strain of the new species, respectively.
Collapse
Affiliation(s)
- Gaurav Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India; (G.K.)
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, 07743 Jena, Germany
| | - Nicolai Kallscheuer
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Mohammad Kashif
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India; (G.K.)
| | - Shabbir Ahamad
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India; (G.K.)
| | - Uppada Jagadeeshwari
- Bacterial Discovery Laboratory, Centre for Environment, Institute of Science and Technology, JNT University Hyderabad, Kukatpally, Hyderabad 500085, India
| | - Sreya Pannikurungottu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India; (G.K.)
| | - Tom Haufschild
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Moses Kabuu
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Chintalapati Sasikala
- Bacterial Discovery Laboratory, Centre for Environment, Institute of Science and Technology, JNT University Hyderabad, Kukatpally, Hyderabad 500085, India
| | - Christian Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, 07743 Jena, Germany
| | - Chintalapati Venkata Ramana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India; (G.K.)
| |
Collapse
|
12
|
Chen X, Alakavuklar MA, Fiebig A, Crosson S. Cross-regulation in a three-component cell envelope stress signaling system of Brucella. mBio 2023; 14:e0238723. [PMID: 38032291 PMCID: PMC10746171 DOI: 10.1128/mbio.02387-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE As intracellular pathogens, Brucella must contend with a variety of host-derived stressors when infecting a host cell. The inner membrane, cell wall, and outer membrane, i.e. the cell envelope, of Brucella provide a critical barrier to host assault. A conserved regulatory mechanism known as two-component signaling (TCS) commonly controls transcription of genes that determine the structure and biochemical composition of the cell envelope during stress. We report the identification of previously uncharacterized TCS genes that determine Brucella ovis fitness in the presence of cell envelope disruptors and within infected mammalian host cells. Our study reveals a new molecular mechanism of TCS-dependent gene regulation, and thereby advances fundamental understanding of transcriptional regulatory processes in bacteria.
Collapse
Affiliation(s)
- Xingru Chen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Melene A. Alakavuklar
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
13
|
North H, McLaughlin M, Fiebig A, Crosson S. The Caulobacter NtrB-NtrC two-component system bridges nitrogen assimilation and cell development. J Bacteriol 2023; 205:e0018123. [PMID: 37791753 PMCID: PMC10601693 DOI: 10.1128/jb.00181-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/03/2023] [Indexed: 10/05/2023] Open
Abstract
A suite of molecular sensory systems enables Caulobacter to control growth, development, and reproduction in response to levels of essential elements. The bacterial enhancer-binding protein (bEBP) NtrC and its cognate sensor histidine kinase, NtrB, are key regulators of nitrogen assimilation in many bacteria, but their roles in Caulobacter metabolism and development are not well defined. Notably, Caulobacter NtrC is an unconventional bEBP that lacks the σ54-interacting loop commonly known as the GAFTGA motif. Here we show that deletion of Caulobacter crescentus ntrC slows cell growth in complex medium and that ntrB and ntrC are essential when ammonium is the sole nitrogen source due to their requirement for glutamine synthetase expression. Random transposition of a conserved IS3-family mobile genetic element frequently rescued the growth defect of ntrC mutant strains by restoring transcription of the glnBA operon, revealing a possible role for IS3 transposition in shaping the evolution of Caulobacter populations during nutrient limitation. We further identified dozens of direct NtrC-binding sites on the C. crescentus chromosome, with a large fraction located near genes involved in polysaccharide biosynthesis. The majority of binding sites align with those of the essential nucleoid-associated protein, GapR, or the cell cycle regulator, MucR1. NtrC is therefore predicted to directly impact the regulation of cell cycle and cell development. Indeed, loss of NtrC function led to elongated polar stalks and elevated synthesis of cell envelope polysaccharides. This study establishes regulatory connections between NtrC, nitrogen metabolism, polar morphogenesis, and envelope polysaccharide synthesis in Caulobacter. IMPORTANCE Bacteria balance cellular processes with the availability of nutrients in their environment. The NtrB-NtrC two-component signaling system is responsible for controlling nitrogen assimilation in many bacteria. We have characterized the effect of ntrB and ntrC deletion on Caulobacter growth and development and uncovered a role for spontaneous IS element transposition in the rescue of transcriptional and nutritional deficiencies caused by ntrC mutation. We further defined the regulon of Caulobacter NtrC, a bacterial enhancer-binding protein, and demonstrate that it shares specific binding sites with essential proteins involved in cell cycle regulation and chromosome organization. Our work provides a comprehensive view of transcriptional regulation mediated by a distinctive NtrC protein, establishing its connection to nitrogen assimilation and developmental processes in Caulobacter.
Collapse
Affiliation(s)
- Hunter North
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Maeve McLaughlin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
14
|
Chen X, Alakavuklar MA, Fiebig A, Crosson S. Cross regulation in a three-component cell envelope stress signaling system of Brucella. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.15.536747. [PMID: 37873345 PMCID: PMC10592609 DOI: 10.1101/2023.04.15.536747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A multi-layered structure known as the cell envelope separates the controlled interior of bacterial cells from a fluctuating physical and chemical environment. The transcription of genes that determine cell envelope structure and function is commonly regulated by two-component signaling systems (TCS), comprising a sensor histidine kinase and a cognate response regulator. To identify TCS genes that contribute to cell envelope function in the intracellular mammalian pathogen, Brucella ovis, we subjected a collection of non-essential TCS deletion mutants to compounds that disrupt cell membranes and the peptidoglycan cell wall. Our screen led to the discovery of three TCS proteins that coordinately function to confer resistance to cell envelope stressors and to support B. ovis replication in the intracellular niche. This tripartite regulatory system includes the known cell envelope regulator, CenR, and a previously uncharacterized TCS, EssR-EssS, which is widely conserved in Alphaproteobacteria. The CenR and EssR response regulators bind a shared set of sites on the B. ovis chromosomes to control transcription of an overlapping set of genes with cell envelope functions. CenR directly interacts with EssR and functions to stimulate phosphoryl transfer from the EssS kinase to EssR, while CenR and EssR control the cellular levels of each other via a post-transcriptional mechanism. Our data provide evidence for a new mode of TCS cross-regulation in which a non-cognate response regulator affects both the activity and protein levels of a cognate TCS protein pair.
