1
|
Cianciotto NP. The type II secretion system as an underappreciated and understudied mediator of interbacterial antagonism. Infect Immun 2024; 92:e0020724. [PMID: 38980047 PMCID: PMC11320942 DOI: 10.1128/iai.00207-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Interbacterial antagonism involves all major phyla, occurs across the full range of ecological niches, and has great significance for the environment, clinical arena, and agricultural and industrial sectors. Though the earliest insight into interbacterial antagonism traces back to the discovery of antibiotics, a paradigm shift happened when it was learned that protein secretion systems (e.g., types VI and IV secretion systems) deliver toxic "effectors" against competitors. However, a link between interbacterial antagonism and the Gram-negative type II secretion system (T2SS), which exists in many pathogens and environmental species, is not evident in prior reviews on bacterial competition or T2SS function. A current examination of the literature revealed four examples of a T2SS or one of its known substrates having a bactericidal activity against a Gram-positive target or another Gram-negative. When further studied, the T2SS effectors proved to be peptidases that target the peptidoglycan of the competitor. There are also reports of various bacteriolytic enzymes occurring in the culture supernatants of some other Gram-negative species, and a link between these bactericidal activities and T2SS is suggested. Thus, a T2SS can be a mediator of interbacterial antagonism, and it is possible that many T2SSs have antibacterial outputs. Yet, at present, the T2SS remains relatively understudied for its role in interbacterial competition. Arguably, there is a need to analyze the T2SSs of a broader range of species for their role in interbacterial antagonism. Such investigation offers, among other things, a possible pathway toward developing new antimicrobials for treating disease.
Collapse
Affiliation(s)
- Nicholas P. Cianciotto
- Department of Microbiology-Immunology, Northwestern University School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
2
|
Christi K, Hudson J, Egan S. Current approaches to genetic modification of marine bacteria and considerations for improved transformation efficiency. Microbiol Res 2024; 284:127729. [PMID: 38663232 DOI: 10.1016/j.micres.2024.127729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/25/2024] [Accepted: 04/15/2024] [Indexed: 05/26/2024]
Abstract
Marine bacteria play vital roles in symbiosis, biogeochemical cycles and produce novel bioactive compounds and enzymes of interest for the pharmaceutical, biofuel and biotechnology industries. At present, investigations into marine bacterial functions and their products are primarily based on phenotypic observations, -omic type approaches and heterologous gene expression. To advance our understanding of marine bacteria and harness their full potential for industry application, it is critical that we have the appropriate tools and resources to genetically manipulate them in situ. However, current genetic tools that are largely designed for model organisms such as E. coli, produce low transformation efficiencies or have no transfer ability in marine bacteria. To improve genetic manipulation applications for marine bacteria, we need to improve transformation methods such as conjugation and electroporation in addition to identifying more marine broad host range plasmids. In this review, we aim to outline the reported methods of transformation for marine bacteria and discuss the considerations for each approach in the context of improving efficiency. In addition, we further discuss marine plasmids and future research areas including CRISPR tools and their potential applications for marine bacteria.
Collapse
Affiliation(s)
- Katrina Christi
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, Australia
| | - Jennifer Hudson
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, Australia
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, Australia.
| |
Collapse
|
3
|
Wei X, Tan H, Lobb B, Zhen W, Wu Z, Parks DH, Neufeld JD, Moreno-Hagelsieb G, Doxey AC. AnnoView enables large-scale analysis, comparison, and visualization of microbial gene neighborhoods. Brief Bioinform 2024; 25:bbae229. [PMID: 38747283 PMCID: PMC11094555 DOI: 10.1093/bib/bbae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024] Open
Abstract
The analysis and comparison of gene neighborhoods is a powerful approach for exploring microbial genome structure, function, and evolution. Although numerous tools exist for genome visualization and comparison, genome exploration across large genomic databases or user-generated datasets remains a challenge. Here, we introduce AnnoView, a web server designed for interactive exploration of gene neighborhoods across the bacterial and archaeal tree of life. Our server offers users the ability to identify, compare, and visualize gene neighborhoods of interest from 30 238 bacterial genomes and 1672 archaeal genomes, through integration with the comprehensive Genome Taxonomy Database and AnnoTree databases. Identified gene neighborhoods can be visualized using pre-computed functional annotations from different sources such as KEGG, Pfam and TIGRFAM, or clustered based on similarity. Alternatively, users can upload and explore their own custom genomic datasets in GBK, GFF or CSV format, or use AnnoView as a genome browser for relatively small genomes (e.g. viruses and plasmids). Ultimately, we anticipate that AnnoView will catalyze biological discovery by enabling user-friendly search, comparison, and visualization of genomic data. AnnoView is available at http://annoview.uwaterloo.ca.
