1
|
Ilbeigi K, Mabille D, Matheeussen A, Hendrickx R, Claes M, Van Reet N, Anthonissen R, Hulpia F, Lin C, Maes L, Regnault C, Whitfield P, Roy R, Ungogo MA, Sterckx YGJ, De Winter H, Mertens B, Bundschuh M, De Koning HP, Van Calenbergh S, Caljon G. Discovery and Development of an Advanced Lead for the Treatment of African Trypanosomiasis. ACS Infect Dis 2024. [PMID: 39665421 DOI: 10.1021/acsinfecdis.4c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
African trypanosomiasis is a widespread disease of human and veterinary importance caused by various Trypanosoma spp. with a globally devastating impact and a need for novel treatment options. We here provide a comprehensive preclinical evaluation of nucleoside analogues, 6-thioether-modified tubercidins, with curative activity against African trypanosomiasis. Promising hits were identified following in vitro screening against the most relevant trypanosome species. Selected hit compounds were extensively tested for in vitro metabolic stability, potency in in vivo mouse models for the various species, genotoxicity in an in vitro testing battery, and mode of action studies (i.e., genome-wide RNA interference library screening and metabolomics). Among the nucleoside analogues, analogue 3 was curative in mouse models with no indication of genotoxicity and a low ecotoxicological footprint. Mode-of-action studies revealed that P1-type nucleoside transporters and adenosine kinase are involved in the uptake and activation, respectively. Analogue 3 represents a potent, advanced lead fitting the preferred target product profile for a broad-spectrum trypanocide regardless of the causative species.
Collapse
Affiliation(s)
- Kayhan Ilbeigi
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Dorien Mabille
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - An Matheeussen
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Rik Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Mathieu Claes
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Nick Van Reet
- Protozoology Research Group, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Roel Anthonissen
- Sciensano, SD Chemical and Physical Health Risks, 1050 Brussels, Belgium
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, B-9000 Gent, Belgium
| | - Cai Lin
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, B-9000 Gent, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Clement Regnault
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, Garscube Campus, University of Glasgow, Glasgow G61 1BD, U.K
| | - Phillip Whitfield
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, Garscube Campus, University of Glasgow, Glasgow G61 1BD, U.K
| | - Rajdeep Roy
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), 76829 Landau, Germany
| | - Marzuq A Ungogo
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, U.K
| | - Yann G-J Sterckx
- Laboratory of Medical Biochemistry (LMB), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, 2610 Wilrijk, Belgium
| | - Hans De Winter
- Laboratory of Medicinal Chemistry, Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Birgit Mertens
- Sciensano, SD Chemical and Physical Health Risks, 1050 Brussels, Belgium
| | - Mirco Bundschuh
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), 76829 Landau, Germany
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Harry P De Koning
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, U.K
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, B-9000 Gent, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
2
|
Ekra JY, Mafie EM, Sonan H, Kanh M, Gragnon BG, N'Goran EK, Srinivasan J. Trypanocide Use and Molecular Characterization of Trypanosomes Resistant to Diminazene Aceturate in Cattle in Northern Côte D'Ivoire. Trop Med Infect Dis 2024; 9:192. [PMID: 39330881 PMCID: PMC11435713 DOI: 10.3390/tropicalmed9090192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
The resistance of trypanosomes to the doses of trypanocide administered by farmers to their animals acts as a real brake on efforts to control to combat African trypanosomiasis. Thus, in-depth knowledge of the use of these different molecules and their resistance profiles will be necessary to establish an integrated strategy to combat African trypanosomiasis. To achieve these objectives, a participatory survey among farmers and a resistance diagnosis of trypanosome strains identified in three regions of northern Côte d'Ivoire (Bagoué, Poro and Tchologo) was carried out using the PCR-RFLP technique, followed by sequencing of genes of interest. This study made it possible to identify three molecules that are commonly used by 85% (63/74) of farmers. In descending order of use, we identified Isometamidium chloride (43%), Diminazene aceturate (28%) and Homidium bromide (14%). Three species of trypanosomes, Trypanosoma congolense, Trypanosoma. theileri and Trypanosoma vivax, were identified in farms, and only one strain had the adenosine transporter gene (Trypanosoma congolense), but this strain was sensitive to the Diminazene aceturate molecule. Comparison of the sequence of this trypanosome strain showed that it is different to the Kenyan strain diagnosed as resistant to the Diminazene aceturate molecule. This study shows that a variety of trypanocides are used by farmers, and that the resistance profile of the strains to the Diminazene aceturate molecule could not be observed. However, it is important to further investigate the other molecules encountered in Côte d'Ivoire.
