1
|
Huang W, Chen H, Jia M, Li Q, Chen M, Guo X. Genomic and proteomic analyses reveal the reduction mechanism of hexavalent chromium by the culturing supernatant of strain Pediococcus acidilactici 13-7. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135161. [PMID: 39038378 DOI: 10.1016/j.jhazmat.2024.135161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/30/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024]
Abstract
This study used lactic acid bacteria with high antioxidative properties to screen for strains capable of reducing hexavalent chromium [Cr (VI)] in their culturing supernatants. The strain Pediococcus acidilactici 13-7 exhibited potent Cr (VI)-reducing capability and remarkable resistance to Cr (VI) even at concentration as high as 24 mM. Comparative genomics analysis revealed a unique gene, ChrR, associated with Cr (VI) reduction in this strain, distinguishing it from four reference strains of P. acidilactici. The proteomic investigation identified proteins linked to the ChrR gene, such as nqo1, frdA, and gshR, indicating significant enrichment in redox-related functions and oxidative phosphorylation pathways. These findings suggest that P. acidilactici 13-7 possesses superior electron transfer capacity compared to other strains, making it more adaptable under highly oxidative conditions by modulating the external environment to mitigate oxidative stress. Collectively, the results demonstrated the potential application of this lactic acid bacterial strain for bioremediation of heavy metals by its ability to reduce Cr (VI), and shed light on the molecular mechanisms underlying Cr (VI) reduction of the strain P. acidilactici 13-7.
Collapse
Affiliation(s)
- Wenkang Huang
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province 730000, China; Probiotics and Life Health Institute, Lanzhou University, Lanzhou 730000, China
| | - Hu Chen
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Mengya Jia
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province 730000, China; Probiotics and Life Health Institute, Lanzhou University, Lanzhou 730000, China
| | - Qiang Li
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province 730000, China; Probiotics and Life Health Institute, Lanzhou University, Lanzhou 730000, China
| | - Mengyan Chen
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province 730000, China; Probiotics and Life Health Institute, Lanzhou University, Lanzhou 730000, China
| | - Xusheng Guo
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province 730000, China; Probiotics and Life Health Institute, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
2
|
Matavacas J, Hallgren J, von Wachenfeldt C. Bacillus subtilis forms twisted cells with cell wall integrity defects upon removal of the molecular chaperones DnaK and trigger factor. Front Microbiol 2023; 13:988768. [PMID: 36726573 PMCID: PMC9886141 DOI: 10.3389/fmicb.2022.988768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
Abstract
The protein homeostasis network ensures a proper balance between synthesis, folding, and degradation of all cellular proteins. DnaK and trigger factor (TF) are ubiquitous bacterial molecular chaperones that assist in protein folding, as well as preventing protein misfolding and aggregation. In Escherichia coli, DnaK and TF possess partially overlapping functions. Their combined depletion results in proteostasis collapse and is synthetically lethal at temperatures above 30°C. To increase our understanding on how proteostasis is maintained in Gram-positive bacteria, we have investigated the physiological effects of deleting dnaK and tig (encoding for DnaK and TF) in Bacillus subtilis. We show that combined deletion of dnaK and tig in B. subtilis is non-lethal, but causes a severe pleiotropic phenotype, including an aberrant twisted and filamentous cell morphology, as well as decreased tolerance to heat and to cell wall active antibiotics and hydrolytic enzymes, indicative of defects in cell wall integrity. In addition, cells lacking DnaK and TF have a much smaller colony size due to defects in motility. Despite these physiological changes, we observed no major compromises in important cellular processes such as cell growth, FtsZ localization and division and only moderate defects in spore formation. Finally, through suppressor analyses, we found that the wild-type cell shape can be partially restored by mutations in genes involved in metabolism or in other diverse cellular processes.
Collapse
|
3
|
Lee J, Dalton RA, Dennison C. Copper delivery to an endospore coat protein of Bacillus subtilis. Front Cell Dev Biol 2022; 10:916114. [PMID: 36133923 PMCID: PMC9484137 DOI: 10.3389/fcell.2022.916114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
A family of cytosolic copper (Cu) storage proteins (the Csps) bind large quantities of Cu(I) via their Cys-lined four-helix bundles, and the majority are cytosolic (Csp3s). The presence of Csp3s in many bacteria appears inconsistent with the current dogma that bacteria, unlike eukaryotes, have evolved not to maintain intracellular pools of Cu due to its potential toxicity. Sporulation in Bacillus subtilis has been used to investigate if a Csp3 binds Cu(I) in the cytosol for a target enzyme. The activity of the Cu-requiring endospore multi-Cu oxidase BsCotA (a laccase) increases under Cu-replete conditions in wild type B. subtilis. In the strain lacking BsCsp3 lower BsCotA activity is observed and is unaffected by Cu levels. BsCsp3 loaded with Cu(I) readily activates apo-BsCotA in vitro. Experiments with a high affinity Cu(I) chelator demonstrate that Cu(I) transfer from Cu(I)-BsCsp3 must occur via an associative mechanism. BsCsp3 and BsCotA are both upregulated during late sporulation. We hypothesise that BsCsp3 acquires cuprous ions in the cytosol of B. subtilis for BsCotA.
