1
|
McLeod L, Barchi L, Tumino G, Tripodi P, Salinier J, Gros C, Boyaci HF, Ozalp R, Borovsky Y, Schafleitner R, Barchenger D, Finkers R, Brouwer M, Stein N, Rabanus-Wallace MT, Giuliano G, Voorrips R, Paran I, Lefebvre V. Multi-environment association study highlights candidate genes for robust agronomic quantitative trait loci in a novel worldwide Capsicum core collection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1508-1528. [PMID: 37602679 DOI: 10.1111/tpj.16425] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/13/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023]
Abstract
Investigating crop diversity through genome-wide association studies (GWAS) on core collections helps in deciphering the genetic determinants of complex quantitative traits. Using the G2P-SOL project world collection of 10 038 wild and cultivated Capsicum accessions from 10 major genebanks, we assembled a core collection of 423 accessions representing the known genetic diversity. Since complex traits are often highly dependent upon environmental variables and genotype-by-environment (G × E) interactions, multi-environment GWAS with a 10 195-marker genotypic matrix were conducted on a highly diverse subset of 350 Capsicum annuum accessions, extensively phenotyped in up to six independent trials from five climatically differing countries. Environment-specific and multi-environment quantitative trait loci (QTLs) were detected for 23 diverse agronomic traits. We identified 97 candidate genes potentially implicated in 53 of the most robust and high-confidence QTLs for fruit flavor, color, size, and shape traits, and for plant productivity, vigor, and earliness traits. Investigating the genetic architecture of agronomic traits in this way will assist the development of genetic markers and pave the way for marker-assisted selection. The G2P-SOL pepper core collection will be available upon request as a unique and universal resource for further exploitation in future gene discovery and marker-assisted breeding efforts by the pepper community.
Collapse
Affiliation(s)
- Louis McLeod
- INRAE, GAFL, Montfavet, France
- INRAE, A2M, Montfavet, France
| | - Lorenzo Barchi
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| | - Giorgio Tumino
- Plant Breeding, Wageningen University and Research (WUR), Wageningen, The Netherlands
| | - Pasquale Tripodi
- Research Centre for Vegetable and Ornamental Crops, Council for Agricultural Research and Economics (CREA), Pontecagnano Faiano, Italy
| | | | | | | | - Ramazan Ozalp
- Bati Akdeniz Agricultural Research Institute (BATEM), Antalya, Türkiye
| | - Yelena Borovsky
- The Volcani Center, Institute of Plant Sciences, Agricultural Research Organization (ARO), Rishon LeZion, Israel
| | - Roland Schafleitner
- Vegetable Diversity and Improvement, World Vegetable Center, Shanhua, Taiwan
| | - Derek Barchenger
- Vegetable Diversity and Improvement, World Vegetable Center, Shanhua, Taiwan
| | - Richard Finkers
- Plant Breeding, Wageningen University and Research (WUR), Wageningen, The Netherlands
| | - Matthijs Brouwer
- Plant Breeding, Wageningen University and Research (WUR), Wageningen, The Netherlands
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Corre, Gatersleben, Germany
- Department of Crop Sciences, Center for Integrated Breeding Research, Georg-August-University, Göttingen, Germany
| | | | - Giovanni Giuliano
- Casaccia Research Centre, Italian National Agency for New Technologies, Energy, and Sustainable Economic Development (ENEA), Rome, Italy
| | - Roeland Voorrips
- Plant Breeding, Wageningen University and Research (WUR), Wageningen, The Netherlands
| | - Ilan Paran
- The Volcani Center, Institute of Plant Sciences, Agricultural Research Organization (ARO), Rishon LeZion, Israel
| | | |
Collapse
|
2
|
Zlobin N, Taranov V. Plant eIF4E isoforms as factors of susceptibility and resistance to potyviruses. FRONTIERS IN PLANT SCIENCE 2023; 14:1041868. [PMID: 36844044 PMCID: PMC9950400 DOI: 10.3389/fpls.2023.1041868] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Potyviruses are the largest group of plant-infecting RNA viruses that affect a wide range of crop plants. Plant resistance genes against potyviruses are often recessive and encode translation initiation factors eIF4E. The inability of potyviruses to use plant eIF4E factors leads to the development of resistance through a loss-of-susceptibility mechanism. Plants have a small family of eIF4E genes that encode several isoforms with distinct but overlapping functions in cell metabolism. Potyviruses use distinct eIF4E isoforms as susceptibility factors in different plants. The role of different members of the plant eIF4E family in the interaction with a given potyvirus could differ drastically. An interplay exists between different members of the eIF4E family in the context of plant-potyvirus interactions, allowing different eIF4E isoforms to modulate each other's availability as susceptibility factors for the virus. In this review, possible molecular mechanisms underlying this interaction are discussed, and approaches to identify the eIF4E isoform that plays a major role in the plant-potyvirus interaction are suggested. The final section of the review discusses how knowledge about the interaction between different eIF4E isoforms can be used to develop plants with durable resistance to potyviruses.