Collapse
Affiliation(s)
- Jean-Yves Ekra
- Department of Veterinary Microbiology Parasitology and Biotechnology, Sokoine University of Agriculture, Morogoro 67125, Tanzania
- SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro 67125, Tanzania
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Eliakunda Michael Mafie
- Department of Veterinary Microbiology Parasitology and Biotechnology, Sokoine University of Agriculture, Morogoro 67125, Tanzania
| | - Henri Sonan
- Unité de Formation et de Recherche (UFR) des Sciences Biologiques, Département de Biochimie-Génétique, Université Peleforo Gon Coulibaly, Korhogo BP1328, Côte d'Ivoire
| | - Michael Kanh
- Unité de Formation et de Recherche (UFR) des Sciences Biologiques, Département de Biochimie-Génétique, Université Peleforo Gon Coulibaly, Korhogo BP1328, Côte d'Ivoire
| | - Biégo Guillaume Gragnon
- Laboratoire National d'Appui au Développement Agricole (LANADA), Korhogo BP1328, Côte d'Ivoire
| | - Edouard K N'Goran
- Unité de Formation et de Recherche (UFR) des Sciences Biologiques, Département de Biochimie-Génétique, Université Peleforo Gon Coulibaly, Korhogo BP1328, Côte d'Ivoire
| | - Jagan Srinivasan
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| |
Collapse
|
3
|
Morrison LJ, Barrett MP, Steketee PC, Cecchi G, Kijanga O, Mramba F, Auty HK. What is needed to achieve effective and sustainable control of African animal trypanosomosis? Trends Parasitol 2024; 40:679-686. [PMID: 39048503 DOI: 10.1016/j.pt.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024]
Abstract
A welcome resurgence in African animal trypanosomosis (AAT) research has resulted in advances in capabilities, foundational datasets, and understanding. Additionally, there is the prospect of the first new trypanocide in >60 years. However, it is vital to ensure that advances translate to improved and sustainable control in the field. A recent meeting, the Symposium on African Livestock Trypanosomes - Tanzania, convened stakeholders from across the spectrum of AAT research and control to ask how this can be achieved. Current constraints on progress were defined, as were critical gaps and opportunities that need addressing. There is a requirement and opportunity for the AAT research community to communicate, collaborate, and coordinate to maintain momentum and achieve the ultimate goal of sustainable AAT control.
Collapse
Affiliation(s)
| | | | | | - Giuliano Cecchi
- Animal Production and Health Division (NSA), Food and Agriculture Organization of the United Nations (FAO), Rome, Italy
| | - Oliver Kijanga
- Vector and Vector-Borne Diseases Institute, Tanga, Tanzania
| | | | - Harriet K Auty
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
4
|
Ungogo MA, de Koning HP. Drug resistance in animal trypanosomiases: Epidemiology, mechanisms and control strategies. Int J Parasitol Drugs Drug Resist 2024; 25:100533. [PMID: 38555795 PMCID: PMC10990905 DOI: 10.1016/j.ijpddr.2024.100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024]
Abstract
Animal trypanosomiasis (AT) is a complex of veterinary diseases known under various names such as nagana, surra, dourine and mal de caderas, depending on the country, the infecting trypanosome species and the host. AT is caused by parasites of the genus Trypanosoma, and the main species infecting domesticated animals are T. brucei brucei, T. b. rhodesiense, T. congolense, T. simiae, T. vivax, T. evansi and T. equiperdum. AT transmission, again depending on species, is through tsetse flies or common Stomoxys and tabanid flies or through copulation. Therefore, the geographical spread of all forms of AT together is not restricted to the habitat of a single vector like the tsetse fly and currently includes almost all of Africa, and most of South America and Asia. The disease is a threat to millions of companion and farm animals in these regions, creating a financial burden in the billions of dollars to developing economies as well as serious impacts on livestock rearing and food production. Despite the scale of these impacts, control of AT is neglected and under-resourced, with diagnosis and treatments being woefully inadequate and not improving for decades. As a result, neither the incidence of the disease, nor the effectiveness of treatment is documented in most endemic countries, although it is clear that there are serious issues of resistance to the few old drugs that are available. In this review we particularly look at the drugs, their application to the various forms of AT, and their mechanisms of action and resistance. We also discuss the spread of veterinary trypanocide resistance and its drivers, and highlight current and future strategies to combat it.
Collapse
Affiliation(s)
- Marzuq A Ungogo
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom; School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Harry P de Koning
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
5
|
Oaikhena EE, Yahaya UA, Abdulsalami SM, Egbe NL, Adeyemi MM, Ungogo MA, Ebiloma GU, Zoiku FK, Fordjour PA, Elati HAA, Quashie NB, Igoli JO, Gray AI, Lawson C, Ferro VA, de Koning HP. The activities of suaveolol and other compounds from Hyptis suaveolens and Momordica charantia against the aetiological agents of African trypanosomiasis, leishmaniasis and malaria. Exp Parasitol 2024; 263-264:108807. [PMID: 39043327 DOI: 10.1016/j.exppara.2024.108807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/24/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024]
Abstract
African trypanosomiasis and malaria are among the most severe health challenges to humans and livestock in Africa and new drugs are needed. Leaves of Hyptis suaveolens Kuntze (Lamiaceae) and Momordica charantia L. (Cucurbitaceae) were extracted with hexane, ethyl acetate, and then methanol, and subjected to silica gel column chromatography. Structures of six isolated compounds were elucidated through NMR and HR-EIMS spectrometry. Callistrisic acid, dehydroabietinol, suaveolic acid, suaveolol, and a mixture of suaveolol and suaveolic acid (SSA) were obtained from H. suaveolens, while karavilagenin D and momordicin I acetate were obtained from M. charantia. The isolated biomolecules were tested against trypomastigotes of Trypanosoma brucei brucei and T. congolense, and against Plasmodium falciparum. The most promising EC50 values were obtained for the purified suaveolol fraction, at 2.71 ± 0.36 μg/mL, and SSA, exhibiting an EC50 of 1.56 ± 0.17 μg/mL against T. b. brucei trypomastigotes. Suaveolic acid had low activity against T. b. brucei but displayed moderate activity against T. congolense trypomastigotes at 11.1 ± 0.5 μg/mL. Suaveolol and SSA were also tested against T. evansi, T. equiperdum, Leishmania major and L. mexicana but the antileishmanial activity was low. Neither of the active compounds, nor the mixture of the two, displayed any cytotoxic effect on human foreskin fibroblast (HFF) cells at even the highest concentration tested, being 200 μg/mL. We conclude that suaveolol and its mixture possessed significant and selective trypanocidal activity.
