1
|
Shen Z, Thomashow LS, Ou Y, Tao C, Wang J, Xiong W, Liu H, Li R, Shen Q, Kowalchuk GA. Shared Core Microbiome and Functionality of Key Taxa Suppressive to Banana Fusarium Wilt. Research (Wash D C) 2022; 2022:9818073. [PMID: 36204250 PMCID: PMC9513836 DOI: 10.34133/2022/9818073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/22/2022] [Indexed: 11/08/2022] Open
Abstract
Microbial contributions to natural soil suppressiveness have been reported for a range of plant pathogens and cropping systems. To disentangle the mechanisms underlying suppression of banana Panama disease caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc4), we used amplicon sequencing to analyze the composition of the soil microbiome from six separate locations, each comprised of paired orchards, one potentially suppressive and one conducive to the disease. Functional potentials of the microbiomes from one site were further examined by shotgun metagenomic sequencing after soil suppressiveness was confirmed by greenhouse experiments. Potential key antagonists involved in disease suppression were also isolated, and their activities were validated by a combination of microcosm and pot experiments. We found that potentially suppressive soils shared a common core community with relatively low levels of F. oxysporum and relatively high proportions of Myxococcales, Pseudomonadales, and Xanthomonadales, with five genera, Anaeromyxobacter, Kofleria, Plesiocystis, Pseudomonas, and Rhodanobacter being significantly enriched. Further, Pseudomonas was identified as a potential key taxon linked to pathogen suppression. Metagenomic analysis showed that, compared to the conducive soil, the microbiome in the disease suppressive soil displayed a significantly greater incidence of genes related to quorum sensing, biofilm formation, and synthesis of antimicrobial compounds potentially active against Foc4. We also recovered a higher frequency of antagonistic Pseudomonas isolates from disease suppressive experimental field sites, and their protective effects against banana Fusarium wilt disease were demonstrated under greenhouse conditions. Despite differences in location and soil conditions, separately located suppressive soils shared common characteristics, including enrichment of Myxococcales, Pseudomonadales, and Xanthomonadales, and enrichment of specific Pseudomonas populations with antagonistic activity against the pathogen. Moreover, changes in functional capacity toward an increase in quorum sensing, biofilm formation, and antimicrobial compound synthesizing involve in disease suppression.
Collapse
Affiliation(s)
- Zongzhuan Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, The Key Laboratory of Plant Immunity, Joint International Research Laboratory of Soil Health, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
- The Sanya Institute of the Nanjing Agricultural University, Sanya, Hainan Province, China
| | - Linda S. Thomashow
- U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA, USA
| | - Yannan Ou
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, The Key Laboratory of Plant Immunity, Joint International Research Laboratory of Soil Health, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
| | - Chengyuan Tao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, The Key Laboratory of Plant Immunity, Joint International Research Laboratory of Soil Health, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
| | - Jiabao Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, The Key Laboratory of Plant Immunity, Joint International Research Laboratory of Soil Health, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
- The Sanya Institute of the Nanjing Agricultural University, Sanya, Hainan Province, China
| | - Wu Xiong
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, The Key Laboratory of Plant Immunity, Joint International Research Laboratory of Soil Health, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
| | - Hongjun Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, The Key Laboratory of Plant Immunity, Joint International Research Laboratory of Soil Health, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
| | - Rong Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, The Key Laboratory of Plant Immunity, Joint International Research Laboratory of Soil Health, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
- The Sanya Institute of the Nanjing Agricultural University, Sanya, Hainan Province, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, The Key Laboratory of Plant Immunity, Joint International Research Laboratory of Soil Health, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
- The Sanya Institute of the Nanjing Agricultural University, Sanya, Hainan Province, China
| | - George A. Kowalchuk
- Ecology and Biodiversity Group, Institute of Environmental Biology, Department of Biology, Utrecht University, 3584 CH Utrecht, Netherlands
| |
Collapse
|
2
|
Moffitt MC, Wong-Bajracharya J, Shuey LS, Park RF, Pegg GS, Plett JM. Both Constitutive and Infection-Responsive Secondary Metabolites Linked to Resistance against Austropuccinia psidii (Myrtle Rust) in Melaleuca quinquenervia. Microorganisms 2022; 10:383. [PMID: 35208838 PMCID: PMC8879604 DOI: 10.3390/microorganisms10020383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/10/2022] Open
Abstract
Austropuccinia psidii is a fungal plant pathogen that infects species within the Myrtaceae, causing the disease myrtle rust. Myrtle rust is causing declines in populations within natural and managed ecosystems and is expected to result in species extinctions. Despite this, variation in response to A. psidii exist within some species, from complete susceptibility to resistance that prevents or limits infection by the pathogen. Untargeted metabolomics using Ultra Performance Liquid Chromatography with Ion Mobility followed by analysis using MetaboAnalyst 3.0, was used to explore the chemical defence profiles of resistant, hypersensitive and susceptible phenotypes within Melaleuca quinquenervia during the early stages of A. psidii infection. We were able to identify three separate pools of secondary metabolites: (i) metabolites classified structurally as flavonoids that were naturally higher in the leaves of resistant individuals prior to infection, (ii) organoheterocyclic and carbohydrate-related metabolites that varied with the level of host resistance post-infection, and (iii) metabolites from the terpenoid pathways that were responsive to disease progression regardless of resistance phenotype suggesting that these play a minimal role in disease resistance during the early stages of colonization of this species. Based on the classes of these secondary metabolites, our results provide an improved understanding of key pathways that could be linked more generally to rust resistance with particular application within Melaleuca.
