1
|
Burman N, Belukhina S, Depardieu F, Wilkinson RA, Skutel M, Santiago-Frangos A, Graham AB, Livenskyi A, Chechenina A, Morozova N, Zahl T, Henriques WS, Buyukyoruk M, Rouillon C, Saudemont B, Shyrokova L, Kurata T, Hauryliuk V, Severinov K, Groseille J, Thierry A, Koszul R, Tesson F, Bernheim A, Bikard D, Wiedenheft B, Isaev A. A virally encoded tRNA neutralizes the PARIS antiviral defence system. Nature 2024; 634:424-431. [PMID: 39111359 PMCID: PMC11464382 DOI: 10.1038/s41586-024-07874-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Viruses compete with each other for limited cellular resources, and some deliver defence mechanisms that protect the host from competing genetic parasites1. The phage antirestriction induced system (PARIS) is a defence system, often encoded in viral genomes, that is composed of a 55 kDa ABC ATPase (AriA) and a 35 kDa TOPRIM nuclease (AriB)2. However, the mechanism by which AriA and AriB function in phage defence is unknown. Here we show that AriA and AriB assemble into a 425 kDa supramolecular immune complex. We use cryo-electron microscopy to determine the structure of this complex, thereby explaining how six molecules of AriA assemble into a propeller-shaped scaffold that coordinates three subunits of AriB. ATP-dependent detection of foreign proteins triggers the release of AriB, which assembles into a homodimeric nuclease that blocks infection by cleaving host lysine transfer RNA. Phage T5 subverts PARIS immunity through expression of a lysine transfer RNA variant that is not cleaved by PARIS, thereby restoring viral infection. Collectively, these data explain how AriA functions as an ATP-dependent sensor that detects viral proteins and activates the AriB toxin. PARIS is one of an emerging set of immune systems that form macromolecular complexes for the recognition of foreign proteins, rather than foreign nucleic acids3.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Bacteriophages/enzymology
- Bacteriophages/genetics
- Bacteriophages/immunology
- Bacteriophages/metabolism
- Cryoelectron Microscopy
- Genome, Viral/genetics
- Models, Molecular
- RNA, Transfer/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Viral Proteins/ultrastructure
- RNA, Transfer, Lys/chemistry
- RNA, Transfer, Lys/genetics
- RNA, Transfer, Lys/metabolism
- Escherichia coli/genetics
- Escherichia coli/immunology
- Escherichia coli/virology
- Adenosine Triphosphatases/genetics
- Adenosine Triphosphatases/metabolism
- Ribonucleases/genetics
- Ribonucleases/metabolism
- Protein Multimerization
Collapse
Affiliation(s)
- Nathaniel Burman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | | | - Florence Depardieu
- Synthetic Biology, Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Paris, France
| | - Royce A Wilkinson
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | | | | | - Ava B Graham
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Alexei Livenskyi
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | | | - Natalia Morozova
- Peter the Great St Petersburg State Polytechnic University, St. Petersburg, Russia
| | - Trevor Zahl
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - William S Henriques
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Murat Buyukyoruk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Christophe Rouillon
- Synthetic Biology, Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Paris, France
| | - Baptiste Saudemont
- Synthetic Biology, Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Paris, France
| | - Lena Shyrokova
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Tatsuaki Kurata
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Vasili Hauryliuk
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Virus Centre, Lund University, Lund, Sweden
- Science for Life Laboratory, Lund, Sweden
| | - Konstantin Severinov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Justine Groseille
- Unité Régulation Spatiale des Génomes, Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Paris, France
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Agnès Thierry
- Unité Régulation Spatiale des Génomes, Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Paris, France
| | - Romain Koszul
- Unité Régulation Spatiale des Génomes, Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Paris, France
| | - Florian Tesson
- Molecular Diversity of Microbes, Institut Pasteur, CNRS UMR3525, Université Paris Cité, Paris, France
| | - Aude Bernheim
- Molecular Diversity of Microbes, Institut Pasteur, CNRS UMR3525, Université Paris Cité, Paris, France
| | - David Bikard
- Synthetic Biology, Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Paris, France.
| | - Blake Wiedenheft
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| | | |
Collapse
|
2
|
Burman N, Belukhina S, Depardieu F, Wilkinson RA, Skutel M, Santiago-Frangos A, Graham AB, Livenskyi A, Chechenina A, Morozova N, Zahl T, Henriques WS, Buyukyoruk M, Rouillon C, Shyrokova L, Kurata T, Hauryliuk V, Severinov K, Groseille J, Thierry A, Koszul R, Tesson F, Bernheim A, Bikard D, Wiedenheft B, Isaev A. Viral proteins activate PARIS-mediated tRNA degradation and viral tRNAs rescue infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573894. [PMID: 38260645 PMCID: PMC10802454 DOI: 10.1101/2024.01.02.573894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Viruses compete with each other for limited cellular resources, and some viruses deliver defense mechanisms that protect the host from competing genetic parasites. PARIS is a defense system, often encoded in viral genomes, that is composed of a 53 kDa ABC ATPase (AriA) and a 35 kDa TOPRIM nuclease (AriB). Here we show that AriA and AriB assemble into a 425 kDa supramolecular immune complex. We use cryo-EM to determine the structure of this complex which explains how six molecules of AriA assemble into a propeller-shaped scaffold that coordinates three subunits of AriB. ATP-dependent detection of foreign proteins triggers the release of AriB, which assembles into a homodimeric nuclease that blocks infection by cleaving the host tRNALys. Phage T5 subverts PARIS immunity through expression of a tRNALys variant that prevents PARIS-mediated cleavage, and thereby restores viral infection. Collectively, these data explain how AriA functions as an ATP-dependent sensor that detects viral proteins and activates the AriB toxin. PARIS is one of an emerging set of immune systems that form macromolecular complexes for the recognition of foreign proteins, rather than foreign nucleic acids.
