1
|
Xu J, Zhao Y, Zhou Y, Dai S, Zhu N, Meng Q, Fan S, Zhao W, Yuan X. Fungal Extracellular Vesicle Proteins with Potential in Biological Interaction. Molecules 2024; 29:4012. [PMID: 39274860 PMCID: PMC11396447 DOI: 10.3390/molecules29174012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Extracellular vesicles (EVs) are vesicle-like structures composed of lipid bilayers, which can be divided into apoptotic bodies, microbubbles and exosomes. They are nanoparticles used for the exchange of information between cells. EVs contains many substances, including protein. With the development of proteomics, we know more about the types and functions of protein in vesicles. The potential functions of proteins in the envelope are mainly discussed, including cell wall construction, fungal virulence transmission, signal transmission and redox reactions, which provides a new perspective for studying the interaction mechanism between fungi and other organisms. The fungal protein markers of EVs are also summarized, which provided an exploration tool for studying the mechanism of vesicles. In addition, the possible role of immune protein in the EVs in the treatment of human diseases is also discussed, which provides new ideas for vaccine development.
Collapse
Affiliation(s)
- Jingyan Xu
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Yujin Zhao
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Yanguang Zhou
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Shijie Dai
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Na Zhu
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Qingling Meng
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Sen Fan
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Weichun Zhao
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Xiaofeng Yuan
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| |
Collapse
|
2
|
Lanze CE, Konopka JB. Sur7 mediates a novel pathway for PI 4,5P 2 regulation in C. albicans that promotes stress resistance and cell wall morphogenesis. Mol Biol Cell 2024; 35:ar99. [PMID: 38776129 PMCID: PMC11244165 DOI: 10.1091/mbc.e23-08-0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024] Open
Abstract
The human fungal pathogen Candida albicans can cause lethal systemic infections due to its ability to resist stress from the host and to undergo invasive hyphal growth. Previous studies showed that plasma membrane MCC/eisosome domains were important for virulence by promoting the ability of Sur7 to mediate normal cell wall morphogenesis and stress resistance. The sur7Δ mutant displayed abnormal clusters of PI4,5P2, suggesting that misregulation of this lipid underlies the sur7Δ phenotype. To test this, we increased PI4,5P2 levels by deleting combinations of the three PI4,5P2 5' phosphatase genes (INP51, INP52, and INP54) and found that some combinations, such as inp51Δ inp52Δ, gave phenotypes similar the sur7Δ mutant. In contrast, deleting one copy of MSS4, the gene that encodes the 5' kinase needed to create PI4,5P2, reduced the abnormal PI4,5P2 clusters and also decreased the abnormal cell wall and stress sensitive phenotypes of the sur7Δ mutant. Additional studies support a model that the abnormal PI4,5P2 patches recruit septin proteins, which in turn promote aberrant cell wall growth. These results identify Sur7 as a novel regulator of PI4,5P2 and highlight the critical role of PI4,5P2 in the regulation of C. albicans virulence properties.
Collapse
Affiliation(s)
- Carla E. Lanze
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794-5222
| | - James B. Konopka
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794-5222
| |
Collapse
|
3
|
Gandra RM, Johnson CJ, Nett JE, Konopka JB. The Candida albicans ζ-crystallin homolog Zta1 promotes resistance to oxidative stress. mSphere 2023; 8:e0050723. [PMID: 38032185 PMCID: PMC10732081 DOI: 10.1128/msphere.00507-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE Candida albicans is an important human pathogen that can cause lethal systemic infections. The ability of C. albicans to colonize and establish infections is closely tied to its highly adaptable nature and capacity to resist various types of stress, including oxidative stress. Previous studies showed that four C. albicans proteins belonging to the flavodoxin-like protein family of quinone reductases are needed for resistance to quinones and virulence. Therefore, in this study, we examined the role of a distinct type of quinone reductase, Zta1, and found that it acts in conjunction with the flavodoxin-like proteins to protect against oxidative stress.