Collapse
|
4
|
Diversity of Cytochrome c Oxidase Assembly Proteins in Bacteria. Microorganisms 2022; 10:microorganisms10050926. [PMID: 35630371 PMCID: PMC9145763 DOI: 10.3390/microorganisms10050926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/10/2022] Open
Abstract
Cytochrome c oxidase in animals, plants and many aerobic bacteria functions as the terminal enzyme of the respiratory chain where it reduces molecular oxygen to form water in a reaction coupled to energy conservation. The three-subunit core of the enzyme is conserved, whereas several proteins identified to function in the biosynthesis of the common family A1 cytochrome c oxidase show diversity in bacteria. Using the model organisms Bacillus subtilis, Corynebacterium glutamicum, Paracoccus denitrificans, and Rhodobacter sphaeroides, the present review focuses on proteins for assembly of the heme a, heme a3, CuB, and CuA metal centers. The known biosynthesis proteins are, in most cases, discovered through the analysis of mutants. All proteins directly involved in cytochrome c oxidase assembly have likely not been identified in any organism. Limitations in the use of mutants to identify and functionally analyze biosynthesis proteins are discussed in the review. Comparative biochemistry helps to determine the role of assembly factors. This information can, for example, explain the cause of some human mitochondrion-based diseases and be used to find targets for new antimicrobial drugs. It also provides information regarding the evolution of aerobic bacteria.
Collapse
|
5
|
R S, Nakkeeran S, Saranya N, Senthilraja C, Renukadevi P, Krishnamoorthy A, El Enshasy HA, El-Adawi H, Malathi V, Salmen SH, Ansari MJ, Khan N, Sayyed RZ. Mining the Genome of Bacillus velezensis VB7 (CP047587) for MAMP Genes and Non-Ribosomal Peptide Synthetase Gene Clusters Conferring Antiviral and Antifungal Activity. Microorganisms 2021; 9:microorganisms9122511. [PMID: 34946111 PMCID: PMC8708206 DOI: 10.3390/microorganisms9122511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Chemical pesticides have an immense role in curbing the infection of plant viruses and soil-borne pathogens of high valued crops. However, the usage of chemical pesticides also contributes to the development of resistance among pathogens. Hence, attempts were made in this study to identify a suitable bacterial antagonist for managing viral and fungal pathogens infecting crop plants. Based on our earlier investigations, we identified Bacillus amyloliquefaciens VB7 as a potential antagonist for managing Sclerotinia sclerotiorum infecting carnation, tobacco streak virus infecting cotton and groundnut bud necrosis infecting tomato. Considering the multifaceted action of B. amyloliquefaciens VB7, attempts were made for whole-genome sequencing to assess the antiviral activity against tomato spotted wilt virus infecting chrysanthemum and antifungal action against Fusarium oxysporum f. sp. cubense (Foc). Genome annotation of the isolate B. amyloliquefaciens VB7 was confirmed as B. velezensis VB7 with accession number CP047587. Genome analysis revealed the presence of 9,231,928 reads with an average read length of 149 bp. Assembled genome had 1 contig, with a total length of 3,021,183 bp and an average G+C content of 46.79%. The protein-coding sequences (CDS) in the genome was 3090, transfer RNA (tRNA) genes were 85 with 29 ribosomal RNA (rRNA) genes and 21 repeat regions. The genome of B. velezensis VB7 had 506 hypothetical proteins and 2584 proteins with functional assignments. VB7 genome had the presence of flagellin protein FlaA with 987 nucleotides and translation elongation factor TU (Ef-Tu) with 1191 nucleotides. The identified ORFs were 3911 with 47.22% GC content. Non ribosomal pepide synthetase cluster (NRPS) gene clusters in the genome of VB7, coded for the anti-microbial peptides surfactin, butirosin A/butirosin B, fengycin, difficidin, bacillibactin, bacilysin, and mersacidin the Ripp lanthipeptide. Antiviral action of VB7 was confirmed by suppression of local lesion formation of TSWV in the local lesion host cowpea (Co-7). Moreover, combined application of B. velezensis VB7 with phyto-antiviral principles M. Jalapa and H. cupanioides increased shoot length, shoot diameter, number of flower buds per plant, flower diameter, and fresh weight of chrysanthemum. Further, screening for antifungal action of VB7 expressed antifungal action against Foc in vitro by producing VOC/NVOC compounds, including hexadecanoic acid, linoelaidic acid, octadecanoic acid, clindamycin, formic acid, succinamide, furanone, 4H-pyran, nonanol and oleic acid, contributing to the total suppression of Foc apart from the presence of NRPS gene clusters. Thus, our study confirmed the scope for exploring B. velezensis VB7 on a commercial scale to manage tomato spotted wilt virus, groundnut bud necrosis virus, tobacco streak virus, S. sclerotiorum, and Foc causing panama wilt of banana.