Collapse
|
3
|
Virus Evolution Faced to Multiple Host Targets: The Potyvirus-Pepper Case Study. Curr Top Microbiol Immunol 2023; 439:121-138. [PMID: 36592244 DOI: 10.1007/978-3-031-15640-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The wealth of variability amongst genes controlling immunity against potyviruses in pepper (Capsicum spp.) has been instrumental in understanding plant-virus co-evolution and major determinants of plant resistance durability. Characterization of the eukaryotic initiation factor 4E1 (eIF4E1), involved in mRNA translation, as the basis of potyvirus resistance in pepper initiated a large body of work that showed that recessive resistance to potyviruses and other single-stranded positive-sense RNA viruses resulted from mutations in eukaryotic initiation factors in many plant crop species. Combining mutations in different eIF4Es in the same pepper genotype had complex effects on the breadth of the resistance spectrum and on resistance durability, revealing a trade-off between these two traits. In addition, combining eIF4E1 mutations with a quantitatively resistant genetic background had a strong positive effect on resistance durability. Analysing the evolutionary forces imposed by pepper genotypes onto virus populations allowed identifying three key factors improving plant resistance durability: the complexity of mutational pathways involved in virus adaptation to the plant resistance, the decrease of competitivity induced by these mutations on the virus and the intensity of genetic drift imposed by plant genotypes on the virus during its infection cycle.
Collapse
|
4
|
Tamisier L, Szadkowski M, Girardot G, Djian‐Caporalino C, Palloix A, Hirsch J, Moury B. Concurrent evolution of resistance and tolerance to potato virus Y in Capsicum annuum revealed by genome-wide association. MOLECULAR PLANT PATHOLOGY 2022; 23:254-264. [PMID: 34729890 PMCID: PMC8743019 DOI: 10.1111/mpp.13157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 05/21/2023]
Abstract
We performed a genome-wide association study of pepper (Capsicum annuum) tolerance to potato virus Y (PVY). For 254 pepper accessions, we estimated the tolerance to PVY as the coefficient of regression of the fresh weight (or height) of PVY-infected and mock-inoculated plants against within-plant virus load. Small (strongly negative) coefficients of regression indicate low tolerance because plant biomass or growth decreases sharply as virus load increases. The tolerance level varied largely, with some pepper accessions showing no symptoms or fairly mild mosaics, whereas about half (48%) of the accessions showed necrotic symptoms. We found two adjacent single-nucleotide polymorphisms (SNPs) at one extremity of chromosome 9 that were significantly associated with tolerance to PVY. Similarly, in three biparental pepper progenies, we showed that the induction of necrosis on PVY systemic infection segregated as a monogenic trait determined by a locus on chromosome 9. Our results also demonstrate the existence of a negative correlation between resistance and tolerance among the cultivated pepper accessions at both the phenotypic and genetic levels. By comparing the distributions of the tolerance-associated SNP alleles and previously identified PVY resistance-associated SNP alleles, we showed that cultivated pepper accessions possess favourable alleles for both resistance and tolerance less frequently than expected under random associations, while the minority of wild pepper accessions frequently combined resistance and tolerance alleles. This divergent evolution of PVY resistance and tolerance could be related to pepper domestication or farmer's selection.
Collapse
Affiliation(s)
- Lucie Tamisier
- Pathologie VégétaleINRAEMontfavetFrance
- GAFLINRAEMontfavetFrance
| | | | | | | | | | | | | |
Collapse
|
5
|
Salinier J, Lefebvre V, Besombes D, Burck H, Causse M, Daunay MC, Dogimont C, Goussopoulos J, Gros C, Maisonneuve B, McLeod L, Tobal F, Stevens R. The INRAE Centre for Vegetable Germplasm: Geographically and Phenotypically Diverse Collections and Their Use in Genetics and Plant Breeding. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030347. [PMID: 35161327 PMCID: PMC8838894 DOI: 10.3390/plants11030347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 05/14/2023]
Abstract
The French National Research Institute for Agriculture, Food and the Environment (INRAE) conserves and distributes five vegetable collections as seeds: the aubergine* (in this article the word aubergine refers to eggplant), pepper, tomato, melon and lettuce collections, together with their wild or cultivated relatives, are conserved in Avignon, France. Accessions from the collections have geographically diverse origins, are generally well-described and fixed for traits of agronomic or scientific interest and have available passport data. In addition to currently conserving over 10,000 accessions (between 900 and 3000 accessions per crop), the centre maintains scientific collections such as core collections and bi- or multi-parental populations, which have also been genotyped with SNP markers. Each collection has its own merits and highlights, which are discussed in this review: the aubergine collection is a rich source of crop wild relatives of Solanum; the pepper, melon and lettuce collections have been screened for resistance to plant pathogens, including viruses, fungi, oomycetes and insects; and the tomato collection has been at the heart of genome-wide association studies for fruit quality traits and environmental stress tolerance.