Collapse
Affiliation(s)
- Enimie E Oaikhena
- Department of Biotechnology, Nigerian Defence Academy, PMB 2109, Kaduna, Kaduna State, Nigeria
| | - Umar A Yahaya
- Department of Biological Sciences, Nigerian Defence Academy, PMB 2109, Kaduna, Kaduna State, Nigeria
| | - Sani M Abdulsalami
- Department of Biotechnology, Nigerian Defence Academy, PMB 2109, Kaduna, Kaduna State, Nigeria
| | - Nkechi L Egbe
- Department of Biotechnology, Nigerian Defence Academy, PMB 2109, Kaduna, Kaduna State, Nigeria
| | - Modupe M Adeyemi
- Department of Chemistry, Nigerian Defence Academy, Kaduna, Kaduna State, Nigeria
| | - Marzuq A Ungogo
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, EH8 PYL, UK
| | - Godwin U Ebiloma
- School of Science, Engineering & Environment, University of Salford, M5 4NT, Manchester, UK
| | - Felix K Zoiku
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Prince A Fordjour
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Hamza A A Elati
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK; Department of Pharmacology and Toxicology, Pharmacy College, University of Elmergib, Al Khums, Libya
| | - Neils B Quashie
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Ghana; Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, Ghana
| | - John O Igoli
- Department of Chemistry, Joseph Sarwuan Tarka University, PMB 2373, Makurdi, Benue State, Nigeria; Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Alexander I Gray
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Christopher Lawson
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Valerie A Ferro
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Harry P de Koning
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
6
|
Nué-Martinez JJ, Cisneros D, Moreno-Blázquez MD, Fonseca-Berzal C, Manzano JI, Kraeutler D, Ungogo MA, Aloraini MA, Elati HAA, Ibáñez-Escribano A, Lagartera L, Herraiz T, Gamarro F, de Koning HP, Gómez-Barrio A, Dardonville C. Synthesis and Biophysical and Biological Studies of N-Phenylbenzamide Derivatives Targeting Kinetoplastid Parasites. J Med Chem 2023; 66:13452-13480. [PMID: 37729094 PMCID: PMC10578353 DOI: 10.1021/acs.jmedchem.3c00697] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Indexed: 09/22/2023]
Abstract
The AT-rich mitochondrial DNA (kDNA) of trypanosomatid parasites is a target of DNA minor groove binders. We report the synthesis, antiprotozoal screening, and SAR studies of three series of analogues of the known antiprotozoal kDNA binder 2-((4-(4-((4,5-dihydro-1H-imidazol-3-ium-2-yl)amino)benzamido)phenyl)amino)-4,5-dihydro-1H-imidazol-3-ium (1a). Bis(2-aminoimidazolines) (1) and bis(2-aminobenzimidazoles) (2) showed micromolar range activity against Trypanosoma brucei, whereas bisarylimidamides (3) were submicromolar inhibitors of T. brucei, Trypanosoma cruzi, and Leishmania donovani. None of the compounds showed relevant activity against the urogenital, nonkinetoplastid parasite Trichomonas vaginalis. We show that series 1 and 3 bind strongly and selectively to the minor groove of AT DNA, whereas series 2 also binds by intercalation. The measured pKa indicated different ionization states at pH 7.4, which correlated with the DNA binding affinities (ΔTm) for series 2 and 3. Compound 3a, which was active and selective against the three parasites and displayed adequate metabolic stability, is a fine candidate for in vivo studies.
Collapse
Affiliation(s)
- J. Jonathan Nué-Martinez
- Instituto
de Química Médica, IQM−CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
- PhD
Programme in Medicinal Chemistry, Doctoral School, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - David Cisneros
- Instituto
de Química Médica, IQM−CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
- PhD
Programme in Medicinal Chemistry, Doctoral School, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | | | - Cristina Fonseca-Berzal
- Departamento
de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - José Ignacio Manzano
- Instituto
de Parasitología y Biomedicina “Löpez Neyra”,
IPBLN-CSIC, Parque Tecnolögico
de Ciencias de la Salud, 18016 Granada, Spain
| | - Damien Kraeutler
- Instituto
de Química Médica, IQM−CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Marzuq A. Ungogo
- Institute
of Infection, Immunity and Inflammation, College of Medical, Veterinary
and Life Sciences, University of Glasgow, G12 8TA Glasgow, U.K.
| | - Maha A. Aloraini
- Institute
of Infection, Immunity and Inflammation, College of Medical, Veterinary
and Life Sciences, University of Glasgow, G12 8TA Glasgow, U.K.
