1
|
Ning YN, Tian D, Zhao S, Feng JX. Regulation of genes encoding polysaccharide-degrading enzymes in Penicillium. Appl Microbiol Biotechnol 2024; 108:16. [PMID: 38170318 DOI: 10.1007/s00253-023-12892-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 01/05/2024]
Abstract
Penicillium fungi, including Penicillium oxalicum, can secrete a range of efficient plant-polysaccharide-degrading enzymes (PPDEs) that is very useful for sustainable bioproduction, using renewable plant biomass as feedstock. However, the low efficiency and high cost of PPDE production seriously hamper the industrialization of processes based on PPDEs. In Penicillium, the expression of PPDE genes is strictly regulated by a complex regulatory system and molecular breeding to modify this system is a promising way to improve fungal PPDE yields. In this mini-review, we present an update on recent research progress concerning PPDE distribution and function, the regulatory mechanism of PPDE biosynthesis, and molecular breeding to produce PPDE-hyperproducing Penicillium strains. This review will facilitate future development of fungal PPDE production through metabolic engineering and synthetic biology, thereby promoting PPDE industrial biorefinery applications. KEY POINTS: • This mini review summarizes PPDE distribution and function in Penicillium. • It updates progress on the regulatory mechanism of PPDE biosynthesis in Penicillium. • It updates progress on breeding of PPDE-hyperproducing Penicillium strains.
Collapse
Affiliation(s)
- Yuan-Ni Ning
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, People's Republic of China
| | - Di Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, People's Republic of China
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, People's Republic of China.
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, People's Republic of China.
| |
Collapse
|
2
|
Zhang X, Yang Y, Wang L, Qin Y. Histone H2B lysine 122 and lysine 130, as the putative targets of Penicillium oxalicum LaeA, play important roles in asexual development, expression of secondary metabolite gene clusters, and extracellular glycoside hydrolase synthesis. World J Microbiol Biotechnol 2024; 40:179. [PMID: 38668807 DOI: 10.1007/s11274-024-03978-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/03/2024] [Indexed: 05/01/2024]
Abstract
Core histones in the nucleosome are subject to a wide variety of posttranslational modifications (PTMs), such as methylation, phosphorylation, ubiquitylation, and acetylation, all of which are crucial in shaping the structure of the chromatin and the expression of the target genes. A putative histone methyltransferase LaeA/Lae1, which is conserved in numerous filamentous fungi, functions as a global regulator of fungal growth, virulence, secondary metabolite formation, and the production of extracellular glycoside hydrolases (GHs). LaeA's direct histone targets, however, were not yet recognized. Previous research has shown that LaeA interacts with core histone H2B. Using S-adenosyl-L-methionine (SAM) as a methyl group donor and recombinant human histone H2B as the substrate, it was found that Penicillium oxalicum LaeA can transfer the methyl groups to the C-terminal lysine (K) 108 and K116 residues in vitro. The H2BK108 and H2BK116 sites on recombinant histone correspond to P. oxalicum H2BK122 and H2BK130, respectively. H2BK122A and H2BK130A, two mutants with histone H2B K122 or K130 mutation to alanine (A), were constructed in P. oxalicum. The mutants H2BK122A and H2BK130A demonstrated altered asexual development and decreased extracellular GH production, consistent with the findings of the laeA gene deletion strain (ΔlaeA). The transcriptome data showed that when compared to wild-type (WT) of P. oxalicum, 38 of the 47 differentially expressed (fold change ≥ 2, FDR ≤ 0.05) genes that encode extracellular GHs showed the same expression pattern in the three mutants ΔlaeA, H2BK122A, and H2BK130A. The four secondary metabolic gene clusters that considerably decreased expression in ΔlaeA also significantly decreased in H2BK122A or H2BK130A. The chromatin of promotor regions of the key cellulolytic genes cel7A/cbh1 and cel7B/eg1 compacted in the ΔlaeA, H2BK122A, and H2BK130A mutants, according to the results of chromatin accessibility real-time PCR (CHART-PCR). The chromatin accessibility index dropped. The histone binding pocket of the LaeA-methyltransf_23 domain is compatible with particular histone H2B peptides, providing appropriate electrostatic and steric compatibility to stabilize these peptides, according to molecular docking. The findings of the study demonstrate that H2BK122 and H2BK130, which are histone targets of P. oxalicum LaeA in vitro, are crucial for fungal conidiation, the expression of gene clusters encoding secondary metabolites, and the production of extracellular GHs.