Collapse
|
6
|
Construction of a core collection of native Perilla germplasm collected from South Korea based on SSR markers and morphological characteristics. Sci Rep 2021; 11:23891. [PMID: 34903814 PMCID: PMC8668929 DOI: 10.1038/s41598-021-03362-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/01/2021] [Indexed: 11/23/2022] Open
Abstract
The leaves and seed oil of Perilla crop (Perilla frutescens L.) have attracted interest as health foods in East Asia. This crop has been traditionally cultivated and used for a long time as a folk plant, especially in Korea. In our study, the 22 SSR markers and eight morphological traits were used to assess the genetic diversity and population structure, to select a core collection of 400 Perilla accessions conserved in the RDA-Genebank of South Korea. A total of 173 alleles were detected and the number of alleles per locus ranged from 4 to 15 (average = 7.9). Gene diversity and polymorphic information content ranged from 0.138 to 0.868 (average = 0.567) and 0.134 to 0.853 (average = 0.522), respectively. The 400 accessions were not clearly distinguished geographically by STRUCTURE and UPGMA analyses. A core collection (44 accessions) was selected from the entire collection by using PowerCore. The core collection accounted for 11.0% of the entire Perilla collection, including 100% of the number of alleles maintained in the whole collection and with similar or greater Shannon-Weaver and Nei diversity indices than the whole collection. The core collection selected by SSR markers was evenly distributed in three clusters on a scatter plot by eight morphological traits. The first core collection of Perilla accessions was constructed, and it maintained allelic richness. Further modification of the core collection is expected with the continuous addition of new accessions of the two cultivated types of Perilla crop and their weedy types.
Collapse
|
7
|
Zafirov D, Giovinazzo N, Bastet A, Gallois J. When a knockout is an Achilles' heel: Resistance to one potyvirus species triggers hypersusceptibility to another one in Arabidopsis thaliana. MOLECULAR PLANT PATHOLOGY 2021; 22:334-347. [PMID: 33377260 PMCID: PMC7865081 DOI: 10.1111/mpp.13031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/03/2020] [Accepted: 12/01/2020] [Indexed: 05/04/2023]
Abstract
The translation initiation factors 4E are a small family of major susceptibility factors to potyviruses. It has been suggested that knocking out these genes could provide genetic resistance in crops when natural resistance alleles, which encode functional eIF4E proteins, are not available. Here, using the well-characterized Arabidopsis thaliana-potyvirus pathosystem, we evaluate the resistance spectrum of plants knocked out for eIF4E1, the susceptibility factor to clover yellow vein virus (ClYVV). We show that besides resistance to ClYVV, the eIF4E1 loss of function is associated with hypersusceptibility to turnip mosaic virus (TuMV), a potyvirus known to rely on the paralog host factor eIFiso4E. On TuMV infection, plants knocked out for eIF4E1 display striking developmental defects such as early senescence and primordia development stoppage. This phenotype is coupled with a strong TuMV overaccumulation throughout the plant, while remarkably the levels of the viral target eIFiso4E remain uninfluenced. Our data suggest that this hypersusceptibility cannot be explained by virus evolution leading to a gain of TuMV aggressiveness. Furthermore, we report that a functional eIF4E1 resistance allele engineered by CRISPR/Cas9 base-editing technology successfully circumvents the increase of TuMV susceptibility conditioned by eIF4E1 disruption. These findings in Arabidopsis add to several previous findings in crops suggesting that resistance based on knocking out eIF4E factors should be avoided in plant breeding, as it could also expose the plant to the severe threat of potyviruses able to recruit alternative eIF4E copies. At the same time, it provides a simple model that can help understanding of the homeostasis among eIF4E proteins in the plant cell and what makes them available to potyviruses.