| | - Hamza A. A. Elati
- Institute
of Infection, Immunity and Inflammation, College of Medical, Veterinary
and Life Sciences, University of Glasgow, G12 8TA Glasgow, U.K.
| | - Alexandra Ibáñez-Escribano
- Departamento
de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Laura Lagartera
- Instituto
de Química Médica, IQM−CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Tomás Herraiz
- Instituto
de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN−CSIC, José Antonio Novais 10, Ciudad
Universitaria, 28040 Madrid, Spain
| | - Francisco Gamarro
- Instituto
de Parasitología y Biomedicina “Löpez Neyra”,
IPBLN-CSIC, Parque Tecnolögico
de Ciencias de la Salud, 18016 Granada, Spain
| | - Harry P. de Koning
- Institute
of Infection, Immunity and Inflammation, College of Medical, Veterinary
and Life Sciences, University of Glasgow, G12 8TA Glasgow, U.K.
| | - Alicia Gómez-Barrio
- Departamento
de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | | |
Collapse
|
7
|
Ilu A, Chia MA, Cataldi TR, Labate CA, Ebiloma GU, Yusuf PO, Shuaibu MN, Balogun EO. Type-I like metalloproteinase in the venom of the West African saw-scaled carpet viper (Echis ocellatus) has anti-trypanosomal activity against African trypanosomes. Toxicon 2023; 229:107138. [PMID: 37127124 DOI: 10.1016/j.toxicon.2023.107138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
African trypanosomiasis is an infectious disease caused by hemoparasites of the genus Trypanosoma and remains a major health problem in Africa - killing around 4000 people and animals worth an estimated $5 billion, annually. The absence of a vaccine and satisfactory drug against African trypanosomiasis (AT) necessitates the continued search for new chemotherapy options. Owing to the rich biochemical diversity in snake venom, it has recently become a source of therapeutic peptides that are being explored for the development of novel drug candidates for diverse ailments such as cancers and infectious diseases. To explore this, Echis ocellatus venom (EOV) was investigated for the presence of an anti-Trypanosoma factor, with the subsequent aim to isolate and identify it. Crude EOV was collected and tested in vitro on the bloodstream form (BSF) i.e. long and slender morphological form of Trypanosoma brucei and T. congolense. This initial testing was followed by a sequential anti-trypanosomal assay guided purification of EOV using ethanol precipitation, distillation, and ion exchange (IEX) chromatography to obtain the active trypanocidal component. The purified anti-Trypanosoma factor, estimated to be a 52-kDa protein on SDS-PAGE, was subjected to in-gel trypsin digestion and 2D RP HPLC-MS/MS to identify the protein. The anti-Trypanosoma factor was revealed to be a zinc-dependent metalloproteinase that contains the HEXXHXXGXXH adamalysin motif. This protein may provide a conceptual framework for the possible design of a safe and effective anti-trypanosomal peptide for the treatment of AT.
Collapse
Affiliation(s)
- Ameh Ilu
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria; Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
| | - Mathias A Chia
- Department of Botany, Ahmadu Bello University, Zaria, Nigeria
| | - Thais R Cataldi
- Department of Genetics, Laboratório Multiusuários Centralizado de Genômica Funcional Aplicada à Agropecuária e Agroenergia, University of Sao Paulo, Piracicaba, Brazil
| | - Carlos A Labate
- Department of Genetics, Laboratório Multiusuários Centralizado de Genômica Funcional Aplicada à Agropecuária e Agroenergia, University of Sao Paulo, Piracicaba, Brazil
| | - Godwin U Ebiloma
- School of Health & Life Sciences, Teesside University, Middlesbrough, United Kingdom
| | - Peter O Yusuf
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria, Nigeria
| | - Mohammed N Shuaibu
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria; Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria; Centre for Biotechnology Research and Training, Ahmadu Bello University, Zaria, Nigeria
| | - Emmanuel O Balogun
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria; Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria; Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan; Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
8
|
Okello I, Mafie E, Nzalawahe J, Eastwood G, Mboera LEG, Hakizimana JN, Ogola K. Trypanosoma Congolense Resistant to Trypanocidal Drugs Homidium and Diminazene and their Molecular Characterization in Lambwe, Kenya. Acta Parasitol 2023; 68:130-144. [PMID: 36441294 DOI: 10.1007/s11686-022-00640-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE African animal trypanosomiasis (AAT) is a disease affecting livestock in sub-Saharan Africa. The use of trypanocidal agents is common practice to control AAT. This study aimed to identify drug-resistant Trypanosoma congolense in Lambwe, Kenya, and assess if molecular test backed with mice tests is reliable in detecting drug sensitivity. METHODS Blood samples were collected from cattle, in Lambwe, subjected to buffy coat extraction and Trypanosoma spp. detected under a microscope. Field and archived isolates were subjected to molecular characterization. Species-specific T. congolense and TcoAde2 genes were amplified using PCR to detect polymorphisms. Phylogenetic analysis were performed. Four T. congolense isolates were evaluated individually in 24 test mice per isolate. Test mice were then grouped (n=6) per treatement with diminazene, homidium, isometamidium, and controls. Mice were subsequently assessed for packed cell volume (PCV) and relapses using microscopy. RESULTS Of 454 samples, microscopy detected 11 T. congolense spp, eight had TcoAde2 gene, six showed polymorphisms in molecular assay. Phylogenetic analysis grouped isolates into five. Two archived isolates were homidium resistant, one was also diminazene resistant in mice. Two additional isolates were sensitive to all the drugs. Interestingly, one sensitive isolate lacked polymorphisms, while the second lacked TcoAde2, indicating the gene is not involved in drug sensitivity. Decline in PCV was pronounced in relapsed isolates. CONCLUSION T. congolense associated with homidium and diminazene resistance exist in Lambwe. The impact can be their spread and AAT increase. Polymorphisms are present in Lambwe strains. TcoAde2 is unlikely involved in drug sensitivity. Molecular combined with mice tests is reliable drug sensitivity test and can be applied to other genes. Decline in PCV in infected-treated host could suggest drug resistance.