Collapse
Affiliation(s)
- Xiujun Zhang
- National Glycoengineering Research Center, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Yuhong Yang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yuqi Qin
- National Glycoengineering Research Center, Shandong University, Qingdao, China.
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China.
| |
Collapse
|
3
|
Zhang Y, Wang X, Ran Y, Zhang KQ, Li GH. AfLaeA, a Global Regulator of Mycelial Growth, Chlamydospore Production, Pathogenicity, Secondary Metabolism, and Energy Metabolism in the Nematode-Trapping Fungus Arthrobotrys flagrans. Microbiol Spectr 2023; 11:e0018623. [PMID: 37358432 PMCID: PMC10434191 DOI: 10.1128/spectrum.00186-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/15/2023] [Indexed: 06/27/2023] Open
Abstract
Arthrobotrys flagrans (Duddingtonia flagrans) is a typical nematode-trapping fungus which has been used for nematode biocontrol. The global regulator LaeA is widely distributed in filamentous fungi and plays a crucial role in secondary metabolism and development in addition to pathogenicity in fungal pathogens. In this study, the chromosome-level genome of A. flagrans CBS 565.50 was sequenced and homologous sequences of LaeA were identified in A. flagrans. A. flagrans LaeA (AfLaeA) knockout resulted in slower hyphal growth and a smoother hyphal surface. Importantly, deletion of AfLaeA resulted in the absence of chlamydospores and attenuated glycogen and lipid accumulation in hyphae. Similarly, disruption of the AfLaeA gene led to fewer traps and electron-dense bodies, lower protease activity, and a delay in capturing nematodes. The AfLaeA gene had a large effect on the secondary metabolism of A. flagrans, and both the deletion and overexpression of AfLaeA could yield new compounds, whereas some compounds were lost due to the absence of the AfLaeA. Protein-protein interactions between AfLaeA and another eight proteins were detected. Furthermore, transcriptome data analysis showed that 17.77% and 35.51% of the genes were influenced by the AfLaeA gene on days 3 and 7, respectively. AfLaeA gene deletion resulted in the higher expression level of the artA gene cluster, and multiple differentially expressed genes involved in glycogen and lipid synthesis and metabolism showed opposite expression patterns in wild-type and ΔAfLaeA strains. In summary, our results provide novel insights into the functions of AfLaeA in mycelial growth, chlamydospore production, pathogenicity, secondary metabolism, and energy metabolism in A. flagrans. IMPORTANCE The regulation of biological functions, such as the secondary metabolism, development, and pathogenicity of LaeA, has been reported in multiple fungi. But to date, no study on LaeA in nematode-trapping fungi has been reported. Moreover, it has not been investigated whether or not LaeA is involved in energy metabolism and chlamydospore formation has not been investigated. Especially in the formation mechanism of chlamydospores, several transcription factors and signaling pathways are involved in the production of chlamydospores, but the mechanism of chlamydospore formation from an epigenetic perspective has not been revealed. Concurrently, an understanding of protein-protein interactions will provide a broader perspective on the regulatory mechanism of AfLaeA in A. flagrans. This finding is critical for understanding the regulatory role of AfLaeA in the biocontrol fungus A. flagrans and establishes a foundation for developing high-efficiency nematode biocontrol agents.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, China
| | - Xin Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, China
| | - Yuan Ran
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, China
| | - Guo-Hong Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
4
|
Huang Z, Lou J, Gao Y, Noman M, Li D, Song F. FonTup1 functions in growth, conidiogenesis and pathogenicity of Fusarium oxysporum f. sp. niveum through modulating the expression of the tricarboxylic acid cycle genes. Microbiol Res 2023; 272:127389. [PMID: 37099956 DOI: 10.1016/j.micres.2023.127389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
