1
|
Hoffmann UA, Lichtenberg E, Rogh SN, Bilger R, Reimann V, Heyl F, Backofen R, Steglich C, Hess WR, Wilde A. The role of the 5' sensing function of ribonuclease E in cyanobacteria. RNA Biol 2024; 21:1-18. [PMID: 38469716 PMCID: PMC10939160 DOI: 10.1080/15476286.2024.2328438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024] Open
Abstract
RNA degradation is critical for synchronising gene expression with changing conditions in prokaryotic and eukaryotic organisms. In bacteria, the preference of the central ribonucleases RNase E, RNase J and RNase Y for 5'-monophosphorylated RNAs is considered important for RNA degradation. For RNase E, the underlying mechanism is termed 5' sensing, contrasting to the alternative 'direct entry' mode, which is independent of monophosphorylated 5' ends. Cyanobacteria, such as Synechocystis sp. PCC 6803 (Synechocystis), encode RNase E and RNase J homologues. Here, we constructed a Synechocystis strain lacking the 5' sensing function of RNase E and mapped on a transcriptome-wide level 283 5'-sensing-dependent cleavage sites. These included so far unknown targets such as mRNAs encoding proteins related to energy metabolism and carbon fixation. The 5' sensing function of cyanobacterial RNase E is important for the maturation of rRNA and several tRNAs, including tRNAGluUUC. This tRNA activates glutamate for tetrapyrrole biosynthesis in plant chloroplasts and in most prokaryotes. Furthermore, we found that increased RNase activities lead to a higher copy number of the major Synechocystis plasmids pSYSA and pSYSM. These results provide a first step towards understanding the importance of the different target mechanisms of RNase E outside Escherichia coli.
Collapse
Affiliation(s)
- Ute A. Hoffmann
- Molecular Genetics of Prokaryotes, Institute of Biology III, University of Freiburg, Freiburg, Germany
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Elisabeth Lichtenberg
- Molecular Genetics of Prokaryotes, Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Said N. Rogh
- Molecular Genetics of Prokaryotes, Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Raphael Bilger
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Viktoria Reimann
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Florian Heyl
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Claudia Steglich
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Wolfgang R. Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Annegret Wilde
- Molecular Genetics of Prokaryotes, Institute of Biology III, University of Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Hemm L, Miucci A, Kraus A, Riediger M, Tholen S, Abdelaziz N, Georg J, Schilling O, Hess WR. Interactors and effects of overexpressing YlxR/RnpM, a conserved RNA binding protein in cyanobacteria. RNA Biol 2024; 21:1-19. [PMID: 39625117 PMCID: PMC11622646 DOI: 10.1080/15476286.2024.2429230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 12/08/2024] Open
Abstract
Throughout the tree of life RNA-binding proteins play important roles, but they are poorly characterized in cyanobacteria. Overexpression of the predicted RNA-binding protein Ssr1238 in the cyanobacterium Synechocystis 6803 for 24 h led to higher levels of RNase P RNA, tRNAs, and stress-related mRNAs. Co-immunoprecipitation of proteins followed by MS analysis and sequencing of UV crosslinked, co-immunoprecipitated RNA samples identified potential interaction partners of Ssr1238. The most enriched transcript was RNase P RNA, and RnpA, the protein component of RNase P, was among the most highly enriched proteins. A second highly enriched transcript is derived from gene ssl3177, which encodes a central enzyme in cell wall remodelling during cell division. The data also showed a strong connection to the RNA maturation and modification system indicated by co-precipitation of RNA modifying enzymes, riboendonuclease E and enolase. Surprisingly, cyanophycin synthetase and urease were highly enriched as well. In conclusion, Ssr1238 specifically binds to two different transcripts and could be involved in the coordination of RNA maturation, translation, cell division, and aspects of nitrogen metabolism. Our results are consistent with recent findings that the B. subtilis YlxR protein functions as an RNase P modulator (RnpM), extending its proposed role to the phylum cyanobacteria, and suggesting additional functionalities.
Collapse
Affiliation(s)
- Luisa Hemm
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Anna Miucci
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Alexander Kraus
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Matthias Riediger
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Stefan Tholen
- Institute for Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nouha Abdelaziz
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jens Georg
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Oliver Schilling
- Institute for Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolfgang R. Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|