Collapse
Affiliation(s)
- Xingru Chen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan USA
| | - Melene A Alakavuklar
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan USA
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan USA
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan USA
| |
Collapse
|
15
|
Meacock OJ, Durham WM. Tracking bacteria at high density with FAST, the Feature-Assisted Segmenter/Tracker. PLoS Comput Biol 2023; 19:e1011524. [PMID: 37812642 PMCID: PMC10586697 DOI: 10.1371/journal.pcbi.1011524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 10/19/2023] [Accepted: 09/17/2023] [Indexed: 10/11/2023] Open
Abstract
Most bacteria live attached to surfaces in densely-packed communities. While new experimental and imaging techniques are beginning to provide a window on the complex processes that play out in these communities, resolving the behaviour of individual cells through time and space remains a major challenge. Although a number of different software solutions have been developed to track microorganisms, these typically require users either to tune a large number of parameters or to groundtruth a large volume of imaging data to train a deep learning model-both manual processes which can be very time consuming for novel experiments. To overcome these limitations, we have developed FAST, the Feature-Assisted Segmenter/Tracker, which uses unsupervised machine learning to optimise tracking while maintaining ease of use. Our approach, rooted in information theory, largely eliminates the need for users to iteratively adjust parameters manually and make qualitative assessments of the resulting cell trajectories. Instead, FAST measures multiple distinguishing 'features' for each cell and then autonomously quantifies the amount of unique information each feature provides. We then use these measurements to determine how data from different features should be combined to minimize tracking errors. Comparing our algorithm with a naïve approach that uses cell position alone revealed that FAST produced 4 to 10 fold fewer tracking errors. The modular design of FAST combines our novel tracking method with tools for segmentation, extensive data visualisation, lineage assignment, and manual track correction. It is also highly extensible, allowing users to extract custom information from images and seamlessly integrate it into downstream analyses. FAST therefore enables high-throughput, data-rich analyses with minimal user input. It has been released for use either in Matlab or as a compiled stand-alone application, and is available at https://bit.ly/3vovDHn, along with extensive tutorials and detailed documentation.
Collapse
Affiliation(s)
- Oliver J. Meacock
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - William M. Durham
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
16
|
North H, McLaughlin M, Fiebig A, Crosson S. The Caulobacter NtrB-NtrC two-component system bridges nitrogen assimilation and cell development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543975. [PMID: 37333394 PMCID: PMC10274813 DOI: 10.1101/2023.06.06.543975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
A suite of molecular sensory systems enables Caulobacter to control growth, development, and reproduction in response to levels of essential elements. The bacterial enhancer binding protein (bEBP) NtrC, and its cognate sensor histidine kinase NtrB, are key regulators of nitrogen assimilation in many bacteria, but their roles in Caulobacter metabolism and development are not well defined. Notably, Caulobacter NtrC is an unconventional bEBP that lacks the σ54-interacting loop commonly known as the GAFTGA motif. Here we show that deletion of C. crescentus ntrC slows cell growth in complex medium, and that ntrB and ntrC are essential when ammonium is the sole nitrogen source due to their requirement for glutamine synthetase (glnA) expression. Random transposition of a conserved IS3-family mobile genetic element frequently rescued the growth defect of ntrC mutant strains by restoring transcription of the glnBA operon, revealing a possible role for IS3 transposition in shaping the evolution of Caulobacter populations during nutrient limitation. We further identified dozens of direct NtrC binding sites on the C. crescentus chromosome, with a large fraction located near genes involved in polysaccharide biosynthesis. The majority of binding sites align with those of the essential nucleoid associated protein, GapR, or the cell cycle regulator, MucR1. NtrC is therefore predicted to directly impact the regulation of cell cycle and cell development. Indeed, loss of NtrC function led to elongated polar stalks and elevated synthesis of cell envelope polysaccharides. This study establishes regulatory connections between NtrC, nitrogen metabolism, polar morphogenesis, and envelope polysaccharide synthesis in Caulobacter .
Collapse
Affiliation(s)
- Hunter North
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan USA
| | - Maeve McLaughlin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan USA
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan USA
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan USA
| |
Collapse
|
17
|
Cao Q, Huang W, Zhang Z, Chu P, Wei T, Zheng H, Liu C. The Quantification of Bacterial Cell Size: Discrepancies Arise from Varied Quantification Methods. Life (Basel) 2023; 13:1246. [PMID: 37374027 PMCID: PMC10302572 DOI: 10.3390/life13061246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/21/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
The robust regulation of the cell cycle is critical for the survival and proliferation of bacteria. To gain a comprehensive understanding of the mechanisms regulating the bacterial cell cycle, it is essential to accurately quantify cell-cycle-related parameters and to uncover quantitative relationships. In this paper, we demonstrate that the quantification of cell size parameters using microscopic images can be influenced by software and by the parameter settings used. Remarkably, even if the consistent use of a particular software and specific parameter settings is maintained throughout a study, the type of software and the parameter settings can significantly impact the validation of quantitative relationships, such as the constant-initiation-mass hypothesis. Given these inherent characteristics of microscopic image-based quantification methods, it is recommended that conclusions be cross-validated using independent methods, especially when the conclusions are associated with cell size parameters that were obtained under different conditions. To this end, we presented a flexible workflow for simultaneously quantifying multiple bacterial cell-cycle-related parameters using microscope-independent methods.
Collapse
Affiliation(s)
- Qian’andong Cao
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqi Huang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Zhang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pan Chu
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Wei
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai Zheng
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenli Liu
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Schott S, Scheuer R, Ermoli F, Glatter T, Evguenieva-Hackenberg E, Diepold A. A ParDE toxin-antitoxin system is responsible for the maintenance of the Yersinia virulence plasmid but not for type III secretion-associated growth inhibition. Front Cell Infect Microbiol 2023; 13:1166077. [PMID: 37228670 PMCID: PMC10203498 DOI: 10.3389/fcimb.2023.1166077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Many Gram-negative pathogens utilize the type III secretion system (T3SS) to translocate virulence-promoting effector proteins into eukaryotic host cells. The activity of this system results in a severe reduction of bacterial growth and division, summarized as secretion-associated growth inhibition (SAGI). In Yersinia enterocolitica, the T3SS and related proteins are encoded on a virulence plasmid. We identified a ParDE-like toxin-antitoxin system on this virulence plasmid in genetic proximity to yopE, encoding a T3SS effector. Effectors are strongly upregulated upon activation of the T3SS, indicating a potential role of the ParDE system in the SAGI or maintenance of the virulence plasmid. Expression of the toxin ParE in trans resulted in reduced growth and elongated bacteria, highly reminiscent of the SAGI. Nevertheless, the activity of ParDE is not causal for the SAGI. T3SS activation did not influence ParDE activity; conversely, ParDE had no impact on T3SS assembly or activity itself. However, we found that ParDE ensures the presence of the T3SS across bacterial populations by reducing the loss of the virulence plasmid, especially under conditions relevant to infection. Despite this effect, a subset of bacteria lost the virulence plasmid and regained the ability to divide under secreting conditions, facilitating the possible emergence of T3SS-negative bacteria in late acute and persistent infections.