Collapse
|
8
|
Christov NK, Tsonev S, Todorova V, Todorovska EG. Genetic diversity and population structure analysis – a prerequisite for constructing a mini core collection of Balkan Capsicum annuum germplasm. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1946428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
| | - Stefan Tsonev
- Department of Functional Genetics, AgroBioInstitute, Agricultural Academy, Sofia, Bulgaria
| | - Velichka Todorova
- Department of Breeding, Maritsa Vegetable Crops Research Institute, Agricultural Academy, Plovdiv, Bulgaria
| | | |
Collapse
|
9
|
Tamisier L, Szadkowski M, Nemouchi G, Lefebvre V, Szadkowski E, Duboscq R, Santoni S, Sarah G, Sauvage C, Palloix A, Moury B. Genome-wide association mapping of QTLs implied in potato virus Y population sizes in pepper: evidence for widespread resistance QTL pyramiding. MOLECULAR PLANT PATHOLOGY 2020; 21:3-16. [PMID: 31605444 PMCID: PMC6913244 DOI: 10.1111/mpp.12874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this study, we looked for genetic factors in the pepper (Capsicum annuum) germplasm that control the number of potato virus Y (PVY) particles entering the plant (i.e. effective population size at inoculation) and the PVY accumulation at the systemic level (i.e. census population size). Using genotyping-by-sequencing (GBS) in a core collection of 256 pepper accessions, we obtained 10 307 single nucleotide polymorphisms (SNPs) covering the whole genome. Genome-wide association studies (GWAS) detected seven SNPs significantly associated with the virus population size at inoculation and/or systemic level on chromosomes 4, 6, 9 and 12. Two SNPs on chromosome 4 associated with both PVY population sizes map closely to the major resistance gene pvr2 encoding the eukaryotic initiation factor 4E. No obvious candidates for resistance were identified in the confidence intervals for the other chromosomes. SNPs detected on chromosomes 6 and 12 colocalized with resistance quantitative trait loci (QTLs) previously identified with a biparental population. These results show the efficiency of GBS and GWAS in C. annuum, indicate highly consistent results between GWAS and classical QTL mapping, and suggest that resistance QTLs identified with a biparental population are representative of a much larger collection of pepper accessions. Moreover, the resistance alleles at these different loci were more frequently combined than expected by chance in the core collection, indicating widespread pyramiding of resistance QTLs and widespread combination of resistance QTLs and major effect genes. Such pyramiding may increase resistance efficiency and/or durability.
Collapse
Affiliation(s)
- Lucie Tamisier
- GAFLINRA84140MontfavetFrance
- Pathologie VégétaleINRA84140MontfavetFrance
- Present address:
Plant Pathology LaboratoryTERRA‐Gembloux Agro‐Bio TechUniversity of LiègePassage des Déportés, 25030GemblouxBelgium
| | - Marion Szadkowski
- GAFLINRA84140MontfavetFrance
- Pathologie VégétaleINRA84140MontfavetFrance
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Rousseau E, Tamisier L, Fabre F, Simon V, Szadkowski M, Bouchez O, Zanchetta C, Girardot G, Mailleret L, Grognard F, Palloix A, Moury B. Impact of genetic drift, selection and accumulation level on virus adaptation to its host plants. MOLECULAR PLANT PATHOLOGY 2018; 19:2575-2589. [PMID: 30074299 PMCID: PMC6638063 DOI: 10.1111/mpp.12730] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The efficiency of plant major resistance genes is limited by the emergence and spread of resistance-breaking mutants. Modulation of the evolutionary forces acting on pathogen populations constitutes a promising way to increase the durability of these genes. We studied the effect of four plant traits affecting these evolutionary forces on the rate of resistance breakdown (RB) by a virus. Two of these traits correspond to virus effective population sizes (Ne ) at either plant inoculation or during infection. The third trait corresponds to differential selection exerted by the plant on the virus population. Finally, the fourth trait corresponds to within-plant virus accumulation (VA). These traits were measured experimentally on Potato virus Y (PVY) inoculated to a set of 84 pepper doubled-haploid lines, all carrying the same pvr23 resistance gene, but having contrasting genetic backgrounds. The lines showed extensive variation for the rate of pvr23 RB by PVY and for the four other traits of interest. A generalized linear model showed that three of these four traits, with the exception of Ne at inoculation, and several pairwise interactions between them had significant effects on RB. RB increased with increasing values of Ne during plant infection or VA. The effect of differential selection was more complex because of a strong interaction with VA. When VA was high, RB increased as the differential selection increased. An opposite relationship between RB and differential selection was observed when VA was low. This study provides a framework to select plants with appropriate virus evolution-related traits to avoid or delay RB.
Collapse
Affiliation(s)
- Elsa Rousseau
- Pathologie VégétaleINRA84140MontfavetFrance
- Université Côte d'Azur, Inria, INRA, CNRS, Sorbonne UniversitéBiocore TeamSophia AntipolisFrance
- Université Côte d'Azur, INRA, CNRS, ISAFrance
- Present address:
IBM Almaden Research CenterSan Jose, CA 95120–6099USA
| | - Lucie Tamisier
- Pathologie VégétaleINRA84140MontfavetFrance
- GAFL, INRA84140MontfavetFrance
- Present address:
Université de Liège, Terra‐Gembloux Agro-Bio Tech, PlantPathology Laboratory, Passage des Déportés2, GemblouxBelgium, 5030
| | | | - Vincent Simon
- Pathologie VégétaleINRA84140MontfavetFrance
- UMR BFPINRA33882Villenave d'OrnonFrance
| | | | - Olivier Bouchez
- INRAGeT‐PlaGe, US 1426, Genotoul, 31326 Castanet‐TolosanFrance
| | | | | | - Ludovic Mailleret
- Université Côte d'Azur, Inria, INRA, CNRS, Sorbonne UniversitéBiocore TeamSophia AntipolisFrance
- Université Côte d'Azur, INRA, CNRS, ISAFrance
| | - Frederic Grognard
- Université Côte d'Azur, Inria, INRA, CNRS, Sorbonne UniversitéBiocore TeamSophia AntipolisFrance
| | | | | |
Collapse
|
11
|
Role of the Genetic Background in Resistance to Plant Viruses. Int J Mol Sci 2018; 19:ijms19102856. [PMID: 30241370 PMCID: PMC6213453 DOI: 10.3390/ijms19102856] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 01/03/2023] Open
Abstract
In view of major economic problems caused by viruses, the development of genetically resistant crops is critical for breeders but remains limited by the evolution of resistance-breaking virus mutants. During the plant breeding process, the introgression of traits from Crop Wild Relatives results in a dramatic change of the genetic background that can alter the resistance efficiency or durability. Here, we conducted a meta-analysis on 19 Quantitative Trait Locus (QTL) studies of resistance to viruses in plants. Frequent epistatic effects between resistance genes indicate that a large part of the resistance phenotype, conferred by a given QTL, depends on the genetic background. We next reviewed the different resistance mechanisms in plants to survey at which stage the genetic background could impact resistance or durability. We propose that the genetic background may impair effector-triggered dominant resistances at several stages by tinkering the NB-LRR (Nucleotide Binding-Leucine-Rich Repeats) response pathway. In contrast, effects on recessive resistances by loss-of-susceptibility-such as eIF4E-based resistances-are more likely to rely on gene redundancy among the multigene family of host susceptibility factors. Finally, we show how the genetic background is likely to shape the evolution of resistance-breaking isolates and propose how to take this into account in order to breed plants with increased resistance durability to viruses.