Collapse
Affiliation(s)
- Xin Wei
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Huagang Tan
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Briallen Lobb
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - William Zhen
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Zijing Wu
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Donovan H Parks
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Brisbane, Australia
| | - Josh D Neufeld
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Gabriel Moreno-Hagelsieb
- Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, Canada
| | - Andrew C Doxey
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
4
|
Gajbhiye S, Gonzales ED, Toso DB, Kirk NA, Hickey WJ. Identification of NpdA as the protein forming the surface layer in Paracidovorax citrulli and evidence of its occurrence as a surface layer protein in diverse genera of the Betaproteobacteria and Gammaproteobacteria. Access Microbiol 2023; 5:000685.v3. [PMID: 38188235 PMCID: PMC10765051 DOI: 10.1099/acmi.0.000685.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/13/2023] [Indexed: 01/09/2024] Open
Abstract
The phytopathogen Paracidovorax citrulli possesses an ortholog of a newly identified surface layer protein (SLP) termed NpdA but has not been reported to produce a surface layer (S-layer). This study had two objectives. First, to determine if P. citrulli formed an NpdA-based S-layer and, if so, assess the effects of S-layer formation on virulence, production of nanostructures termed nanopods, and other phenotypes. Second, to establish the distribution of npdA orthologs throughout the Pseudomonadota and examine selected candidate cultures for physical evidence of S-layer formation. Formation of an NpdA-based S-layer by P. citrulli AAC00-1 was confirmed by gene deletion mutagenesis (ΔnpdA), proteomics, and cryo-electron microscopy. There were no significant differences between the wild-type and mutant in virulence assays with detached watermelon fruit. Nanopods contiguous with S-layers of multiple biofilm cells were visualized by transmission electron microscopy. Orthologs of npdA were identified in 62 Betaproteobacteria species and 49 Gammaproteobacteria species. In phylogenetic analyses, NpdA orthologs largely segregated into distinct groups. Cryo-electron microscopy imaging revealed an NpdA-like S-layer in all but one of the 16 additional cultures examined. We conclude that NpdA represents a new family of SLP, forming an S-layer in P. citrulli and other Pseudomonadota. While the S-layer did not contribute to virulence in watermelon fruit, a potential role of the P. citrulli S-layer in another dimension of pathogenesis cannot be ruled out. Lastly, formation of cell-bridging nanopods in biofilms is a new property of S-layers; it remains to be determined if nanopods can mediate intercellular movement of materials.