Collapse
Affiliation(s)
- Saskia Schott
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Robina Scheuer
- Department of Microbiology and Molecular Biology, Justus Liebig University Gießen, Gießen, Germany
| | - Francesca Ermoli
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- Core Facility for Mass spectrometry & Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
19
|
Kühn MJ, Macmillan H, Talà L, Inclan Y, Patino R, Pierrat X, Al‐Mayyah Z, Engel JN, Persat A. Two antagonistic response regulators control Pseudomonas aeruginosa polarization during mechanotaxis. EMBO J 2023; 42:e112165. [PMID: 36795017 PMCID: PMC10519157 DOI: 10.15252/embj.2022112165] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa adapts to solid surfaces to enhance virulence and infect its host. Type IV pili (T4P), long and thin filaments that power surface-specific twitching motility, allow single cells to sense surfaces and control their direction of movement. T4P distribution is polarized to the sensing pole by the chemotaxis-like Chp system via a local positive feedback loop. However, how the initial spatially resolved mechanical signal is translated into T4P polarity is incompletely understood. Here, we demonstrate that the two Chp response regulators PilG and PilH enable dynamic cell polarization by antagonistically regulating T4P extension. By precisely quantifying the localization of fluorescent protein fusions, we show that phosphorylation of PilG by the histidine kinase ChpA controls PilG polarization. Although PilH is not strictly required for twitching reversals, it becomes activated upon phosphorylation and breaks the local positive feedback mechanism established by PilG, allowing forward-twitching cells to reverse. Chp thus uses a main output response regulator, PilG, to resolve mechanical signals in space and employs a second regulator, PilH, to break and respond when the signal changes. By identifying the molecular functions of two response regulators that dynamically control cell polarization, our work provides a rationale for the diversity of architectures often found in non-canonical chemotaxis systems.
Collapse
Affiliation(s)
- Marco J Kühn
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | | | - Lorenzo Talà
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Yuki Inclan
- Department of MedicineUniversity of CaliforniaSan FranciscoCAUSA
| | - Ramiro Patino
- Department of MedicineUniversity of CaliforniaSan FranciscoCAUSA
| | - Xavier Pierrat
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Zainebe Al‐Mayyah
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Joanne N Engel
- Department of MedicineUniversity of CaliforniaSan FranciscoCAUSA
- Department of Microbiology and ImmunologyUniversity of CaliforniaSan FranciscoCAUSA
| | - Alexandre Persat
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
| |
Collapse
|
20
|
Scherr T, Seiffarth J, Wollenhaupt B, Neumann O, Schilling MP, Kohlheyer D, Scharr H, Nöh K, Mikut R. microbeSEG: A deep learning software tool with OMERO data management for efficient and accurate cell segmentation. PLoS One 2022; 17:e0277601. [PMID: 36445903 PMCID: PMC9707790 DOI: 10.1371/journal.pone.0277601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/01/2022] [Indexed: 12/02/2022] Open
Abstract
In biotechnology, cell growth is one of the most important properties for the characterization and optimization of microbial cultures. Novel live-cell imaging methods are leading to an ever better understanding of cell cultures and their development. The key to analyzing acquired data is accurate and automated cell segmentation at the single-cell level. Therefore, we present microbeSEG, a user-friendly Python-based cell segmentation tool with a graphical user interface and OMERO data management. microbeSEG utilizes a state-of-the-art deep learning-based segmentation method and can be used for instance segmentation of a wide range of cell morphologies and imaging techniques, e.g., phase contrast or fluorescence microscopy. The main focus of microbeSEG is a comprehensible, easy, efficient, and complete workflow from the creation of training data to the final application of the trained segmentation model. We demonstrate that accurate cell segmentation results can be obtained within 45 minutes of user time. Utilizing public segmentation datasets or pre-labeling further accelerates the microbeSEG workflow. This opens the door for accurate and efficient data analysis of microbial cultures.
Collapse
Affiliation(s)
- Tim Scherr
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- * E-mail: (TS); (KN); (RM)
| | - Johannes Seiffarth
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Computational Systems Biology (AVT.CSB), RWTH Aachen University, Aachen, Germany
| | - Bastian Wollenhaupt
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Oliver Neumann
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Marcel P. Schilling
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Dietrich Kohlheyer
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Hanno Scharr
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute for Advanced Simulation, IAS-8: Data Analytics and Machine Learning, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Katharina Nöh
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- * E-mail: (TS); (KN); (RM)
| | - Ralf Mikut
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- * E-mail: (TS); (KN); (RM)
| |
Collapse
|
21
|
Cutler KJ, Stringer C, Lo TW, Rappez L, Stroustrup N, Brook Peterson S, Wiggins PA, Mougous JD. Omnipose: a high-precision morphology-independent solution for bacterial cell segmentation. Nat Methods 2022; 19:1438-1448. [PMID: 36253643 PMCID: PMC9636021 DOI: 10.1038/s41592-022-01639-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 09/06/2022] [Indexed: 12/26/2022]
Abstract
Advances in microscopy hold great promise for allowing quantitative and precise measurement of morphological and molecular phenomena at the single-cell level in bacteria; however, the potential of this approach is ultimately limited by the availability of methods to faithfully segment cells independent of their morphological or optical characteristics. Here, we present Omnipose, a deep neural network image-segmentation algorithm. Unique network outputs such as the gradient of the distance field allow Omnipose to accurately segment cells on which current algorithms, including its predecessor, Cellpose, produce errors. We show that Omnipose achieves unprecedented segmentation performance on mixed bacterial cultures, antibiotic-treated cells and cells of elongated or branched morphology. Furthermore, the benefits of Omnipose extend to non-bacterial subjects, varied imaging modalities and three-dimensional objects. Finally, we demonstrate the utility of Omnipose in the characterization of extreme morphological phenotypes that arise during interbacterial antagonism. Our results distinguish Omnipose as a powerful tool for characterizing diverse and arbitrarily shaped cell types from imaging data.