Collapse
Affiliation(s)
- Ivy Okello
- Africa Centre of Excellence for Infectious Diseases of Humans and Animals in East and Southern Africa, SACIDS Foundation for One Health, P.O. Box 3297, Morogoro, Tanzania. .,Department of Veterinary Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, Chuo Kikuu, P.O. BOX 3019, Morogoro, Tanzania.
| | - Eliakunda Mafie
- Department of Veterinary Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, Chuo Kikuu, P.O. BOX 3019, Morogoro, Tanzania
| | - Jahashi Nzalawahe
- Department of Veterinary Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, Chuo Kikuu, P.O. BOX 3019, Morogoro, Tanzania
| | - Gillian Eastwood
- Department of Entomology, College of Agriculture & Life Sciences, Virginia Polytechnic Institute & State University, Blacksburg, VA, USA
| | - Leonard E G Mboera
- Africa Centre of Excellence for Infectious Diseases of Humans and Animals in East and Southern Africa, SACIDS Foundation for One Health, P.O. Box 3297, Morogoro, Tanzania
| | - Jean Nepomuscene Hakizimana
- Africa Centre of Excellence for Infectious Diseases of Humans and Animals in East and Southern Africa, SACIDS Foundation for One Health, P.O. Box 3297, Morogoro, Tanzania.,Department of Veterinary Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, Chuo Kikuu, P.O. BOX 3019, Morogoro, Tanzania
| | - Kennedy Ogola
- Pharmacology & Molecular Laboratory, Agricultural & Livestock Research Organization, Biotechnology Research Institute, P. O. Box 362, Kikuyu, Kenya
| |
Collapse
|
9
|
Ungogo MA, Aldfer MM, Natto MJ, Zhuang H, Chisholm R, Walsh K, McGee M, Ilbeigi K, Asseri JI, Burchmore RJS, Caljon G, Van Calenbergh S, De Koning HP. Cloning and Characterization of Trypanosoma congolense and T. vivax Nucleoside Transporters Reveal the Potential of P1-Type Carriers for the Discovery of Broad-Spectrum Nucleoside-Based Therapeutics against Animal African Trypanosomiasis. Int J Mol Sci 2023; 24:ijms24043144. [PMID: 36834557 PMCID: PMC9960827 DOI: 10.3390/ijms24043144] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
African Animal Trypanosomiasis (AAT), caused predominantly by Trypanosoma brucei brucei, T. vivax and T. congolense, is a fatal livestock disease throughout Sub-Saharan Africa. Treatment options are very limited and threatened by resistance. Tubercidin (7-deazaadenosine) analogs have shown activity against individual parasites but viable chemotherapy must be active against all three species. Divergence in sensitivity to nucleoside antimetabolites could be caused by differences in nucleoside transporters. Having previously characterized the T. brucei nucleoside carriers, we here report the functional expression and characterization of the main adenosine transporters of T. vivax (TvxNT3) and T. congolense (TcoAT1/NT10), in a Leishmania mexicana cell line ('SUPKO') lacking adenosine uptake. Both carriers were similar to the T. brucei P1-type transporters and bind adenosine mostly through interactions with N3, N7 and 3'-OH. Expression of TvxNT3 and TcoAT1 sensitized SUPKO cells to various 7-substituted tubercidins and other nucleoside analogs although tubercidin itself is a poor substrate for P1-type transporters. Individual nucleoside EC50s were similar for T. b. brucei, T. congolense, T. evansi and T. equiperdum but correlated less well with T. vivax. However, multiple nucleosides including 7-halogentubercidines displayed pEC50>7 for all species and, based on transporter and anti-parasite SAR analyses, we conclude that nucleoside chemotherapy for AAT is viable.