Collapse
Affiliation(s)
- Rafael M. Gandra
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Chad J. Johnson
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jeniel E. Nett
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - James B. Konopka
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
4
|
Haase D, Rasch C, Keller U, Tsytsyura Y, Glyvuk N, Elting A, Wittmar J, Janning A, Kahms M, Wedlich N, Schuberth C, Heuer A, Klingauf J, Wedlich-Söldner R. Tetraspanner-based nanodomains modulate BAR domain-induced membrane curvature. EMBO Rep 2023; 24:e57232. [PMID: 37902009 DOI: 10.15252/embr.202357232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 10/31/2023] Open
Abstract
The topography of biological membranes is critical for formation of protein and lipid microdomains. One prominent example in the yeast plasma membrane (PM) are BAR domain-induced PM furrows. Here we report a novel function for the Sur7 family of tetraspanner proteins in the regulation of local PM topography. Combining TIRF imaging, STED nanoscopy, freeze-fracture EM and membrane simulations we find that Sur7 tetraspanners form multimeric strands at the edges of PM furrows, where they modulate forces exerted by BAR domain proteins at the furrow base. Loss of Sur7 tetraspanners or Sur7 displacement due to altered PIP2 homeostasis leads to increased PM invagination and a distinct form of membrane tubulation. Physiological defects associated with PM tubulation are rescued by synthetic anchoring of Sur7 to furrows. Our findings suggest a key role for tetraspanner proteins in sculpting local membrane domains. The maintenance of stable PM furrows depends on a balance between negative curvature at the base which is generated by BAR domains and positive curvature at the furrows' edges which is stabilized by strands of Sur7 tetraspanners.
Collapse
Affiliation(s)
- Daniel Haase
- Institute of Cell Dynamics and Imaging, and Cells-in-Motion Interfaculty Center (CiMIC), University of Münster, Münster, Germany
| | - Christiane Rasch
- Institute for Medical Physics and Biophysics, and Cells-in-Motion Interfaculty Center (CiMIC), Münster, Germany
- Center for Soft Nanoscience, Münster, Germany
| | - Ulrike Keller
- Institute for Medical Physics and Biophysics, and Cells-in-Motion Interfaculty Center (CiMIC), Münster, Germany
- Center for Soft Nanoscience, Münster, Germany
| | - Yaroslav Tsytsyura
- Institute for Medical Physics and Biophysics, and Cells-in-Motion Interfaculty Center (CiMIC), Münster, Germany
| | - Nataliya Glyvuk
- Institute for Medical Physics and Biophysics, and Cells-in-Motion Interfaculty Center (CiMIC), Münster, Germany
| | - Annegret Elting
- Institute of Cell Dynamics and Imaging, and Cells-in-Motion Interfaculty Center (CiMIC), University of Münster, Münster, Germany
| | - Julia Wittmar
- Institute of Cell Dynamics and Imaging, and Cells-in-Motion Interfaculty Center (CiMIC), University of Münster, Münster, Germany
| | - Annette Janning
- Institute of Cell Dynamics and Imaging, and Cells-in-Motion Interfaculty Center (CiMIC), University of Münster, Münster, Germany
| | - Martin Kahms
- Institute for Medical Physics and Biophysics, and Cells-in-Motion Interfaculty Center (CiMIC), Münster, Germany
| | - Noah Wedlich
- Institute of Cell Dynamics and Imaging, and Cells-in-Motion Interfaculty Center (CiMIC), University of Münster, Münster, Germany
- Institute for Physical Chemistry, Münster, Germany
| | - Christian Schuberth
- Institute of Cell Dynamics and Imaging, and Cells-in-Motion Interfaculty Center (CiMIC), University of Münster, Münster, Germany
| | | | - Jürgen Klingauf
- Institute for Medical Physics and Biophysics, and Cells-in-Motion Interfaculty Center (CiMIC), Münster, Germany
- Center for Soft Nanoscience, Münster, Germany
| | - Roland Wedlich-Söldner
- Institute of Cell Dynamics and Imaging, and Cells-in-Motion Interfaculty Center (CiMIC), University of Münster, Münster, Germany
| |
Collapse
|
5
|
Gandra RM, Johnson CJ, Nett JE, Konopka JB. The Candida albicans ζ-crystallin homolog Zta1 promotes resistance to oxidative stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.05.556406. [PMID: 37732195 PMCID: PMC10508745 DOI: 10.1101/2023.09.05.556406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The fungal pathogen Candida albicans is capable of causing lethal infections in humans. Its pathogenic potential is due in part to the ability to resist various stress conditions in the host, including oxidative stress. Recent studies showed that a family of four flavodoxin-like proteins (Pst1, Pst2, Pst3, Ycp4) that function as quinone reductases promotes resistance to oxidation and is needed for virulence. Therefore, in this study Zta1 was examined because it belongs to a structurally distinct family of quinone reductases that are highly conserved in eukaryotes and have been called the ζ-crystallins. The levels of Zta1 in C. albicans rapidly increased after exposure to oxidants, consistent with a role in resisting oxidative stress. Accumulation of reactive oxygen species was significantly higher in cells lacking ZTA1 upon exposure to quinones and other oxidants. Furthermore, deletion of ZTA1 in a mutant lacking the four flavodoxin-like proteins, resulted in further increased susceptibility to quinones, indicating that these distinct quinone reductases work in combination. These results demonstrate that Zta1 contributes to C. albicans survival after exposure to oxidative conditions, which increases the understanding of how C. albicans resists stressful conditions in the host.