Collapse
Affiliation(s)
- Nathaniel Burman
- Montana State University, Bozeman, Department of Microbiology and Cell Biology, 59715 Montana, USA
| | - Svetlana Belukhina
- Skolkovo Institute of Science and Technology, Center for Molecular and Cellular Biology, Moscow, Russia
| | - Florence Depardieu
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Synthetic Biology, 75015 Paris, France
| | - Royce A. Wilkinson
- Montana State University, Bozeman, Department of Microbiology and Cell Biology, 59715 Montana, USA
| | - Mikhail Skutel
- Skolkovo Institute of Science and Technology, Center for Molecular and Cellular Biology, Moscow, Russia
| | - Andrew Santiago-Frangos
- Montana State University, Bozeman, Department of Microbiology and Cell Biology, 59715 Montana, USA
| | - Ava B. Graham
- Montana State University, Bozeman, Department of Microbiology and Cell Biology, 59715 Montana, USA
| | - Alexei Livenskyi
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Anna Chechenina
- Skolkovo Institute of Science and Technology, Center for Molecular and Cellular Biology, Moscow, Russia
| | - Natalia Morozova
- Peter the Great St Petersburg State Polytechnic University, St. Petersburg, Russia
| | - Trevor Zahl
- Montana State University, Bozeman, Department of Microbiology and Cell Biology, 59715 Montana, USA
| | - William S. Henriques
- Montana State University, Bozeman, Department of Microbiology and Cell Biology, 59715 Montana, USA
| | - Murat Buyukyoruk
- Montana State University, Bozeman, Department of Microbiology and Cell Biology, 59715 Montana, USA
| | - Christophe Rouillon
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Synthetic Biology, 75015 Paris, France
| | - Lena Shyrokova
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Tatsuaki Kurata
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Vasili Hauryliuk
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
- Virus Centre, Lund University, Lund, Sweden
- Science for Life Laboratory, Lund, Sweden
| | | | - Justine Groseille
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, 75015 Paris, France
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
- Sorbonne Université, College Doctoral
| | - Agnès Thierry
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, 75015 Paris, France
| | - Romain Koszul
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, 75015 Paris, France
| | - Florian Tesson
- Institut Pasteur, Université Paris Cité, Molecular Diversity of Microbes, 75015 Paris, France
| | - Aude Bernheim
- Institut Pasteur, Université Paris Cité, Molecular Diversity of Microbes, 75015 Paris, France
| | - David Bikard
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Synthetic Biology, 75015 Paris, France
| | - Blake Wiedenheft
- Montana State University, Bozeman, Department of Microbiology and Cell Biology, 59715 Montana, USA
| | - Artem Isaev
- Skolkovo Institute of Science and Technology, Center for Molecular and Cellular Biology, Moscow, Russia
| |
Collapse
|
3
|
Nicastro GG, Burroughs AM, Iyer L, Aravind L. Functionally comparable but evolutionarily distinct nucleotide-targeting effectors help identify conserved paradigms across diverse immune systems. Nucleic Acids Res 2023; 51:11479-11503. [PMID: 37889040 PMCID: PMC10681802 DOI: 10.1093/nar/gkad879] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
While nucleic acid-targeting effectors are known to be central to biological conflicts and anti-selfish element immunity, recent findings have revealed immune effectors that target their building blocks and the cellular energy currency-free nucleotides. Through comparative genomics and sequence-structure analysis, we identified several distinct effector domains, which we named Calcineurin-CE, HD-CE, and PRTase-CE. These domains, along with specific versions of the ParB and MazG domains, are widely present in diverse prokaryotic immune systems and are predicted to degrade nucleotides by targeting phosphate or glycosidic linkages. Our findings unveil multiple potential immune systems associated with at least 17 different functional themes featuring these effectors. Some of these systems sense modified DNA/nucleotides from phages or operate downstream of novel enzymes generating signaling nucleotides. We also uncovered a class of systems utilizing HSP90- and HSP70-related modules as analogs of STAND and GTPase domains that are coupled to these nucleotide-targeting- or proteolysis-induced complex-forming effectors. While widespread in bacteria, only a limited subset of nucleotide-targeting effectors was integrated into eukaryotic immune systems, suggesting barriers to interoperability across subcellular contexts. This work establishes nucleotide-degrading effectors as an emerging immune paradigm and traces their origins back to homologous domains in housekeeping systems.
Collapse
Affiliation(s)
- Gianlucca G Nicastro
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, USA
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, USA
| | - Lakshminarayan M Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, USA
| | - L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, USA
| |
Collapse
|
4
|
Akritidou K, Thurtle-Schmidt BH. OLD family nuclease function across diverse anti-phage defense systems. Front Microbiol 2023; 14:1268820. [PMID: 37840731 PMCID: PMC10568477 DOI: 10.3389/fmicb.2023.1268820] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Bacteriophages constitute a ubiquitous threat to bacteria, and bacteria have evolved numerous anti-phage defense systems to protect themselves. These systems include well-studied phenomena such as restriction endonucleases and CRISPR, while emerging studies have identified many new anti-phage defense systems whose mechanisms are unknown or poorly understood. Some of these systems involve overcoming lysogenization defect (OLD) nucleases, a family of proteins comprising an ABC ATPase domain linked to a Toprim nuclease domain. Despite being discovered over 50 years ago, OLD nuclease function remained mysterious until recent biochemical, structural, and bioinformatic studies revealed that OLD nucleases protect bacteria by functioning in diverse anti-phage defense systems including the Gabija system and retrons. In this review we will highlight recent discoveries in OLD protein function and their involvement in multiple discrete anti-phage defense systems.
Collapse
|