Collapse
Affiliation(s)
- Shabda Gajbhiye
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
| | - Erin D Gonzales
- Department of Soil Science, University of Wisconsin, Madison, Wisconsin, USA
| | - Daniel B Toso
- Department of Soil Science, University of Wisconsin, Madison, Wisconsin, USA
- Present address: California Institute for Quantitative Biosciences, University of California, Berkeley, California, USA
| | - Natalie A Kirk
- Department of Soil Science, University of Wisconsin, Madison, Wisconsin, USA
- Present address: Department of Art and Art History, University of Utah, Salt Lake City, Utah, USA
| | - William J Hickey
- Department of Soil Science, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Mugge RL, Moseley RD, Hamdan LJ. Substrate Specificity of Biofilms Proximate to Historic Shipwrecks. Microorganisms 2023; 11:2416. [PMID: 37894074 PMCID: PMC10608953 DOI: 10.3390/microorganisms11102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The number of built structures on the seabed, such as shipwrecks, energy platforms, and pipelines, is increasing in coastal and offshore regions. These structures, typically composed of steel or wood, are substrates for microbial attachment and biofilm formation. The success of biofilm growth depends on substrate characteristics and local environmental conditions, though it is unclear which feature is dominant in shaping biofilm microbiomes. The goal of this study was to understand the substrate- and site-specific impacts of built structures on short-term biofilm composition and functional potential. Seafloor experiments were conducted wherein steel and wood surfaces were deployed for four months at distances extending up to 115 m away from three historic (>50 years old) shipwrecks in the Gulf of Mexico. DNA from biofilms on the steel and wood was extracted, and metagenomes were sequenced on an Illumina NextSeq. A bioinformatics analysis revealed that the taxonomic composition was significantly different between substrates and sites, with substrate being the primary determining factor. Regardless of site, the steel biofilms had a higher abundance of genes related to biofilm formation, and sulfur, iron, and nitrogen cycling, while the wood biofilms showed a higher abundance of manganese cycling and methanol oxidation genes. This study demonstrates how substrate composition shapes biofilm microbiomes and suggests that marine biofilms may contribute to nutrient cycling at depth. Analyzing the marine biofilm microbiome provides insight into the ecological impact of anthropogenic structures on the seabed.
Collapse
Affiliation(s)
- Rachel L. Mugge
- U.S. Naval Research Laboratory, Ocean Sciences Division, Stennis Space Center, MS 39529, USA;
| | - Rachel D. Moseley
- School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS 39564, USA
| | - Leila J. Hamdan
- School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS 39564, USA
| |
Collapse
|
6
|
Ali S, Jenkins B, Cheng J, Lobb B, Wei X, Egan S, Charles TC, McConkey BJ, Austin J, Doxey AC. Slr4, a newly identified S-layer protein from marine Gammaproteobacteria, is a major biofilm matrix component. Mol Microbiol 2020; 114:979-990. [PMID: 32804439 PMCID: PMC7821379 DOI: 10.1111/mmi.14588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/06/2020] [Indexed: 01/03/2023]
Abstract
S‐layers are paracrystalline proteinaceous lattices that surround prokaryotic cells, forming a critical interface between the cells and their extracellular environment. Here, we report the discovery of a novel S‐layer protein present in the Gram‐negative marine organism, Pseudoalteromonas tunicata D2. An uncharacterized protein (EAR28894) was identified as the most abundant protein in planktonic cultures and biofilms. Bioinformatic methods predicted a beta‐helical structure for EAR28894 similar to the Caulobacter S‐layer protein, RsaA, despite sharing less than 20% sequence identity. Transmission electron microscopy revealed that purified EAR28894 protein assembled into paracrystalline sheets with a unique square lattice symmetry and a unit cell spacing of ~9.1 nm. An S‐layer was found surrounding the outer membrane in wild‐type cells and completely removed from cells in an EAR28894 deletion mutant. S‐layer material also appeared to be “shed” from wild‐type cells and was highly abundant in the extracellular matrix where it is associated with outer membrane vesicles and other matrix components. EAR28894 and its homologs form a new family of S‐layer proteins that are widely distributed in Gammaproteobacteria including species of Pseudoalteromonas and Vibrio, and found exclusively in marine metagenomes. We propose the name Slr4 for this novel protein family.
Collapse
Affiliation(s)
- Sura Ali
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Benjamin Jenkins
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Jiujun Cheng
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.,Metagenom Bio Life Science Inc., Waterloo, ON, Canada
| | - Briallen Lobb
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Xin Wei
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Suhelen Egan
- Centre for Marine Science and Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales Sydney, Sydney, NSW, Australia
| | - Trevor C Charles
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.,Metagenom Bio Life Science Inc., Waterloo, ON, Canada
| | | | - John Austin
- Bureau of Microbial Hazards, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Andrew C Doxey
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|