Collapse
Affiliation(s)
- Marzuq A. Ungogo
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria 810107, Kaduna State, Nigeria
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Mustafa M. Aldfer
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Manal J. Natto
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Hainan Zhuang
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Robyn Chisholm
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Katy Walsh
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - MarieClaire McGee
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Kayhan Ilbeigi
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, B-2610 Wilrijk, Belgium
| | - Jamal Ibrahim Asseri
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Richard J. S. Burchmore
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, B-2610 Wilrijk, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, B-9000 Gent, Belgium
| | - Harry P. De Koning
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
- Correspondence:
| |
Collapse
|
10
|
The Activity of Red Nigerian Propolis and Some of Its Components against Trypanosoma brucei and Trypanosoma congolense. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020622. [PMID: 36677679 PMCID: PMC9860874 DOI: 10.3390/molecules28020622] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
Propolis is a resin that is gathered by bees from exudates produced by various plants. Its exact chemical composition depends on the plants available near the hive. Bees use propolis to coat the surfaces of the hive, where it acts as an anti-infective. Regardless of the chemical composition of propolis, it is always anti-protozoal, probably because protozoan parasites, particularly Lotmarium passim, are widespread in bee populations. The protozoa Trypanosoma brucei and T. congolense cause disease in humans and/or animals. The existing drugs for treating these diseases are old and resistance is an increasingly severe problem. The many types of propolis present a rich source of anti-trypanosomal compounds-from a material gathered by bees in an environmentally friendly way. In the current work, red Nigerian propolis from Rivers State, Nigeria was tested against T. brucei and T. congolense and found to be highly active (EC50 1.66 and 4.00 µg/mL, respectively). Four isoflavonoids, vestitol, neovestitol, 7-methylvestitol and medicarpin, were isolated from the propolis. The isolated compounds were also tested against T. brucei and T. congolense, and vestitol displayed the highest activity at 3.86 and 4.36 µg/mL, respectively. Activities against drug-resistant forms of T. brucei and T. congolense were similar to those against wild type.
Collapse
|
11
|
Kasozi KI, MacLeod ET, Welburn SC. African animal trypanocide resistance: A systematic review and meta-analysis. Front Vet Sci 2023; 9:950248. [PMID: 36686196 PMCID: PMC9846564 DOI: 10.3389/fvets.2022.950248] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 11/28/2022] [Indexed: 01/05/2023] Open
Abstract
Background African animal trypanocide resistance (AATr) continues to undermine global efforts to eliminate the transmission of African trypanosomiasis in endemic communities. The continued lack of new trypanocides has precipitated drug misuse and overuse, thus contributing to the development of the AATr phenotype. In this study, we investigated the threat associated with AATr by using the major globally available chemotherapeutical agents. Methods A total of seven electronic databases were screened for an article on trypanocide resistance in AATr by using keywords on preclinical and clinical trials with the number of animals with treatment relapse, days taken to relapse, and resistant gene markers using the PRISMA checklist. Data were cleaned using the SR deduplicator and covidence and analyzed using Cochrane RevMan®. Dichotomous outputs were presented using risk ratio (RR), while continuous data were presented using the standardized mean difference (SMD) at a 95% confidence interval. Results A total of eight publications in which diminazene aceturate (DA), isometamidium chloride (ISM), and homidium chloride/bromide (HB) were identified as the major trypanocides were used. In all preclinical studies, the development of resistance was in the order of HB > ISM > DA. DA vs. ISM (SMD = 0.15, 95% CI: -0.54, 0.83; I 2 = 46%, P = 0.05), DA vs. HB (SMD = 0.96, 95% CI: 0.47, 1.45; I 2 = 0%, P = 0.86), and HB vs. ISM (SMD = -0.41, 95% CI: -0.96, 0.14; I 2 = 5%, P = 0.38) showed multiple cross-resistance. Clinical studies also showed evidence of multi-drug resistance on DA and ISM (RR = 1.01, 95% CI: 0.71-1.43; I 2 = 46%, P = 0.16). To address resistance, most preclinical studies increased the dosage and the treatment time, and this failed to improve the patient's prognosis. Major markers of resistance explored include TbAT1, P1/P2 transporters, folate transporters, such as F-I, F-II, F-III, and polyamine biosynthesis inhibitors. In addition, immunosuppressed hosts favor the development of AATr. Conclusion AATr is a threat that requires a shift in the current disease control strategies in most developing nations due to inter-species transmission. Multi-drug cross-resistance against the only accessible trypanocides is a major public health risk, justifying the need to revise the policy in developing countries to promote control of African trypanosomiasis.
Collapse
Affiliation(s)
- Keneth Iceland Kasozi
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom,School of Medicine, Kabale University, Kabale, Uganda,*Correspondence: Keneth Iceland Kasozi ✉ ; ✉
| | - Ewan Thomas MacLeod
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Susan Christina Welburn
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China,Susan Christina Welburn ✉
| |
Collapse
|
12
|
Campagnaro GD. Purine Transporters as Efficient Carriers for Anti-kinetoplastid Molecules: 3'-Deoxytubercidin versus Trypanosomes. ACS Infect Dis 2022; 8:1727-1730. [PMID: 35925865 DOI: 10.1021/acsinfecdis.2c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
After a growing interest in the function of purine transporters in protozoa during the 1990s and early 2000s, the area experienced a lull phase. Recently, however, the potential of tubercidin derivatives, particularly 3'-deoxytubercidin, to cure Trypanosoma brucei infection seems to have started a new wave of interest in the subject, with a large number of newly designed compounds and extensive in vitro testing against T. brucei, Trypanosoma cruzi, and Leishmania spp. Understanding the biochemical properties of purine transporters and using them as drug carriers seem to be emerging once again as a valuable tactic in the fight against neglected diseases.