Collapse
|
12
|
Takakura Y, Udagawa H, Shinjo A, Koga K. Mutation of a Nicotiana tabacum L. eukaryotic translation-initiation factor gene reduces susceptibility to a resistance-breaking strain of Potato virus Y. MOLECULAR PLANT PATHOLOGY 2018; 19:2124-2133. [PMID: 29633509 PMCID: PMC6638035 DOI: 10.1111/mpp.12686] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/08/2018] [Accepted: 04/03/2018] [Indexed: 05/23/2023]
Abstract
Eukaryotic translation-initiation factors eIF4E and eIF(iso)4E in plants play key roles in infection by potyviruses and other plant RNA viruses. Mutations in the genes encoding these factors reduce susceptibility to the viruses, and are the basis of several recessive virus resistance genes widely used in plant breeding. Because virus variants occasionally break such resistance, the molecular basis for this process must be elucidated. Although deletion mutants of eIF4E1-S of tobacco (Nicotiana tabacum L.) resist Potato virus Y (PVY; the type member of the genus Potyvirus), resistance-breaking strains of PVY threaten tobacco production worldwide. Here, we used RNA interference technology to knock down tobacco eIF4E2-S and eIF4E2-T genes or eIF(iso)4E-S and eIF(iso)4E-T genes. Transgenic plants with reduced transcript levels of both eIF(iso)4E-S and eIF(iso)4E-T showed reduced susceptibility to a resistance-breaking PVY strain with a K105E mutation in the viral genome-associated protein (VPg). By screening a population of chemically induced mutants of eIF(iso)4E-S and eIF(iso)4E-T, we showed that plants with a nonsense mutation in eIF(iso)4E-T, but not eIF(iso)4E-S, showed reduced susceptibility to the resistance-breaking PVY strain. In a yeast two-hybrid assay, VPg of the resistance-breaking strain, but not wild-type PVY, physically interacted with the eIF(iso)4E-T protein. Thus, eIF4E1-S is required for infection by PVY, but eIF(iso)4E-T is required for infection by the resistance-breaking strain. Our study provides the first evidence for the involvement of a host eukaryotic translation-initiation factor in the infection cycle of a resistance-breaking virus strain. The eIF(iso)4E-T mutants will be useful in tobacco breeding to introduce resistance against resistance-breaking PVY strains.