Collapse
Affiliation(s)
- Kevin J Cutler
- Department of Physics, University of Washington, Seattle, WA, USA
| | | | - Teresa W Lo
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Luca Rappez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Nicholas Stroustrup
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - S Brook Peterson
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Paul A Wiggins
- Department of Physics, University of Washington, Seattle, WA, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
| | - Joseph D Mougous
- Department of Microbiology, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
22
|
Rick T, Kreiling V, Höing A, Fiedler S, Glatter T, Steinchen W, Hochberg G, Bähre H, Seifert R, Bange G, Knauer SK, Graumann PL, Thormann KM. GGDEF domain as spatial on-switch for a phosphodiesterase by interaction with landmark protein HubP. NPJ Biofilms Microbiomes 2022; 8:35. [PMID: 35501424 PMCID: PMC9061725 DOI: 10.1038/s41522-022-00297-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/31/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractIn bacteria, the monopolar localization of enzymes and protein complexes can result in a bimodal distribution of enzyme activity between the dividing cells and heterogeneity of cellular behaviors. In Shewanella putrefaciens, the multidomain hybrid diguanylate cyclase/phosphodiesterase PdeB, which degrades the secondary messenger c-di-GMP, is located at the flagellated cell pole. Here, we show that direct interaction between the inactive diguanylate cyclase (GGDEF) domain of PdeB and the FimV domain of the polar landmark protein HubP is crucial for full function of PdeB as a phosphodiesterase. Thus, the GGDEF domain serves as a spatially controlled on-switch that effectively restricts PdeBs activity to the flagellated cell pole. PdeB regulates abundance and activity of at least two crucial surface-interaction factors, the BpfA surface-adhesion protein and the MSHA type IV pilus. The heterogeneity in c-di-GMP concentrations, generated by differences in abundance and timing of polar appearance of PdeB, orchestrates the population behavior with respect to cell-surface interaction and environmental spreading.
Collapse
|
23
|
Ramos C, Hernández-Tamayo R, López-Sanz M, Carrasco B, Serrano E, Alonso JC, Graumann PL, Ayora S. The RecD2 helicase balances RecA activities. Nucleic Acids Res 2022; 50:3432-3444. [PMID: 35234892 PMCID: PMC8989531 DOI: 10.1093/nar/gkac131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/24/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022] Open
Abstract
DNA helicases of the RecD2 family are ubiquitous. Bacillus subtilis RecD2 in association with the single-stranded binding protein SsbA may contribute to replication fork progression, but its detailed action remains unknown. In this work, we explore the role of RecD2 during DNA replication and its interaction with the RecA recombinase. RecD2 inhibits replication restart, but this effect is not observed in the absence of SsbA. RecD2 slightly affects replication elongation. RecA inhibits leading and lagging strand synthesis, and RecD2, which physically interacts with RecA, counteracts this negative effect. In vivo results show that recD2 inactivation promotes RecA–ssDNA accumulation at low mitomycin C levels, and that RecA threads persist for a longer time after induction of DNA damage. In vitro, RecD2 modulates RecA-mediated DNA strand-exchange and catalyzes branch migration. These findings contribute to our understanding of how RecD2 may contribute to overcome a replicative stress, removing RecA from the ssDNA and, thus, it may act as a negative modulator of RecA filament growth.
Collapse
Affiliation(s)
- Cristina Ramos
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049Madrid, Spain
| | - Rogelio Hernández-Tamayo
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Hans-Meerwein-Straße 6, 35043 Marburg, Germany.,Fachbereich Chemie, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - María López-Sanz
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049Madrid, Spain
| | - Begoña Carrasco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049Madrid, Spain
| | - Ester Serrano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049Madrid, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049Madrid, Spain
| | - Peter L Graumann
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Hans-Meerwein-Straße 6, 35043 Marburg, Germany.,Fachbereich Chemie, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049Madrid, Spain
| |
Collapse
|
24
|
Hirmondó R, Horváth Á, Molnár D, Török G, Nguyen L, Tóth J. The effects of mycobacterial RmlA perturbation on cellular dNTP pool, cell morphology, and replication stress in Mycobacterium smegmatis. PLoS One 2022; 17:e0263975. [PMID: 35202428 PMCID: PMC8870461 DOI: 10.1371/journal.pone.0263975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/01/2022] [Indexed: 11/19/2022] Open
Abstract
The concerted action of DNA replication and cell division has been extensively investigated in eukaryotes. Well demarcated checkpoints have been identified in the cell cycle, which provides the correct DNA stoichiometry and appropriate growth in the progeny. In bacteria, which grow faster and less concerted than eukaryotes, the linkages between cell elongation and DNA synthesis are unclear. dTTP, one of the canonical nucleotide-building blocks of DNA, is also used for cell wall biosynthesis in mycobacteria. We hypothesize that the interconnection between DNA and cell wall biosynthesis through dTTP may require synchronization of these processes by regulating dTTP availability. We investigated growth, morphology, cellular dNTP pool, and possible signs of stress in Mycobacterium smegmatis upon perturbation of rhamnose biosynthesis by the overexpression of RmlA. RmlA is a cell wall synthetic enzyme that uses dTTP as the precursor for cross-linking the peptidoglycan with the arabinogalactan layers by a phosphodiester bond in the mycobacterial cell wall. We found that RmlA overexpression results in changes in cell morphology, causing cell elongation and disruption of the cylindrical cell shape. We also found that the cellular dTTP pool is reduced by half in RmlA overexpressing cells and that this reduced dTTP availability does not restrict cell growth. We observed 2-6-fold increases in the gene expression of replication and cell wall biosynthesis stress factors upon RmlA overexpression. Using super-resolution microscopy, we found that RmlA, acting to crosslink the nascent layers of the cell wall, localizes throughout the whole cell length in a helical pattern in addition to the cellular pole.
Collapse
Affiliation(s)
- Rita Hirmondó
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Ármin Horváth
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Dániel Molnár
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School of Biology and Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - György Török
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Liem Nguyen
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Judit Tóth
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
25
|
Beroual W, Prévost K, Lalaouna D, Ben Zaina N, Valette O, Denis Y, Djendli M, Brasseur G, Brilli M, Robledo Garrido M, Jimenez-Zurdo JI, Massé E, Biondi EG. The noncoding RNA CcnA modulates the master cell cycle regulators CtrA and GcrA in Caulobacter crescentus. PLoS Biol 2022; 20:e3001528. [PMID: 35192605 PMCID: PMC8959179 DOI: 10.1371/journal.pbio.3001528] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 03/28/2022] [Accepted: 01/05/2022] [Indexed: 12/01/2022] Open
Abstract
Bacteria are powerful models for understanding how cells divide and accomplish global regulatory programs. In Caulobacter crescentus, a cascade of essential master regulators supervises the correct and sequential activation of DNA replication, cell division, and development of different cell types. Among them, the response regulator CtrA plays a crucial role coordinating all those functions. Here, for the first time, we describe the role of a novel factor named CcnA (cell cycle noncoding RNA A), a cell cycle–regulated noncoding RNA (ncRNA) located at the origin of replication, presumably activated by CtrA, and responsible for the accumulation of CtrA itself. In addition, CcnA may be also involved in the inhibition of translation of the S-phase regulator, GcrA, by interacting with its 5′ untranslated region (5′ UTR). Performing in vitro experiments and mutagenesis, we propose a mechanism of action of CcnA based on liberation (ctrA) or sequestration (gcrA) of their ribosome-binding site (RBS). Finally, its role may be conserved in other alphaproteobacterial species, such as Sinorhizobium meliloti, representing indeed a potentially conserved process modulating cell cycle in Caulobacterales and Rhizobiales. During cell cycle progression in the bacterium Caulobacter crescentus, the master cell cycle regulator CtrA is controlled by CcnA, a cell cycle-regulated non-coding RNA transcribed from a gene located at the origin of replication.