Collapse
Affiliation(s)
- Gustavo Daniel Campagnaro
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049-900 São Paulo, Brazil
| |
Collapse
|
13
|
Mabille D, Ilbeigi K, Hendrickx S, Ungogo MA, Hulpia F, Lin C, Maes L, de Koning HP, Van Calenbergh S, Caljon G. Nucleoside analogues for the treatment of animal trypanosomiasis. Int J Parasitol Drugs Drug Resist 2022; 19:21-30. [PMID: 35567803 PMCID: PMC9111543 DOI: 10.1016/j.ijpddr.2022.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 11/21/2022]
Abstract
Animal trypanosomiasis (AT) is a parasitic disease with high socio-economic impact. Given the limited therapeutic options and problems of toxicity and drug resistance, this study assessed redirecting our previously identified antitrypanosomal nucleosides for the treatment of AT. Promising hits were identified with excellent in vitro activity across all important animal trypanosome species. Compound 7, an inosine analogue, and our previously described lead compound, 3'-deoxytubercidin (8), showed broad spectrum anti-AT activity, metabolic stability in the target host species and absence of toxicity, but with variable efficacy ranging from limited activity to full cure in mouse models of Trypanosoma congolense and T. vivax infection. Several compounds show promise against T. evansi (surra) and T. equiperdum (dourine). Given the preferred target product profile for a broad-spectrum compound against AT, this study emphasizes the need to include T. vivax in the screening cascade given its divergent susceptibility profile and provides a basis for lead optimization towards such broad spectrum anti-AT compound.
Collapse
Affiliation(s)
- Dorien Mabille
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium.
| | - Kayhan Ilbeigi
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium.
| | - Sarah Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium.
| | - Marzuq A Ungogo
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom.
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry, Ghent University, Ghent, Belgium.
| | - Cai Lin
- Laboratory for Medicinal Chemistry, Ghent University, Ghent, Belgium.
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium.
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom.
| | | | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
14
|
Zíková A. Mitochondrial adaptations throughout the Trypanosoma brucei life cycle. J Eukaryot Microbiol 2022; 69:e12911. [PMID: 35325490 DOI: 10.1111/jeu.12911] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 12/01/2022]
Abstract
The unicellular parasite Trypanosoma brucei has a digenetic life cycle that alternates between a mammalian host and an insect vector. During programmed development, this extracellular parasite encounters strikingly different environments that determine its energy metabolism. Functioning as a bioenergetic, biosynthetic, and signaling center, the single mitochondrion of T. brucei is drastically remodeled to support the dynamic cellular demands of the parasite. This manuscript will provide an up-to-date overview of how the distinct T. brucei developmental stages differ in their mitochondrial metabolic and bioenergetic pathways, with a focus on the electron transport chain, proline oxidation, TCA cycle, acetate production, and ATP generation. Although mitochondrial metabolic rewiring has always been simply viewed as a consequence of the differentiation process, the possibility that certain mitochondrial activities reinforce parasite differentiation will be explored.
Collapse
Affiliation(s)
- Alena Zíková
- Biology Centre CAS, Institute of Parasitology, University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
| |
Collapse
|
15
|
Differences in Transporters Rather than Drug Targets Are the Principal Determinants of the Different Innate Sensitivities of Trypanosoma congolense and Trypanozoon Subgenus Trypanosomes to Diamidines and Melaminophenyl Arsenicals. Int J Mol Sci 2022; 23:ijms23052844. [PMID: 35269985 PMCID: PMC8911344 DOI: 10.3390/ijms23052844] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/24/2022] Open
Abstract
The animal trypanosomiases are infections in a wide range of (domesticated) animals with any species of African trypanosome, such as Trypanosoma brucei, T. evansi, T. congolense, T. equiperdum and T. vivax. Symptoms differ between host and infective species and stage of infection and are treated with a small set of decades-old trypanocides. A complication is that not all trypanosome species are equally sensitive to all drugs and the reasons are at best partially understood. Here, we investigate whether drug transporters, mostly identified in T. b. brucei, determine the different drug sensitivities. We report that homologues of the aminopurine transporter TbAT1 and the aquaporin TbAQP2 are absent in T. congolense, while their introduction greatly sensitises this species to diamidine (pentamidine, diminazene) and melaminophenyl (melarsomine) drugs. Accumulation of these drugs in the transgenic lines was much more rapid. T. congolense is also inherently less sensitive to suramin than T. brucei, despite accumulating it faster. Expression of a proposed suramin transporter, located in T. brucei lysosomes, in T. congolense, did not alter its suramin sensitivity. We conclude that for several of the most important classes of trypanocides the presence of specific transporters, rather than drug targets, is the determining factor of drug efficacy.
Collapse
|
16
|
Alenezi SS, Alenezi ND, Ebiloma GU, Natto MJ, Ungogo MA, Igoli JO, Ferro VA, Gray AI, Fearnley J, de Koning HP, Watson DG. The Antiprotozoal Activity of Papua New Guinea Propolis and Its Triterpenes. Molecules 2022; 27:1622. [PMID: 35268726 PMCID: PMC8911803 DOI: 10.3390/molecules27051622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/17/2022] Open
Abstract
Profiling a propolis sample from Papua New Guinea (PNG) using high-resolution mass spectrometry indicated that it contained several triterpenoids. Further fractionation by column chromatography and medium-pressure liquid chromatography (MPLC) followed by nuclear magnetic resonance spectroscopy (NMR) identified 12 triterpenoids. Five of these were obtained pure and the others as mixtures of two or three compounds. The compounds identified were: mangiferonic acid, ambonic acid, isomangiferolic acid, ambolic acid, 27-hydroxyisomangiferolic acid, cycloartenol, cycloeucalenol, 24-methylenecycloartenol, 20-hydroxybetulin, betulin, betulinic acid and madecassic acid. The fractions from the propolis and the purified compounds were tested in vitro against Crithidia fasciculata, Trypanosoma congolense, drug-resistant Trypanosoma congolense, Trypanosoma b. brucei and multidrug-resistant Trypanosoma b. brucei (B48). They were also assayed for their toxicity against U947 cells. The compounds and fractions displayed moderate to high activity against parasitic protozoa but only low cytotoxicity against the mammalian cells. The most active isolated compound, 20-hydroxybetulin, was found to be trypanostatic when different concentrations were tested against T. b. brucei growth.