Collapse
Affiliation(s)
- Yoshimitsu Takakura
- Leaf Tobacco Research Center, Japan Tobacco, Inc.1900 Idei, OyamaTochigi 323‐0808Japan
| | - Hisashi Udagawa
- Leaf Tobacco Research Center, Japan Tobacco, Inc.1900 Idei, OyamaTochigi 323‐0808Japan
| | - Akira Shinjo
- Leaf Tobacco Research Center, Japan Tobacco, Inc.1900 Idei, OyamaTochigi 323‐0808Japan
| | - Kazuharu Koga
- Leaf Tobacco Research Center, Japan Tobacco, Inc.1900 Idei, OyamaTochigi 323‐0808Japan
| |
Collapse
|
13
|
Hébrard E, Pinel-Galzi A, Oludare A, Poulicard N, Aribi J, Fabre S, Issaka S, Mariac C, Dereeper A, Albar L, Silué D, Fargette D. Identification of a Hypervirulent Pathotype of Rice yellow mottle virus: A Threat to Genetic Resistance Deployment in West-Central Africa. PHYTOPATHOLOGY 2018; 108:299-307. [PMID: 28990483 DOI: 10.1094/phyto-05-17-0190-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Rice yellow mottle virus (RYMV) causes high losses to rice production in Africa. Several sources of varietal high resistance are available but the emergence of virulent pathotypes that are able to overcome one or two resistance alleles can sometimes occur. Both resistance spectra and viral adaptability have to be taken into account to develop sustainable rice breeding strategies against RYMV. In this study, we extended previous resistance spectrum analyses by testing the rymv1-4 and rymv1-5 alleles that are carried by the rice accessions Tog5438 and Tog5674, respectively, against isolates that are representative of RYMV genetic and pathogenic diversity. Our study revealed a hypervirulent pathotype, named thereafter pathotype T', that is able to overcome all known sources of high resistance. This pathotype, which is spatially localized in West-Central Africa, appears to be more abundant than previously suspected. To better understand the adaptive processes of pathotype T', molecular determinants of resistance breakdown were identified via Sanger sequencing and validated through directed mutagenesis of an infectious clone. These analyses confirmed the key role of convergent nonsynonymous substitutions in the central part of the viral genome-linked protein to overcome RYMV1-mediated resistance. In addition, deep-sequencing analyses revealed that resistance breakdown does not always coincide with fixed mutations. Actually, virulence mutations that are present in a small proportion of the virus population can be sufficient for resistance breakdown. Considering the spatial distribution of RYMV strains in Africa and their ability to overcome the RYMV resistance genes and alleles, we established a resistance-breaking risk map to optimize strategies for the deployment of sustainable and resistant rice lines in Africa.
Collapse
Affiliation(s)
- Eugénie Hébrard
- First, second, fourth, fifth, sixth, ninth, eleventh, and twelfth authors: IRD, Cirad, Université Montpellier, IPME, Montpellier, France; third author: AfricaRice Center, 01 BP 2551, Bouaké 01, Côte d'Ivoire; seventh author: FSAE, Université de Tillabéri, BP 175 Tillabéri, Niger; and eighth and tenth authors: IRD, Université Montpellier, DIADE, Montpellier, France
| | - Agnès Pinel-Galzi
- First, second, fourth, fifth, sixth, ninth, eleventh, and twelfth authors: IRD, Cirad, Université Montpellier, IPME, Montpellier, France; third author: AfricaRice Center, 01 BP 2551, Bouaké 01, Côte d'Ivoire; seventh author: FSAE, Université de Tillabéri, BP 175 Tillabéri, Niger; and eighth and tenth authors: IRD, Université Montpellier, DIADE, Montpellier, France
| | - Aderonke Oludare
- First, second, fourth, fifth, sixth, ninth, eleventh, and twelfth authors: IRD, Cirad, Université Montpellier, IPME, Montpellier, France; third author: AfricaRice Center, 01 BP 2551, Bouaké 01, Côte d'Ivoire; seventh author: FSAE, Université de Tillabéri, BP 175 Tillabéri, Niger; and eighth and tenth authors: IRD, Université Montpellier, DIADE, Montpellier, France
| | - Nils Poulicard
- First, second, fourth, fifth, sixth, ninth, eleventh, and twelfth authors: IRD, Cirad, Université Montpellier, IPME, Montpellier, France; third author: AfricaRice Center, 01 BP 2551, Bouaké 01, Côte d'Ivoire; seventh author: FSAE, Université de Tillabéri, BP 175 Tillabéri, Niger; and eighth and tenth authors: IRD, Université Montpellier, DIADE, Montpellier, France
| | - Jamel Aribi
- First, second, fourth, fifth, sixth, ninth, eleventh, and twelfth authors: IRD, Cirad, Université Montpellier, IPME, Montpellier, France; third author: AfricaRice Center, 01 BP 2551, Bouaké 01, Côte d'Ivoire; seventh author: FSAE, Université de Tillabéri, BP 175 Tillabéri, Niger; and eighth and tenth authors: IRD, Université Montpellier, DIADE, Montpellier, France
| | - Sandrine Fabre
- First, second, fourth, fifth, sixth, ninth, eleventh, and twelfth authors: IRD, Cirad, Université Montpellier, IPME, Montpellier, France; third author: AfricaRice Center, 01 BP 2551, Bouaké 01, Côte d'Ivoire; seventh author: FSAE, Université de Tillabéri, BP 175 Tillabéri, Niger; and eighth and tenth authors: IRD, Université Montpellier, DIADE, Montpellier, France
| | - Souley Issaka