Collapse
Affiliation(s)
- Wanassa Beroual
- Aix-Marseille Université, CNRS, LCB, IMM, Turing Center for Living Systems, Marseille, France
| | - Karine Prévost
- Département de biochimie et de génomique fonctionnelle, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - David Lalaouna
- Département de biochimie et de génomique fonctionnelle, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nadia Ben Zaina
- Aix-Marseille Université, CNRS, LCB, IMM, Turing Center for Living Systems, Marseille, France
| | - Odile Valette
- Aix-Marseille Université, CNRS, LCB, IMM, Turing Center for Living Systems, Marseille, France
| | - Yann Denis
- Aix-Marseille Univ, CNRS, Plate-forme Transcriptome, IMM, Marseille, France
| | - Meriem Djendli
- Aix-Marseille Université, CNRS, LCB, IMM, Turing Center for Living Systems, Marseille, France
| | - Gaël Brasseur
- Aix-Marseille Université, CNRS, LCB, IMM, Turing Center for Living Systems, Marseille, France
| | - Matteo Brilli
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biosciences, University of Milan, Milan, Italy
| | - Marta Robledo Garrido
- Grupo de Ecología Genética de la Rizosfera, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Jose-Ignacio Jimenez-Zurdo
- Grupo de Ecología Genética de la Rizosfera, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Eric Massé
- Département de biochimie et de génomique fonctionnelle, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Emanuele G. Biondi
- Aix-Marseille Université, CNRS, LCB, IMM, Turing Center for Living Systems, Marseille, France
- * E-mail:
| |
Collapse
|
26
|
Montero Llopis P, Stephansky R, Wang X. High-Throughput Imaging of Bacillus subtilis. Methods Mol Biol 2022; 2476:277-292. [PMID: 35635710 DOI: 10.1007/978-1-0716-2221-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bacillus subtilis is a widely used model bacterium to study cellular processes and development. The availability of an arrayed mutant library gave us the opportunity to cytologically analyze every mutant and screen for new genes involved in cell shape determination, cell division, and chromosome segregation. Here we describe a high-throughput method to image arrayed B. subtilis mutant libraries using wide-field fluorescence microscopy. We provide a detailed description of growing the arrayed strain collection, preparing slides containing agarose pedestals, setting up the microscopy procedure, acquiring images, and analyzing the images.
Collapse
Affiliation(s)
| | | | - Xindan Wang
- Department of Biology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
27
|
Scheuer R, Dietz T, Kretz J, Hadjeras L, McIntosh M, Evguenieva-Hackenberg E. Incoherent dual regulation by a SAM-II riboswitch controlling translation at a distance. RNA Biol 2022; 19:980-995. [PMID: 35950733 PMCID: PMC9373788 DOI: 10.1080/15476286.2022.2110380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In Sinorhizobium meliloti, the methionine biosynthesis genes metA and metZ are preceded by S-adenosyl-L-methionine (SAM) riboswitches of the SAM-II class. Upon SAM binding, structural changes in the metZ riboswitch were predicted to cause transcriptional termination, generating the sRNA RZ. By contrast, the metA riboswitch was predicted to regulate translation from an AUG1 codon. However, downstream of the metA riboswitch, we found a putative Rho-independent terminator and an in-frame AUG2 codon, which may contribute to metA regulation. We validated the terminator between AUG1 and AUG2, which generates the sRNA RA1 that is processed to RA2. Under high SAM conditions, the activities of the metA and metZ promoters and the steady-state levels of the read-through metA and metZ mRNAs were decreased, while the levels of the RZ and RA2 sRNAs were increased. Under these conditions, the sRNAs and the mRNAs were stabilized. Reporter fusion experiments revealed that the Shine–Dalgarno (SD) sequence in the metA riboswitch is required for translation, which, however, starts 74 nucleotides downstream at AUG2, suggesting a novel translation initiation mechanism. Further, the reporter fusion data supported the following model of RNA-based regulation: Upon SAM binding by the riboswitch, the SD sequence is sequestered to downregulate metA translation, while the mRNA is stabilized. Thus, the SAM-II riboswitches fulfil incoherent, dual regulation, which probably serves to ensure basal metA and metZ mRNA levels under high SAM conditions. This probably helps to adapt to changing conditions and maintain SAM homoeostasis.