Collapse
Affiliation(s)
- Rafael M. Gandra
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| | | | - Jeniel E. Nett
- University of Wisconsin-Madison, Department of Medicine
- University of Wisconsin-Madison, Department of Medical Microbiology & Immunology
| | - James B. Konopka
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
6
|
Zahumenský J, Mota Fernandes C, Veselá P, Del Poeta M, Konopka JB, Malínský J. Microdomain Protein Nce102 Is a Local Sensor of Plasma Membrane Sphingolipid Balance. Microbiol Spectr 2022; 10:e0196122. [PMID: 35758748 PMCID: PMC9431316 DOI: 10.1128/spectrum.01961-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 01/17/2023] Open
Abstract
Sphingolipids are essential building blocks of eukaryotic membranes and important signaling molecules that are regulated tightly in response to environmental and physiological inputs. While their biosynthetic pathway has been well-described, the mechanisms that facilitate the perception of sphingolipid levels at the plasma membrane remain to be uncovered. In Saccharomyces cerevisiae, the Nce102 protein has been proposed to function as a sphingolipid sensor as it changes its plasma membrane distribution in response to sphingolipid biosynthesis inhibition. We show that Nce102 redistributes specifically in regions of increased sphingolipid demand, e.g., membranes of nascent buds. Furthermore, we report that the production of Nce102 increases following sphingolipid biosynthesis inhibition and that Nce102 is internalized when excess sphingolipid precursors are supplied. This finding suggests that the total amount of Nce102 in the plasma membrane is a measure of the current need for sphingolipids, whereas its local distribution marks sites of high sphingolipid demand. The physiological role of Nce102 in the regulation of sphingolipid synthesis is demonstrated by mass spectrometry analysis showing reduced levels of hydroxylated complex sphingolipids in response to heat stress in the nce102Δ deletion mutant. We also demonstrate that Nce102 behaves analogously in the widespread human fungal pathogen Candida albicans, suggesting a conserved principle of local sphingolipid control across species. IMPORTANCE Microorganisms are challenged constantly by their rapidly changing environment. To survive, they have developed diverse mechanisms to quickly perceive stressful situations and adapt to them appropriately. The primary site of both stress sensing and adaptation is the plasma membrane. We identified the yeast protein Nce102 as a marker of local sphingolipid levels and fluidity in the plasma membrane. Nce102 is an important structural and functional component of the membrane compartment Can1 (MCC), a plasma membrane microdomain stabilized by a large cytosolic hemitubular protein scaffold, the eisosome. The MCC/eisosomes are widely conserved among fungi and unicellular algae. To determine if Nce102 carries out similar functions in other organisms, we analyzed the human fungal pathogen Candida albicans and found that Nce102 responds to sphingolipid levels also in this organism, which has potential applications for the development of novel therapeutic approaches. The presented study represents a valuable model for how organisms regulate plasma membrane sphingolipids.
Collapse
Affiliation(s)
- Jakub Zahumenský
- Department of Functional Organization of Biomembranes, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Caroline Mota Fernandes
- Department of Microbiology and Immunology, School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Petra Veselá
- Department of Functional Organization of Biomembranes, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Veterans Administration Medical Center, Northport, New York, USA
| | - James B. Konopka
- Department of Microbiology and Immunology, School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Jan Malínský
- Department of Functional Organization of Biomembranes, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|