The Tup1-Cyc8 complex is a highly conserved transcriptional corepressor that regulates intricate genetic network associated with various biological processes in fungi. Here, we report the role and mechanism of FonTup1 in regulating physiological processes and pathogenicity in watermelon Fusarium wilt fungus, Fusarium oxysporum f. sp. niveum (Fon). FonTup1 deletion impairs mycelial growth, asexual reproduction, and macroconidia morphology, but not macroconidial germination in Fon. The ΔFontup1 mutant exhibits altered tolerance to cell wall perturbing agent (congo red) and osmotic stressors (sorbitol or NaCl), but unchanged sensitivity to paraquat. The deletion of FonTup1 significantly decreases the pathogenicity of Fon toward watermelon plants through attenuating the ability to colonize and grow within the host. Transcriptome analysis revealed that FonTup1 regulates primary metabolic pathways, including the tricarboxylic acid (TCA) cycle, via altering the expression of corresponding genes. Downregulation of three malate dehydrogenase genes, FonMDH1-3, occurs in ΔFontup1, and disruption of FonMDH2 causes significant abnormalities in mycelial growth, conidiation, and virulence of Fon. These findings demonstrate that FonTup1, as a global transcriptional corepressor, plays crucial roles in different biological processes and pathogenicity of Fon through regulating various primary metabolic processes, including the TCA cycle. This study highlights the importance and molecular mechanism of the Tup1-Cyc8 complex in multiple basic biological processes and pathogenicity of phytopathogenic fungi.
Collapse
Affiliation(s)
- Ziling Huang
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiajun Lou
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yizhou Gao
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Noman
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Dayong Li
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Fengming Song
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Wei Z, Shu D, Sun Q, Chen DB, Li ZM, Luo D, Yang J, Tan H. The BcLAE1 is involved in the regulation of ABA biosynthesis in Botrytis cinerea TB-31. Front Microbiol 2022; 13:969499. [PMID: 35992717 PMCID: PMC9386520 DOI: 10.3389/fmicb.2022.969499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Abscisic acid (ABA), as a classic plant hormone, is a key factor in balancing the metabolism of endogenous plant hormones, and plays an important role in regulating the activation of mammalian innate immune cells and glucose homeostasis. Currently, Botrytis cinerea has been used for fermentation to produce ABA. However, the mechanism of the regulation of ABA biosynthesis in B. cinerea is still not fully understood. The putative methyltransferase LaeA/LAE1 is a global regulator involved in the biosynthesis of a variety of secondary metabolites in filamentous fungi. In this study, we demonstrated that BcLAE1 plays an important role in the regulation of ABA biosynthesis in B. cinerea TB-31 by knockout experiment. The deletion of Bclae1 caused a 95% reduction in ABA yields, accompanied by a decrease of the transcriptional level of the ABA synthesis gene cluster Bcaba1-4. Further RNA-seq analysis indicated that deletion of Bclae1 also affected the expression level of key enzymes of BOA and BOT in secondary metabolism, and accompanied by clustering regulatory features. Meanwhile, we found that BcLAE1 is involved in epigenetic regulation as a methyltransferase, with enhanced H3K9me3 modification and attenuated H3K4me2 modification in ΔBclae1 mutant, and this may be a strategy for BcLAE1 to regulate ABA synthesis.
Collapse
Affiliation(s)
- Zhao Wei
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Key Laboratory of Bio-Resources and Eco-Environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Dan Shu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- *Correspondence: Dan Shu,
| | - Qun Sun
- Key Laboratory of Bio-Resources and Eco-Environment Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Dong-bo Chen
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Zhe-min Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Di Luo
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jie Yang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Hong Tan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Hong Tan,
| |
Collapse
|