- First, second, fourth, fifth, sixth, ninth, eleventh, and twelfth authors: IRD, Cirad, Université Montpellier, IPME, Montpellier, France; third author: AfricaRice Center, 01 BP 2551, Bouaké 01, Côte d'Ivoire; seventh author: FSAE, Université de Tillabéri, BP 175 Tillabéri, Niger; and eighth and tenth authors: IRD, Université Montpellier, DIADE, Montpellier, France
| | - Cédric Mariac
- First, second, fourth, fifth, sixth, ninth, eleventh, and twelfth authors: IRD, Cirad, Université Montpellier, IPME, Montpellier, France; third author: AfricaRice Center, 01 BP 2551, Bouaké 01, Côte d'Ivoire; seventh author: FSAE, Université de Tillabéri, BP 175 Tillabéri, Niger; and eighth and tenth authors: IRD, Université Montpellier, DIADE, Montpellier, France
| | - Alexis Dereeper
- First, second, fourth, fifth, sixth, ninth, eleventh, and twelfth authors: IRD, Cirad, Université Montpellier, IPME, Montpellier, France; third author: AfricaRice Center, 01 BP 2551, Bouaké 01, Côte d'Ivoire; seventh author: FSAE, Université de Tillabéri, BP 175 Tillabéri, Niger; and eighth and tenth authors: IRD, Université Montpellier, DIADE, Montpellier, France
| | - Laurence Albar
- First, second, fourth, fifth, sixth, ninth, eleventh, and twelfth authors: IRD, Cirad, Université Montpellier, IPME, Montpellier, France; third author: AfricaRice Center, 01 BP 2551, Bouaké 01, Côte d'Ivoire; seventh author: FSAE, Université de Tillabéri, BP 175 Tillabéri, Niger; and eighth and tenth authors: IRD, Université Montpellier, DIADE, Montpellier, France
| | - Drissa Silué
- First, second, fourth, fifth, sixth, ninth, eleventh, and twelfth authors: IRD, Cirad, Université Montpellier, IPME, Montpellier, France; third author: AfricaRice Center, 01 BP 2551, Bouaké 01, Côte d'Ivoire; seventh author: FSAE, Université de Tillabéri, BP 175 Tillabéri, Niger; and eighth and tenth authors: IRD, Université Montpellier, DIADE, Montpellier, France
| | - Denis Fargette
- First, second, fourth, fifth, sixth, ninth, eleventh, and twelfth authors: IRD, Cirad, Université Montpellier, IPME, Montpellier, France; third author: AfricaRice Center, 01 BP 2551, Bouaké 01, Côte d'Ivoire; seventh author: FSAE, Université de Tillabéri, BP 175 Tillabéri, Niger; and eighth and tenth authors: IRD, Université Montpellier, DIADE, Montpellier, France
| |
Collapse
|
14
|
Bastet A, Robaglia C, Gallois JL. eIF4E Resistance: Natural Variation Should Guide Gene Editing. TRENDS IN PLANT SCIENCE 2017; 22:411-419. [PMID: 28258958 DOI: 10.1016/j.tplants.2017.01.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/20/2017] [Accepted: 01/31/2017] [Indexed: 05/19/2023]
Abstract
eIF4E translation initiation factors have emerged as major susceptibility factors for RNA viruses. Natural eIF4E-based resistance alleles are found in many species and are mostly variants that maintain the translation function of the protein. eIF4E genes represent major targets for engineering viral resistance, and gene-editing technologies can be used to make up for the lack of natural resistance alleles in some crops, often by knocking out eIF4E susceptibility factors. However, we report here how redundancy among eIF4E genes can restrict the efficient use of knockout alleles in breeding. We therefore discuss how gene-editing technologies can be used to design de novo functional alleles, using knowledge about the natural evolution of eIF4E genes in different species, to drive resistance to viruses without affecting plant physiology.
Collapse
Affiliation(s)
- Anna Bastet
- GAFL, INRA, 84140, Montfavet, France; Aix Marseille University, Biologie Végétale et Microbiologie Environnementales UMR 7265, Laboratoire de Génétique et Biophysique des Plantes, Marseille F-13009, France; CNRS, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Marseille F-13009, France; CEA, Bioscience and Biotechnology Institute of Aix-Marseille, Marseille F-13009, France
| | - Christophe Robaglia
- Aix Marseille University, Biologie Végétale et Microbiologie Environnementales UMR 7265, Laboratoire de Génétique et Biophysique des Plantes, Marseille F-13009, France; CNRS, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Marseille F-13009, France; CEA, Bioscience and Biotechnology Institute of Aix-Marseille, Marseille F-13009, France
| | | |
Collapse
|
15
|
Lee HY, Ro NY, Jeong HJ, Kwon JK, Jo J, Ha Y, Jung A, Han JW, Venkatesh J, Kang BC. Genetic diversity and population structure analysis to construct a core collection from a large Capsicum germplasm. BMC Genet 2016; 17:142. [PMID: 27842492 PMCID: PMC5109817 DOI: 10.1186/s12863-016-0452-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/26/2016] [Indexed: 11/17/2022] Open
Abstract
