1
|
Nishiguchi M, Ali ME, Kaya T, Kobayashi K. Plant virus disease control by vaccination and transgenic approaches: Current status and perspective. PLANT RNA VIRUSES 2023:373-424. [DOI: 10.1016/b978-0-323-95339-9.00028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
2
|
Mustafa AA, Derise MR, Yong WTL, Rodrigues KF. A Concise Review of Dendrocalamus asper and Related Bamboos: Germplasm Conservation, Propagation and Molecular Biology. PLANTS 2021; 10:plants10091897. [PMID: 34579429 PMCID: PMC8468032 DOI: 10.3390/plants10091897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022]
Abstract
Bamboos represent an emerging forest resource of economic significance and provide an avenue for sustainable development of forest resources. The development of the commercial bamboo industry is founded upon efficient molecular and technical approaches for the selection and rapid multiplication of elite germplasm for its subsequent propagation via commercial agro-forestry business enterprises. This review will delve into the micropropagation of Dendrocalamus asper, one of the most widely cultivated commercial varieties of bamboo, and will encompass the selection of germplasm, establishment of explants in vitro and micropropagation techniques. The currently available information pertaining to molecular biology, DNA barcoding and breeding, has been included, and potential areas for future research in the area of genetic engineering and gene regulation have been highlighted. This information will be of relevance to both commercial breeders and molecular biologists who have an interest in establishing bamboo as a crop of the future.
Collapse
|
3
|
Badar U, Venkataraman S, AbouHaidar M, Hefferon K. Molecular interactions of plant viral satellites. Virus Genes 2020; 57:1-22. [PMID: 33226576 DOI: 10.1007/s11262-020-01806-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/24/2020] [Indexed: 12/18/2022]
Abstract
Plant viral satellites fall under the category of subviral agents. Their genomes are composed of small RNA or DNA molecules a few hundred nucleotides in length and contain an assortment of highly complex and overlapping functions. Each lacks the ability to either replicate or undergo encapsidation or both in the absence of a helper virus (HV). As the number of known satellites increases steadily, our knowledge regarding their sequence conservation strategies, means of replication and specific interactions with host and helper viruses is improving. This review demonstrates that the molecular interactions of these satellites are unique and highly complex, largely influenced by the highly specific host plants and helper viruses that they associate with. Circularized forms of single-stranded RNA are of particular interest, as they have recently been found to play a variety of novel cellular functions. Linear forms of satRNA are also of great significance as they may complement the helper virus genome in exacerbating symptoms, or in certain instances, actively compete against it, thus reducing symptom severity. This review serves to describe the current literature with respect to these molecular mechanisms in detail as well as to discuss recent insights into this emerging field in terms of evolution, classification and symptom development. The review concludes with a discussion of future steps in plant viral satellite research and development.
Collapse
Affiliation(s)
- Uzma Badar
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | | | - Mounir AbouHaidar
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Kathleen Hefferon
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Chen TY, Pai H, Hou LY, Lee SC, Lin TT, Chang CH, Hsu FC, Hsu YH, Lin NS. Dual resistance of transgenic plants against Cymbidium mosaic virus and Odontoglossum ringspot virus. Sci Rep 2019; 9:10230. [PMID: 31308424 PMCID: PMC6629631 DOI: 10.1038/s41598-019-46695-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 07/03/2019] [Indexed: 12/30/2022] Open
Abstract
Taxonomically distinct Cymbidium mosaic potexvirus (CymMV) and Odontoglossum ringspot tobamovirus (ORSV) are two of the most prevalent viruses worldwide; when co-infecting orchids, they cause synergistic symptoms. Because of the huge economic loss in quality and quantity in the orchid industry with virus-infected orchids, virus-resistant orchids are urgently needed. To date, no transgenic resistant lines against these two viruses have been reported. In this study, we generated transgenic Nicotiana benthamiana expressing various constructs of partial CymMV and ORSV genomes. Several transgenic lines grew normally and remained symptomless after mixed inoculation with CymMV and ORSV. The replication of CymMV and ORSV was approximately 70-90% lower in protoplasts of transgenic lines than wild-type (WT) plants. Of note, we detected extremely low or no viral RNA or capsid protein of CymMV and ORSV in systemic leaves of transgenic lines after co-infection. Grafting experiments further revealed that CymMV and ORSV trafficked extremely inefficiently from co-infected WT stocks to transgenic scions, presumably due to RNA-mediated interference. This study reports the first successful creation of dual resistant transgenic lines against CymMV and ORSV. Our studies shed light on the commercial development of transgenic orchid production to combat the global viral threat.