Collapse
Affiliation(s)
- Saravanan R
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (S.R.); (C.S.); (P.R.); (A.S.K.); (V.G.M.)
| | - S Nakkeeran
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (S.R.); (C.S.); (P.R.); (A.S.K.); (V.G.M.)
- Correspondence: (S.N.); (R.Z.S.)
| | - N Saranya
- Department of Plant Biotechnology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| | - C Senthilraja
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (S.R.); (C.S.); (P.R.); (A.S.K.); (V.G.M.)
| | - P Renukadevi
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (S.R.); (C.S.); (P.R.); (A.S.K.); (V.G.M.)
| | - A.S. Krishnamoorthy
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (S.R.); (C.S.); (P.R.); (A.S.K.); (V.G.M.)
| | - Hesham Ali El Enshasy
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (S.R.); (C.S.); (P.R.); (A.S.K.); (V.G.M.)
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru 81310, Malaysia;
- Faculty of Engineering School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru 81310, Malaysia
- City of Scientific Research and Technology Applications (SRTA), New Burg Al Arab, Alexandria 21934, Egypt;
| | - Hala El-Adawi
- City of Scientific Research and Technology Applications (SRTA), New Burg Al Arab, Alexandria 21934, Egypt;
| | - V.G. Malathi
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (S.R.); (C.S.); (P.R.); (A.S.K.); (V.G.M.)
| | - Saleh H. Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - M. J. Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University, Bareilly 244001, India;
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA;
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s Arts, Science, and Commerce College, Shahada 425409, India
- Asian PGPR Society for Sustainable Agriculture, Auburn University, Auburn, AL 36830, USA
- Correspondence: (S.N.); (R.Z.S.)
| |
Collapse
|
6
|
Degli Esposti M, Moya-Beltrán A, Quatrini R, Hederstedt L. Respiratory Heme A-Containing Oxidases Originated in the Ancestors of Iron-Oxidizing Bacteria. Front Microbiol 2021; 12:664216. [PMID: 34211444 PMCID: PMC8239418 DOI: 10.3389/fmicb.2021.664216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Respiration is a major trait shaping the biology of many environments. Cytochrome oxidase containing heme A (COX) is a common terminal oxidase in aerobic bacteria and is the only one in mammalian mitochondria. The synthesis of heme A is catalyzed by heme A synthase (CtaA/Cox15), an enzyme that most likely coevolved with COX. The evolutionary origin of COX in bacteria has remained unknown. Using extensive sequence and phylogenetic analysis, we show that the ancestral type of heme A synthases is present in iron-oxidizing Proteobacteria such as Acidithiobacillus spp. These bacteria also contain a deep branching form of the major COX subunit (COX1) and an ancestral variant of CtaG, a protein that is specifically required for COX biogenesis. Our work thus suggests that the ancestors of extant iron-oxidizers were the first to evolve COX. Consistent with this conclusion, acidophilic iron-oxidizing prokaryotes lived on emerged land around the time for which there is the earliest geochemical evidence of aerobic respiration on earth. Hence, ecological niches of iron oxidation have apparently promoted the evolution of aerobic respiration.
Collapse
Affiliation(s)
- Mauro Degli Esposti
- Center for Genomic Sciences, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Ana Moya-Beltrán
- Fundación Ciencia & Vida, Santiago, Chile
- ANID–Millennium Science Initiative Program–Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Raquel Quatrini
- Fundación Ciencia & Vida, Santiago, Chile
- ANID–Millennium Science Initiative Program–Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastian, Santiago, Chile
| | - Lars Hederstedt
- The Microbiology Group, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|