Background Conservation of genetic diversity is an essential prerequisite for developing new cultivars with desirable agronomic traits. Although a large number of germplasm collections have been established worldwide, many of them face major difficulties due to large size and a lack of adequate information about population structure and genetic diversity. Core collection with a minimum number of accessions and maximum genetic diversity of pepper species and its wild relatives will facilitate easy access to genetic material as well as the use of hidden genetic diversity in Capsicum. Results To explore genetic diversity and population structure, we investigated patterns of molecular diversity using a transcriptome-based 48 single nucleotide polymorphisms (SNPs) in a large germplasm collection comprising 3,821 accessions. Among the 11 species examined, Capsicum annuum showed the highest genetic diversity (HE = 0.44, I = 0.69), whereas the wild species C. galapagoense showed the lowest genetic diversity (HE = 0.06, I = 0.07). The Capsicum germplasm collection was divided into 10 clusters (cluster 1 to 10) based on population structure analysis, and five groups (group A to E) based on phylogenetic analysis. Capsicum accessions from the five distinct groups in an unrooted phylogenetic tree showed taxonomic distinctness and reflected their geographic origins. Most of the accessions from European countries are distributed in the A and B groups, whereas the accessions from Asian countries are mainly distributed in C and D groups. Five different sampling strategies with diverse genetic clustering methods were used to select the optimal method for constructing the core collection. Using a number of allelic variations based on 48 SNP markers and 32 different phenotypic/morphological traits, a core collection ‘CC240’ with a total of 240 accessions (5.2 %) was selected from within the entire Capsicum germplasm. Compared to the other core collections, CC240 displayed higher genetic diversity (I = 0.95) and genetic evenness (J’ = 0.80), and represented a wider range of phenotypic variation (MD = 9.45 %, CR = 98.40 %). Conclusions A total of 240 accessions were selected from 3,821 Capsicum accessions based on transcriptome-based 48 SNP markers with genome-wide distribution and 32 traits using a systematic approach. This core collection will be a primary resource for pepper breeders and researchers for further genetic association and functional analyses. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0452-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hea-Young Lee
- Department of Plant Science and Vegetable Breeding Research Center, Seoul National University, Seoul, 151-921, Korea
| | - Na-Young Ro
- National Academy of Agricultural Science, Rural Development Administration, Jeonju, 560-500, Korea
| | - Hee-Jin Jeong
- Department of Plant Science and Vegetable Breeding Research Center, Seoul National University, Seoul, 151-921, Korea
| | - Jin-Kyung Kwon
- Department of Plant Science and Vegetable Breeding Research Center, Seoul National University, Seoul, 151-921, Korea
| | - Jinkwan Jo
- Department of Plant Science and Vegetable Breeding Research Center, Seoul National University, Seoul, 151-921, Korea
| | - Yeaseong Ha
- Department of Plant Science and Vegetable Breeding Research Center, Seoul National University, Seoul, 151-921, Korea
| | - Ayoung Jung
- Department of Plant Science and Vegetable Breeding Research Center, Seoul National University, Seoul, 151-921, Korea
| | - Ji-Woong Han
- Department of Plant Science and Vegetable Breeding Research Center, Seoul National University, Seoul, 151-921, Korea
| | - Jelli Venkatesh
- Department of Plant Science and Vegetable Breeding Research Center, Seoul National University, Seoul, 151-921, Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science and Vegetable Breeding Research Center, Seoul National University, Seoul, 151-921, Korea.
| |
Collapse
|
16
|
Lebaron C, Rosado A, Sauvage C, Gauffier C, German-Retana S, Moury B, Gallois JL. A new eIF4E1 allele characterized by RNAseq data mining is associated with resistance to potato virus Y in tomato albeit with a low durability. J Gen Virol 2016; 97:3063-3072. [PMID: 27655175 DOI: 10.1099/jgv.0.000609] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Allele mining on susceptibility factors offers opportunities to find new sources of resistance among crop wild relatives for breeding purposes. As a proof of concept, we used available RNAseq data to investigate polymorphisms among the four tomato genes encoding translation initiation factors [eIF4E1 and eIF4E2, eIFiso4E and the related gene new cap-binding protein(nCBP)] to look for new potential resistance alleles to potyviruses. By analysing polymorphism among RNAseq data obtained for 20 tomato accessions, 10 belonging to the cultivated type Solanum lycopersicum and 10 belonging to the closest related wild species Solanum pimpinellifolium, we isolated one new eIF4E1 allele, in the S. pimpinellifolium LA0411 accession, which encodes a potential new resistance allele, mainly due to a polymorphism associated with an amino acid change within eIF4E1 region II. We confirmed that this new allele, pot12, is indeed associated with resistance to potato virus Y, although with a restricted resistance spectrum and a very low durability potential. This suggests that mutations occurring in eIF4E region II only may not be sufficient to provide efficient and durable resistance in plants. However, our study emphasizes the opportunity brought by RNAseq data to mine for new resistance alleles. Moreover, this approach could be extended to seek for putative new resistance alleles by screening for variant forms of susceptibility genes encoding plant host proteins known to interact with viral proteins.
Collapse
Affiliation(s)
| | | | | | | | | | - Benoît Moury
- Pathologie Végétale, INRA, 84140 Montfavet, France
| | | |
Collapse
|