Collapse
Affiliation(s)
- Ting-Yu Chen
- Institute of Plant and Microbial Biology, Academia Sinica, 11529, Taiwan
| | - Hsuan Pai
- Institute of Plant and Microbial Biology, Academia Sinica, 11529, Taiwan
| | - Liang-Yu Hou
- Institute of Plant and Microbial Biology, Academia Sinica, 11529, Taiwan
| | - Shu-Chuan Lee
- Institute of Plant and Microbial Biology, Academia Sinica, 11529, Taiwan
| | - Tzu-Tung Lin
- Institute of Plant and Microbial Biology, Academia Sinica, 11529, Taiwan
| | - Chih-Hao Chang
- Institute of Plant and Microbial Biology, Academia Sinica, 11529, Taiwan
| | - Fu-Chen Hsu
- Institute of Plant and Microbial Biology, Academia Sinica, 11529, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40027, Taiwan
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, 11529, Taiwan.
| |
Collapse
|
5
|
Lin KY, Lin NS. Interfering Satellite RNAs of Bamboo mosaic virus. Front Microbiol 2017; 8:787. [PMID: 28522996 PMCID: PMC5415622 DOI: 10.3389/fmicb.2017.00787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/18/2017] [Indexed: 11/13/2022] Open
Abstract
Satellite RNAs (satRNAs) are sub-viral agents that may interact with their cognate helper virus (HV) and host plant synergistically and/or antagonistically. SatRNAs totally depend on the HV for replication, so satRNAs and HV usually evolve similar secondary or tertiary RNA structures that are recognized by a replication complex, although satRNAs and HV do not share an appreciable sequence homology. The satRNAs of Bamboo mosaic virus (satBaMV), the only satRNAs of the genus Potexvirus, have become one of the models of how satRNAs can modulate HV replication and virus-induced symptoms. In this review, we summarize the molecular mechanisms underlying the interaction of interfering satBaMV and BaMV. Like other satRNAs, satBaMV mimics the secondary structures of 5'- and 3'-untranslated regions (UTRs) of BaMV as a molecular pretender. However, a conserved apical hairpin stem loop (AHSL) in the 5'-UTR of satBaMV was found as the key determinant for downregulating BaMV replication. In particular, two unique nucleotides (C60 and C83) in the AHSL of satBaMVs determine the satBaMV interference ability by competing for the replication machinery. Thus, transgenic plants expressing interfering satBaMV could confer resistance to BaMV, and interfering satBaMV could be used as biological-control agent. Unlike two major anti-viral mechanisms, RNA silencing and salicylic acid-mediated immunity, our findings in plants by in vivo competition assay and RNA deep sequencing suggested replication competition is involved in this transgenic satBaMV-mediated BaMV interference. We propose how a single nucleotide of satBaMV can make a great change in BaMV pathogenicity and the underlying mechanism.