Collapse
Affiliation(s)
- Robina Scheuer
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | - Theresa Dietz
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | - Jonas Kretz
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | - Lydia Hadjeras
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Matthew McIntosh
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | | |
Collapse
|
28
|
Roychoudhury T, Ray B, Seal A. Metabolically dependent consortia in biofilm: A new horizon for green agriculture. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Masson F, Pierrat X, Lemaitre B, Persat A. The wall-less bacterium Spiroplasma poulsonii builds a polymeric cytoskeleton composed of interacting MreB isoforms. iScience 2021; 24:103458. [PMID: 34888500 PMCID: PMC8634037 DOI: 10.1016/j.isci.2021.103458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 11/20/2022] Open
Abstract
A rigid cell wall defines the morphology of most bacteria. MreB, a bacterial homologue of actin, plays a major role in coordinating cell wall biogenesis and defining cell shape. Spiroplasma are wall-less bacteria that robustly grow with a characteristic helical shape. Paradoxal to their lack of cell wall, the Spiroplasma genome contains five homologs of MreB (SpMreBs). Here, we investigate the function of SpMreBs in forming a polymeric cytoskeleton. We found that, in vivo, Spiroplasma maintain a high concentration of all MreB isoforms. By leveraging a heterologous expression system that bypasses the poor genetic tractability of Spiroplasma, we found that SpMreBs produced polymeric filaments of various morphologies. We characterized an interaction network between isoforms that regulate filament formation and patterning. Therefore, our results support the hypothesis where combined SpMreB isoforms would form an inner polymeric cytoskeleton in vivo that shapes the cell in a wall-independent manner. The five Spiroplasma MreB isoforms are extremely abundant proteins in vivo Each isoform produces filaments when expressed in a heterologous system SpMreBs form an interaction network that regulates filament length and shape
Collapse
Affiliation(s)
- Florent Masson
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Corresponding author
| | - Xavier Pierrat
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Alexandre Persat
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Corresponding author
| |
Collapse
|
30
|
Analytics and visualization tools to characterize single-cell stochasticity using bacterial single-cell movie cytometry data. BMC Bioinformatics 2021; 22:531. [PMID: 34715773 PMCID: PMC8557071 DOI: 10.1186/s12859-021-04409-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022] Open
Abstract
Background Time-lapse microscopy live-cell imaging is essential for studying the evolution of bacterial communities at single-cell resolution. It allows capturing detailed information about the morphology, gene expression, and spatial characteristics of individual cells at every time instance of the imaging experiment. The image analysis of bacterial "single-cell movies" (videos) generates big data in the form of multidimensional time series of measured bacterial attributes. If properly analyzed, these datasets can help us decipher the bacterial communities' growth dynamics and identify the sources and potential functional role of intra- and inter-subpopulation heterogeneity. Recent research has highlighted the importance of investigating the role of biological "noise" in gene regulation, cell growth, cell division, etc. Single-cell analytics of complex single-cell movie datasets, capturing the interaction of multiple micro-colonies with thousands of cells, can shed light on essential phenomena for human health, such as the competition of pathogens and benign microbiome cells, the emergence of dormant cells (“persisters”), the formation of biofilms under different stress conditions, etc. However, highly accurate and automated bacterial bioimage analysis and single-cell analytics methods remain elusive, even though they are required before we can routinely exploit the plethora of data that single-cell movies generate. Results We present visualization and single-cell analytics using R (ViSCAR), a set of methods and corresponding functions, to visually explore and correlate single-cell attributes generated from the image processing of complex bacterial single-cell movies. They can be used to model and visualize the spatiotemporal evolution of attributes at different levels of the microbial community organization (i.e., cell population, colony, generation, etc.), to discover possible epigenetic information transfer across cell generations, infer mathematical and statistical models describing various stochastic phenomena (e.g., cell growth, cell division), and even identify and auto-correct errors introduced unavoidably during the bioimage analysis of a dense movie with thousands of overcrowded cells in the microscope's field of view. Conclusions ViSCAR empowers researchers to capture and characterize the stochasticity, uncover the mechanisms leading to cellular phenotypes of interest, and decipher a large heterogeneous microbial communities' dynamic behavior. ViSCAR source code is available from GitLab at https://gitlab.com/ManolakosLab/viscar. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04409-9.
Collapse
|
31
|
Omnus DJ, Fink MJ, Szwedo K, Jonas K. The Lon protease temporally restricts polar cell differentiation events during the Caulobacter cell cycle. eLife 2021; 10:73875. [PMID: 34693909 PMCID: PMC8545394 DOI: 10.7554/elife.73875] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 01/16/2023] Open
Abstract
The highly conserved protease Lon has important regulatory and protein quality control functions in cells from the three domains of life. Despite many years of research on Lon, only a few specific protein substrates are known in most organisms. Here, we used a quantitative proteomics approach to identify novel substrates of Lon in the dimorphic bacterium Caulobacter crescentus. We focused our study on proteins involved in polar cell differentiation and investigated the developmental regulator StaR and the flagella hook length regulator FliK as specific Lon substrates in detail. We show that Lon recognizes these proteins at their C-termini, and that Lon-dependent degradation ensures their temporally restricted accumulation in the cell cycle phase when their function is needed. Disruption of this precise temporal regulation of StaR and FliK levels in a Δlon mutant contributes to defects in stalk biogenesis and motility, respectively, revealing a critical role of Lon in coordinating developmental processes with cell cycle progression. Our work underscores the importance of Lon in the regulation of complex temporally controlled processes by adjusting the concentrations of critical regulatory proteins. Furthermore, this study includes the first characterization of FliK in C. crescentus and uncovers a dual role of the C-terminal amino acids of FliK in protein function and degradation.
Collapse
Affiliation(s)
- Deike J Omnus
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Matthias J Fink
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Klaudia Szwedo
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Kristina Jonas
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
32
|
Osorio-Valeriano M, Altegoer F, Das CK, Steinchen W, Panis G, Connolley L, Giacomelli G, Feddersen H, Corrales-Guerrero L, Giammarinaro PI, Hanßmann J, Bramkamp M, Viollier PH, Murray S, Schäfer LV, Bange G, Thanbichler M. The CTPase activity of ParB determines the size and dynamics of prokaryotic DNA partition complexes. Mol Cell 2021; 81:3992-4007.e10. [PMID: 34562373 DOI: 10.1016/j.molcel.2021.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/27/2021] [Accepted: 08/31/2021] [Indexed: 01/29/2023]
Abstract
ParB-like CTPases mediate the segregation of bacterial chromosomes and low-copy number plasmids. They act as DNA-sliding clamps that are loaded at parS motifs in the centromere of target DNA molecules and spread laterally to form large nucleoprotein complexes serving as docking points for the DNA segregation machinery. Here, we solve crystal structures of ParB in the pre- and post-hydrolysis state and illuminate the catalytic mechanism of nucleotide hydrolysis. Moreover, we identify conformational changes that underlie the CTP- and parS-dependent closure of ParB clamps. The study of CTPase-deficient ParB variants reveals that CTP hydrolysis serves to limit the sliding time of ParB clamps and thus drives the establishment of a well-defined ParB diffusion gradient across the centromere whose dynamics are critical for DNA segregation. These findings clarify the role of the ParB CTPase cycle in partition complex assembly and function and thus advance our understanding of this prototypic CTP-dependent molecular switch.