Collapse
Affiliation(s)
- Samya S. Alenezi
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (S.S.A.); (N.D.A.); (V.A.F.); (A.I.G.)
| | - Naif D. Alenezi
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (S.S.A.); (N.D.A.); (V.A.F.); (A.I.G.)
| | - Godwin U. Ebiloma
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (G.U.E.); (M.J.N.); (M.A.U.); (J.O.I.)
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
| | - Manal J. Natto
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (G.U.E.); (M.J.N.); (M.A.U.); (J.O.I.)
| | - Marzuq A. Ungogo
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (G.U.E.); (M.J.N.); (M.A.U.); (J.O.I.)
| | - John O. Igoli
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (G.U.E.); (M.J.N.); (M.A.U.); (J.O.I.)
- Phytochemistry Research Group, Department of Chemistry, University of Agriculture, Makurdi PMB 2373, Nigeria
| | - Valerie A. Ferro
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (S.S.A.); (N.D.A.); (V.A.F.); (A.I.G.)
| | - Alexander I. Gray
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (S.S.A.); (N.D.A.); (V.A.F.); (A.I.G.)
| | | | - Harry P. de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (G.U.E.); (M.J.N.); (M.A.U.); (J.O.I.)
| | - David G. Watson
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (S.S.A.); (N.D.A.); (V.A.F.); (A.I.G.)
| |
Collapse
|
17
|
Steketee PC, Dickie EA, Iremonger J, Crouch K, Paxton E, Jayaraman S, Alfituri OA, Awuah-Mensah G, Ritchie R, Schnaufer A, Rowan T, de Koning HP, Gadelha C, Wickstead B, Barrett MP, Morrison LJ. Divergent metabolism between Trypanosoma congolense and Trypanosoma brucei results in differential sensitivity to metabolic inhibition. PLoS Pathog 2021; 17:e1009734. [PMID: 34310651 PMCID: PMC8384185 DOI: 10.1371/journal.ppat.1009734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/24/2021] [Accepted: 06/21/2021] [Indexed: 11/18/2022] Open
Abstract
Animal African Trypanosomiasis (AAT) is a debilitating livestock disease prevalent across sub-Saharan Africa, a main cause of which is the protozoan parasite Trypanosoma congolense. In comparison to the well-studied T. brucei, there is a major paucity of knowledge regarding the biology of T. congolense. Here, we use a combination of omics technologies and novel genetic tools to characterise core metabolism in T. congolense mammalian-infective bloodstream-form parasites, and test whether metabolic differences compared to T. brucei impact upon sensitivity to metabolic inhibition. Like the bloodstream stage of T. brucei, glycolysis plays a major part in T. congolense energy metabolism. However, the rate of glucose uptake is significantly lower in bloodstream stage T. congolense, with cells remaining viable when cultured in concentrations as low as 2 mM. Instead of pyruvate, the primary glycolytic endpoints are succinate, malate and acetate. Transcriptomics analysis showed higher levels of transcripts associated with the mitochondrial pyruvate dehydrogenase complex, acetate generation, and the glycosomal succinate shunt in T. congolense, compared to T. brucei. Stable-isotope labelling of glucose enabled the comparison of carbon usage between T. brucei and T. congolense, highlighting differences in nucleotide and saturated fatty acid metabolism. To validate the metabolic similarities and differences, both species were treated with metabolic inhibitors, confirming that electron transport chain activity is not essential in T. congolense. However, the parasite exhibits increased sensitivity to inhibition of mitochondrial pyruvate import, compared to T. brucei. Strikingly, T. congolense exhibited significant resistance to inhibitors of fatty acid synthesis, including a 780-fold higher EC50 for the lipase and fatty acid synthase inhibitor Orlistat, compared to T. brucei. These data highlight that bloodstream form T. congolense diverges from T. brucei in key areas of metabolism, with several features that are intermediate between bloodstream- and insect-stage T. brucei. These results have implications for drug development, mechanisms of drug resistance and host-pathogen interactions.
Collapse
Affiliation(s)
- Pieter C Steketee
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Emily A Dickie
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - James Iremonger
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Kathryn Crouch
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Edith Paxton
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Siddharth Jayaraman
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Omar A Alfituri
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Ryan Ritchie
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Achim Schnaufer
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Tim Rowan
- Global Alliance for Livestock Veterinary Medicines, Edinburgh, United Kingdom
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Catarina Gadelha
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Bill Wickstead
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Michael P Barrett
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.,Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom
| | - Liam J Morrison
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|