Collapse
Affiliation(s)
- Kuan-Yu Lin
- Institute of Plant and Microbial Biology, Academia SinicaTaipei, Taiwan
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia SinicaTaipei, Taiwan
| |
Collapse
|
6
|
Chang CH, Hsu FC, Lee SC, Lo YS, Wang JD, Shaw J, Taliansky M, Chang BY, Hsu YH, Lin NS. The Nucleolar Fibrillarin Protein Is Required for Helper Virus-Independent Long-Distance Trafficking of a Subviral Satellite RNA in Plants. THE PLANT CELL 2016; 28:2586-2602. [PMID: 27702772 PMCID: PMC5134973 DOI: 10.1105/tpc.16.00071] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 08/30/2016] [Accepted: 09/30/2016] [Indexed: 05/03/2023]
Abstract
RNA trafficking plays pivotal roles in regulating plant development, gene silencing, and adaptation to environmental stress. Satellite RNAs (satRNAs), parasites of viruses, depend on their helper viruses (HVs) for replication, encapsidation, and efficient spread. However, it remains largely unknown how satRNAs interact with viruses and the cellular machinery to undergo trafficking. Here, we show that the P20 protein of Bamboo mosaic potexvirus satRNA (satBaMV) can functionally complement in trans the systemic trafficking of P20-defective satBaMV in infected Nicotiana benthamiana The transgene-derived satBaMV, uncoupled from HV replication, was able to move autonomously across a graft union identified by RT-qPCR, RNA gel blot, and in situ RT-PCR analyses. Coimmunoprecipitation experiments revealed that the major nucleolar protein fibrillarin is coprecipitated in the P20 protein complex. Notably, silencing fibrillarin suppressed satBaMV-, but not HV-, phloem-based movement following grafting or coinoculation with HV Confocal microscopy revealed that the P20 protein colocalized with fibrillarin in the nucleoli and formed punctate structures associated with plasmodesmata. The mobile satBaMV RNA appears to exist as ribonucleoprotein (RNP) complex composed of P20 and fibrillarin, whereas BaMV movement proteins, capsid protein, and BaMV RNA are recruited with HV coinfection. Taken together, our findings provide insight into movement of satBaMV via the fibrillarin-satBaMV-P20 RNP complex in phloem-mediated systemic trafficking.
Collapse
Affiliation(s)
- Chih-Hao Chang
- Institute of Plant Biology, National Taiwan University, Taipei 11106, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Fu-Chen Hsu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Shu-Chuan Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yih-Shan Lo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Jiun-Da Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Jane Shaw
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Michael Taliansky
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Ban-Yang Chang
- Department of Biochemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Na-Sheng Lin
- Institute of Plant Biology, National Taiwan University, Taipei 11106, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
7
|
Wang MB, Smith NA. Satellite RNA pathogens of plants: impacts and origins-an RNA silencing perspective. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 7:5-16. [PMID: 26481458 DOI: 10.1002/wrna.1311] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 11/09/2022]
Abstract
Viral satellite RNAs (satRNAs) are among the smallest RNA pathogens in plants. They have little or no protein-coding capacity but can have a major impact on the host plants through trilateral interactions with helper viruses and host plants. Studies around the 1980s revealed much of what we know about satRNAs: they can affect helper virus accumulation, modulate helper virus-induced disease symptoms, and induce their own symptoms with the assistance of helper viruses which depend on specific nucleotide sequences of their genome and host species. The molecular basis of these satRNA-caused impacts and the origin of satRNAs have yet to be fully understood and revealed, but recent understanding of the antiviral RNA silencing pathways and advancement in RNA and DNA sequencing technologies have provided new avenues and opportunities to examine these unanswered questions. These RNA silencing-based studies have revealed the existence of cross silencing between some satRNAs and helper viruses, the downregulation of helper virus-encoded suppressor (VSR) of RNA silencing or inhibition/enhancement of VSR activity by satRNAs, the silencing of host-encoded genes by satRNA-derived small interfering RNA (siRNAs), and the presence of satRNA-like small RNAs in uninfected host plants. These findings have provided alternative RNA silencing-based models to explain the pathogenicity and origin of satRNAs. WIREs RNA 2016, 7:5-16. doi: 10.1002/wrna.1311 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Ming-Bo Wang
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia
| | - Neil A Smith
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture Flagship, Canberra, ACT 2601, Australia
| |
Collapse
|
8
|
Abstract
Transgenic resistance to plant viruses is an important technology for control of plant virus infection, which has been demonstrated for many model systems, as well as for the most important plant viruses, in terms of the costs of crop losses to disease, and also for many other plant viruses infecting various fruits and vegetables. Different approaches have been used over the last 28 years to confer resistance, to ascertain whether particular genes or RNAs are more efficient at generating resistance, and to take advantage of advances in the biology of RNA interference to generate more efficient and environmentally safer, novel "resistance genes." The approaches used have been based on expression of various viral proteins (mostly capsid protein but also replicase proteins, movement proteins, and to a much lesser extent, other viral proteins), RNAs [sense RNAs (translatable or not), antisense RNAs, satellite RNAs, defective-interfering RNAs, hairpin RNAs, and artificial microRNAs], nonviral genes (nucleases, antiviral inhibitors, and plantibodies), and host-derived resistance genes (dominant resistance genes and recessive resistance genes), and various factors involved in host defense responses. This review examines the above range of approaches used, the viruses that were tested, and the host species that have been examined for resistance, in many cases describing differences in results that were obtained for various systems developed in the last 20 years. We hope this compilation of experiences will aid those who are seeking to use this technology to provide resistance in yet other crops, where nature has not provided such.