Collapse
Affiliation(s)
- Manuel Osorio-Valeriano
- Department of Biology, University of Marburg, 35043 Marburg, Germany; Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Florian Altegoer
- Department of Chemistry, University of Marburg, 35043 Marburg, Germany; Center for Synthetic Microbiology, 35043 Marburg, Germany
| | - Chandan K Das
- Theoretical Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Wieland Steinchen
- Department of Chemistry, University of Marburg, 35043 Marburg, Germany; Center for Synthetic Microbiology, 35043 Marburg, Germany
| | - Gaël Panis
- Department of Microbiology and Molecular Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Lara Connolley
- Department of Systems & Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Giacomo Giacomelli
- Institute for General Microbiology, Christian Albrechts University, 24118 Kiel, Germany
| | - Helge Feddersen
- Institute for General Microbiology, Christian Albrechts University, 24118 Kiel, Germany
| | | | - Pietro I Giammarinaro
- Department of Chemistry, University of Marburg, 35043 Marburg, Germany; Center for Synthetic Microbiology, 35043 Marburg, Germany
| | - Juri Hanßmann
- Department of Biology, University of Marburg, 35043 Marburg, Germany
| | - Marc Bramkamp
- Institute for General Microbiology, Christian Albrechts University, 24118 Kiel, Germany
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Seán Murray
- Department of Systems & Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Lars V Schäfer
- Theoretical Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Gert Bange
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany; Department of Chemistry, University of Marburg, 35043 Marburg, Germany; Center for Synthetic Microbiology, 35043 Marburg, Germany
| | - Martin Thanbichler
- Department of Biology, University of Marburg, 35043 Marburg, Germany; Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany; Center for Synthetic Microbiology, 35043 Marburg, Germany.
| |
Collapse
|
33
|
van Teeseling MCF. Elongation at Midcell in Preparation of Cell Division Requires FtsZ, but Not MreB nor PBP2 in Caulobacter crescentus. Front Microbiol 2021; 12:732031. [PMID: 34512611 PMCID: PMC8429850 DOI: 10.3389/fmicb.2021.732031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/09/2021] [Indexed: 02/04/2023] Open
Abstract
Controlled growth of the cell wall is a key prerequisite for bacterial cell division. The existing view of the canonical rod-shaped bacterial cell dictates that newborn cells first elongate throughout their side walls using the elongasome protein complex, and subsequently use the divisome to coordinate constriction of the dividing daughter cells. Interestingly, another growth phase has been observed in between elongasome-mediated elongation and constriction, during which the cell elongates from the midcell outward. This growth phase, that has been observed in Escherichia coli and Caulobacter crescentus, remains severely understudied and its mechanisms remain elusive. One pressing open question is which role the elongasome key-component MreB plays in this respect. This study quantitatively investigates this growth phase in C. crescentus and focuses on the role of both divisome and elongasome components. This growth phase is found to initiate well after MreB localizes at midcell, although it does not require its presence at this subcellular location nor the action of key elongasome components. Instead, the divisome component FtsZ seems to be required for elongation at midcell. This study thus shines more light on this growth phase in an important model organism and paves the road to more in-depth studies.
Collapse
Affiliation(s)
- Muriel C F van Teeseling
- Junior Research Group Prokaryotic Cell Biology, Department Microbial Interactions, Institute of Microbiology, Friedrich-Schiller-Universität, Jena, Germany.,Department of Biology, University of Marburg, Marburg, Germany
| |
Collapse
|
34
|
Sanka I, Bartkova S, Pata P, Smolander OP, Scheler O. Investigation of Different Free Image Analysis Software for High-Throughput Droplet Detection. ACS OMEGA 2021; 6:22625-22634. [PMID: 34514234 PMCID: PMC8427638 DOI: 10.1021/acsomega.1c02664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Droplet microfluidics has revealed innovative strategies in biology and chemistry. This advancement has delivered novel quantification methods, such as droplet digital polymerase chain reaction (ddPCR) and an antibiotic heteroresistance analysis tool. For droplet analysis, researchers often use image-based detection techniques. Unfortunately, the analysis of images may require specific tools or programming skills to produce the expected results. In order to address the issue, we explore the potential use of standalone freely available software to perform image-based droplet detection. We select the four most popular software and classify them into rule-based and machine learning-based types after assessing the software's modules. We test and evaluate the software's (i) ability to detect droplets, (ii) accuracy and precision, and (iii) overall components and supporting material. In our experimental setting, we find that the rule-based type of software is better suited for image-based droplet detection. The rule-based type of software also has a simpler workflow or pipeline, especially aimed for non-experienced users. In our case, CellProfiler (CP) offers the most user-friendly experience for both single image and batch processing analyses.
Collapse
|
35
|
Jeckel H, Drescher K. Advances and opportunities in image analysis of bacterial cells and communities. FEMS Microbiol Rev 2021; 45:fuaa062. [PMID: 33242074 PMCID: PMC8371272 DOI: 10.1093/femsre/fuaa062] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022] Open
Abstract
The cellular morphology and sub-cellular spatial structure critically influence the function of microbial cells. Similarly, the spatial arrangement of genotypes and phenotypes in microbial communities has important consequences for cooperation, competition, and community functions. Fluorescence microscopy techniques are widely used to measure spatial structure inside living cells and communities, which often results in large numbers of images that are difficult or impossible to analyze manually. The rapidly evolving progress in computational image analysis has recently enabled the quantification of a large number of properties of single cells and communities, based on traditional analysis techniques and convolutional neural networks. Here, we provide a brief introduction to core concepts of automated image processing, recent software tools and how to validate image analysis results. We also discuss recent advances in image analysis of microbial cells and communities, and how these advances open up opportunities for quantitative studies of spatiotemporal processes in microbiology, based on image cytometry and adaptive microscope control.
Collapse
Affiliation(s)
- Hannah Jeckel
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 16, 35043 Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, Karl-von-Frisch-Str. 16, 35043 Marburg, Germany
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 16, 35043 Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, Karl-von-Frisch-Str. 16, 35043 Marburg, Germany
- Synmikro Center for Synthetic Microbiology, Karl-von-Frisch-Str. 16, 35043 Marburg, Germany
| |
Collapse
|
36
|
Casado-García Á, Chichón G, Domínguez C, García-Domínguez M, Heras J, Inés A, López M, Mata E, Pascual V, Sáenz Y. MotilityJ: An open-source tool for the classification and segmentation of bacteria on motility images. Comput Biol Med 2021; 136:104673. [PMID: 34325228 DOI: 10.1016/j.compbiomed.2021.104673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVES Infectious diseases produced by antimicrobial resistant microorganisms are a major threat to human, and animal health worldwide. This problem is increased by the virulence and spread of these bacteria. Surface motility has been regarded as a pathogenicity element because it is essential for many biological functions, but also for disease spreading; hence, investigations on the motility behaviour of bacteria are crucial to understand chemotaxis, biofilm formation and virulence in general. To identify a motile strain in the laboratory, the bacterial spread area is observed on media solidified with agar. Up to now, the task of measuring bacteria spread was a manual, and, therefore, tedious and time-consuming task. The aim of this work is the development of a set of tools for bacteria segmentation in motility images. METHODS In this work, we address the problem of measuring bacteria spread on motility images by creating an automatic pipeline based on deep learning models. Such a pipeline consists of a classification model to determine whether the bacteria has spread to cover completely the Petri dish, and a segmentation model to determine the spread of those bacteria that do not fully cover the Petri dishes. In order to annotate enough images to train our deep learning models, a semi-automatic annotation procedure is presented. RESULTS The classification model of our pipeline achieved a F1-score of 99.85%, and the segmentation model achieved a Dice coefficient of 95.66%. In addition, the segmentation model produces results that are indistinguishable, and in many cases preferred, from those produced manually by experts. Finally, we facilitate the dissemination of our pipeline with the development of MotilityJ, an open-source and user-friendly application for measuring bacteria spread on motility images. CONCLUSIONS In this work, we have developed an algorithm and trained several models for measuring bacteria spread on motility images. Thanks to this work, the analysis of motility images will be faster and more reliable. The developed tools will help to advance our understanding of the behaviour and virulence of bacteria.
