1
|
Venkataraman S, Selvarajan R, Subramanian SS, Handanahalli SS. Insights into the capsid structure of banana bunchy top virus. 3 Biotech 2022; 12:144. [PMID: 35694237 DOI: 10.1007/s13205-022-03204-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 03/05/2022] [Indexed: 11/01/2022] Open
Abstract
Banana is the major staple food crop for approximately 400 million people. Bunchy top disease of banana is one of the most devastating diseases caused by banana bunchy top virus (BBTV), which results in stunting of plants, bunchy appearance of leaves and a significant loss of yield. While many isolates of BBTV from various regions of India have been characterized by different groups, no structural study exists for this important virus. To bridge this gap, the pET28a clone of the coat protein (CP) gene from BBTV isolate of Hill banana grown in lower Pulney Hills (Virupakshi) of Tamilnadu was expressed in BL21 (DE3) pLysS. Purification of the CP was achieved by Ni-NTA affinity chromatography. In vitro capsid assembly studied using sucrose density gradient centrifugation suggested that the CP did not assemble as a virus-like particle (VLP), but remained as smaller oligomers. Studies using dynamic light scattering (DLS) indicate that the purified protein is poly-dispersed, represented majorly as pentamers. Homology modeling studies provided useful insights into the probable fold of the CP suggesting that it is a β-sandwich, similar to that seen in the majority of plant viruses. In silico capsid reconstruction aided the understanding of the quaternary organization of subunits in the capsid and their molecular interactions. The location of the aphid-binding EAG motif was identified on the surface loops close to the pentameric axis indicating its role in vector-mediated transmission. Comparison with the CP and capsid structure of geminiviruses provided useful insights into the mode of nucleic acid binding and the role of genome during capsid assembly. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03204-4.
Collapse
Affiliation(s)
| | - Ramasamy Selvarajan
- ICAR National Research Centre for Banana, Thayanur Post, Tiruchirapalli, 620102 India
| | | | | |
Collapse
|
2
|
Zhuang J, Lin W, Coates CJ, Shang P, Wei T, Wu Z, Xie L. Cleavage of the Babuvirus Movement Protein B4 into Functional Peptides Capable of Host Factor Conjugation is Required for Virulence. Virol Sin 2019; 34:295-305. [PMID: 30868360 PMCID: PMC6599508 DOI: 10.1007/s12250-019-00094-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/18/2019] [Indexed: 11/29/2022] Open
Abstract
Banana bunchy top virus (BBTV) poses a serious danger to banana crops worldwide. BBTV-encoded protein B4 is a determinant of pathogenicity. However, the relevant molecular mechanisms underlying its effects remain unknown. In this study, we found that a functional peptide could be liberated from protein B4, likely via proteolytic processing. Site-directed mutagenesis indicated that the functional processing of protein B4 is required for its pathogenic effects, including dwarfism and sterility, in plants. The released protein fragment targets host proteins, such as the large subunit of RuBisCO (RbcL) and elongation factor 2 (EF2), involved in protein synthesis. Therefore, the peptide released from B4 (also a precursor) may act as a non-canonical modifier to influence host-pathogen interactions involving BBTV and plants.
Collapse
Affiliation(s)
- Jun Zhuang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Wenwu Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Christopher J Coates
- Department of Biosciences, College of Science, Swansea University, Swansea, SA2 8PP, Wales, UK
| | - Pengxiang Shang
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Taiyun Wei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zujian Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lianhui Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|