Collapse
Affiliation(s)
| | - Peter Palukaitis
- Department of Horticultural Sciences, Seoul Women's University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Galvez LC, Banerjee J, Pinar H, Mitra A. Engineered plant virus resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 228:11-25. [PMID: 25438782 DOI: 10.1016/j.plantsci.2014.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 07/16/2014] [Accepted: 07/18/2014] [Indexed: 06/04/2023]
Abstract
Virus diseases are among the key limiting factors that cause significant yield loss and continuously threaten crop production. Resistant cultivars coupled with pesticide application are commonly used to circumvent these threats. One of the limitations of the reliance on resistant cultivars is the inevitable breakdown of resistance due to the multitude of variable virus populations. Similarly, chemical applications to control virus transmitting insect vectors are costly to the farmers, cause adverse health and environmental consequences, and often result in the emergence of resistant vector strains. Thus, exploiting strategies that provide durable and broad-spectrum resistance over diverse environments are of paramount importance. The development of plant gene transfer systems has allowed for the introgression of alien genes into plant genomes for novel disease control strategies, thus providing a mechanism for broadening the genetic resources available to plant breeders. Genetic engineering offers various options for introducing transgenic virus resistance into crop plants to provide a wide range of resistance to viral pathogens. This review examines the current strategies of developing virus resistant transgenic plants.
Collapse
Affiliation(s)
- Leny C Galvez
- Department of Plant Pathology, University of Nebarska, Lincoln, NE 68583-0722, USA
| | - Joydeep Banerjee
- Department of Plant Pathology, University of Nebarska, Lincoln, NE 68583-0722, USA
| | - Hasan Pinar
- Department of Plant Pathology, University of Nebarska, Lincoln, NE 68583-0722, USA
| | - Amitava Mitra
- Department of Plant Pathology, University of Nebarska, Lincoln, NE 68583-0722, USA.
| |
Collapse
|
10
|
Wang IN, Hu CC, Lee CW, Yen SM, Yeh WB, Hsu YH, Lin NS. Genetic diversity and evolution of satellite RNAs associated with the bamboo mosaic virus. PLoS One 2014; 9:e108015. [PMID: 25275532 PMCID: PMC4183488 DOI: 10.1371/journal.pone.0108015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 08/20/2014] [Indexed: 02/08/2023] Open
Abstract
Satellite RNAs (satRNAs) are subviral agents that depend on cognate helper viruses for genome replication and encapsidation. Their negative impacts on helper viruses have been exploited to control plant viral diseases. SatBaMV is a commonly found satRNA associated with Bamboo mosaic virus (BaMV) that infects diverse bamboo species in the field. To investigate the genetic diversity and evolution of satRNAs, we examined seven satBaMV populations derived from five bamboo species and cultivars from Taiwan, China, and India and one from the greenhouse. We found 3 distinct clades among the seven populations. Clade I is consisted of all satBaMV isolates, except for those from Dendrocalamus latiflorus in Taiwan and Bambusa vulgaris in India, which belong to Clades II and III, respectively. Interestingly, nucleotide diversity was lower for Clade I than II and III. However, the nucleotide diversity did not seem to depend on bamboo species or geographic location. Our population genetic analyses revealed the presence of excessive low-frequency polymorphic sites, which suggests that the satBaMV population was under purifying selection and/or population expansion. Further analysis of P20, the only satBaMV gene that encodes a non-structural protein involved in the long-distance movement of satBaMV, showed evidence of purifying selection. Taken together, our results suggest that purifying selection against defective P20 protein is responsible at least in part for the evolution of the satBaMV genome.
Collapse
Affiliation(s)
- Ing-Nang Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, Republic of China
- Department of Biological Sciences, University at Albany, Albany, New York, United States of America
| | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Ching-Wei Lee
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Sih-Min Yen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Wen-Bing Yeh
- Department of Entomology, National Chung Hsin University, Taichung, Taiwan, Republic of China
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|