Collapse
Affiliation(s)
| | - Gabriela Chichón
- Area de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - César Domínguez
- Department of Mathematics and Computer Science, University of La Rioja, Spain
| | | | - Jónathan Heras
- Department of Mathematics and Computer Science, University of La Rioja, Spain.
| | - Adrián Inés
- Department of Mathematics and Computer Science, University of La Rioja, Spain
| | - María López
- Area de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Eloy Mata
- Department of Mathematics and Computer Science, University of La Rioja, Spain
| | - Vico Pascual
- Department of Mathematics and Computer Science, University of La Rioja, Spain
| | - Yolanda Sáenz
- Area de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| |
Collapse
|
37
|
Hook JC, Blagotinsek V, Pané-Farré J, Mrusek D, Altegoer F, Dornes A, Schwan M, Schier L, Thormann KM, Bange G. A Proline-Rich Element in the Type III Secretion Protein FlhB Contributes to Flagellar Biogenesis in the Beta- and Gamma-Proteobacteria. Front Microbiol 2020; 11:564161. [PMID: 33384667 PMCID: PMC7771051 DOI: 10.3389/fmicb.2020.564161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/26/2020] [Indexed: 11/24/2022] Open
Abstract
Flagella are bacterial organelles of locomotion. Their biogenesis is highly coordinated in time and space and relies on a specialized flagellar type III secretion system (fT3SS) required for the assembly of the extracellular hook, rod, and filament parts of this complex motor device. The fT3SS protein FlhB switches secretion substrate specificity once the growing hook reaches its determined length. Here we present the crystal structure of the cytoplasmic domain of the transmembrane protein FlhB. The structure visualizes a so-far unseen proline-rich region (PRR) at the very C-terminus of the protein. Strains lacking the PRR show a decrease in flagellation as determined by hook- and filament staining, indicating a role of the PRR during assembly of the hook and filament structures. Phylogenetic analysis shows that the PRR is a primary feature of FlhB proteins of flagellated beta- and gamma-proteobacteria. Taken together, our study adds another layer of complexity and organismic diversity to the process of flagella biogenesis.
Collapse
Affiliation(s)
- John C Hook
- Department of Microbiology and Molecular Biology, Justus-Liebig-Universität, Giessen, Germany
| | - Vitan Blagotinsek
- SYNMIKRO Research Center, Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Jan Pané-Farré
- SYNMIKRO Research Center, Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Devid Mrusek
- SYNMIKRO Research Center, Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Florian Altegoer
- SYNMIKRO Research Center, Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Anita Dornes
- SYNMIKRO Research Center, Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Meike Schwan
- Department of Microbiology and Molecular Biology, Justus-Liebig-Universität, Giessen, Germany
| | - Lukas Schier
- SYNMIKRO Research Center, Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Kai M Thormann
- Department of Microbiology and Molecular Biology, Justus-Liebig-Universität, Giessen, Germany
| | - Gert Bange
- SYNMIKRO Research Center, Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
38
|
El Najjar N, van Teeseling MCF, Mayer B, Hermann S, Thanbichler M, Graumann PL. Bacterial cell growth is arrested by violet and blue, but not yellow light excitation during fluorescence microscopy. BMC Mol Cell Biol 2020; 21:35. [PMID: 32357828 PMCID: PMC7193368 DOI: 10.1186/s12860-020-00277-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/08/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Fluorescence microscopy is a powerful tool in cell biology, especially for the study of dynamic processes. Intensive irradiation of bacteria with UV, blue and violet light has been shown to be able to kill cells, but very little information is available on the effect of blue or violet light during live-cell imaging. RESULTS We show here that in the model bacterium Bacillus subtilis chromosome segregation and cell growth are rapidly halted by standard violet (405 nm) and blue light (CFP) (445-457 nm) excitation, whereas they are largely unaffected by green light (YFP). The stress sigma factor σB and the blue-light receptor YtvA are not involved in growth arrest. Using synchronized B. subtilis cells, we show that the use of blue light for fluorescence microscopy likely induces non-specific toxic effects, rather than a specific cell cycle arrest. Escherichia coli and Caulobacter crescentus cells also stop to grow after 15 one-second exposures to blue light (CFP), but continue growth when imaged under similar conditions in the YFP channel. In the case of E. coli, YFP excitation slows growth relative to white light excitation, whereas CFP excitation leads to cell death in a majority of cells. Thus, even mild violet/blue light excitation interferes with bacterial growth. Analyzing the dose-dependent effects of violet light in B. subtilis, we show that short exposures to low-intensity violet light allow for continued cell growth, while longer exposures do not. CONCLUSIONS Our experiments show that care must be taken in the design of live-cell imaging experiments in that violet or blue excitation effects must be closely controlled during and after imaging. Violet excitation during sptPALM or other imaging studies involving photoactivation has a threshold, below which little effects can be seen, but above which a sharp transition into cell death occurs. YFP imaging proves to be better suited for time-lapse studies, especially when cell cycle or cell growth parameters are to be examined.
Collapse
Affiliation(s)
- Nina El Najjar
- Center for Synthetic Microbiology (SYNMIKRO), Hans-Meerwein-Straße, 35043, Marburg, Germany.,Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | | | - Benjamin Mayer
- Center for Synthetic Microbiology (SYNMIKRO), Hans-Meerwein-Straße, 35043, Marburg, Germany.,Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Silke Hermann
- Center for Synthetic Microbiology (SYNMIKRO), Hans-Meerwein-Straße, 35043, Marburg, Germany.,Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Martin Thanbichler
- Center for Synthetic Microbiology (SYNMIKRO), Hans-Meerwein-Straße, 35043, Marburg, Germany.,Department of Biology, University of Marburg, Karl-von-Frisch-Straße 8, 35032, Marburg, Germany.,Max Planck Fellow Group "Bacterial Cell Biology", Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany
| | - Peter L Graumann
- Center for Synthetic Microbiology (SYNMIKRO), Hans-Meerwein-Straße, 35043, Marburg, Germany. .,Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany.
| |
Collapse
|