Collapse
Affiliation(s)
- Michelle C. Moffitt
- School of Science, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Johanna Wong-Bajracharya
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia; (J.W.-B.); (J.M.P.)
- New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2568, Australia
| | - Louise S. Shuey
- Department of Agriculture and Fisheries, Queensland Government, Brisbane, QLD 4102, Australia; (L.S.S.); (G.S.P.)
| | - Robert F. Park
- The Plant Breeding Institute, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Geoff S. Pegg
- Department of Agriculture and Fisheries, Queensland Government, Brisbane, QLD 4102, Australia; (L.S.S.); (G.S.P.)
| | - Jonathan M. Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia; (J.W.-B.); (J.M.P.)
| |
Collapse
|
3
|
Xu T, Cao L, Zeng J, Franco CMM, Yang Y, Hu X, Liu Y, Wang X, Gao Y, Bu Z, Shi L, Zhou G, Zhou Q, Liu X, Zhu Y. The antifungal action mode of the rice endophyte Streptomyces hygroscopicus OsiSh-2 as a potential biocontrol agent against the rice blast pathogen. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 160:58-69. [PMID: 31519258 DOI: 10.1016/j.pestbp.2019.06.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/17/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
Microbial antagonists and their bioactive metabolites provide one of the best alternatives to chemical pesticides to control crop disease for sustainable agriculture and global food security. The rice endophyte Streptomyces hygroscopicus OsiSh-2, with remarkable antagonistic activity towards the rice blast fungus Magnaporthe oryzae, was reported in our previous study. The present study deciphered the possible direct interaction mode of OsiSh-2 against M. oryzae. An in vitro antibiotic assay for OsiSh-2 culture filtrate revealed strong suppression of mycelial growth, conidial germination and appressorial formation of M. oryzae. Meanwhile, severe morphological and internal abnormalities in M. oryzae hyphae were observed under a scanning electron microscope and transmission electron microscope. Foliar treatment of rice seedlings by OsiSh-2 culture filtrate in the greenhouse and in the field showed 23.5% and 28.3% disease reduction, respectively. Correspondingly, OsiSh-2 culture filtrate could induce disorganized chitin deposition in the cell wall and lowered ergosterol content in the cell membrane of M. oryzae. Additionally, cell wall integrity pathway activation, large cell electrolytes release, reactive oxygen species accumulation and tricarboxylic acid cycle-related enzyme activity changes were found in M. oryzae. All these results suggested that the direct antagonistic activity of OsiSh-2 against M. oryzae may be attributed to damaging the integrity of the cell wall and membrane and disrupting mitochondrial function in the pathogen.
Collapse
Affiliation(s)
- Ting Xu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Lidan Cao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Jiarui Zeng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Christopher M M Franco
- Department of Medical Biotechnology, School of Medicine, Flinders University, Adelaide, SA 5042, Australia
| | - Yuanzhu Yang
- Yahua Seeds Science Academy of Hunan, Changsha, Hunan 410119, China
| | - Xiaochun Hu
- Yahua Seeds Science Academy of Hunan, Changsha, Hunan 410119, China
| | - Ying Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Xiang Wang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yan Gao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Zhigang Bu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Liming Shi
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guoying Zhou
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, Hunan 410008, China
| | - Qian Zhou
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xuanming Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yonghua Zhu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China.
| |
Collapse
|
4
|
Draft Genome Sequence of a Chitinimonas Species from Hudson Valley Waterways That Expresses Violacein Pigment. Microbiol Resour Announc 2019; 8:8/35/e00683-19. [PMID: 31467098 PMCID: PMC6715868 DOI: 10.1128/mra.00683-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chitinimonas spp. are Gram-negative bacilli that are observed in freshwater and soil sources. A number of Chitinimonas species have been characterized, including the green-pigmented Chitinimonas viridis. The isolate described here, BJB300, was obtained from a freshwater source in the Hudson Valley, NY. BJB300 is the first Chitinimonas isolate expressing violacein, a pigment with biotherapeutic potential. Chitinimonas spp. are Gram-negative bacilli that are observed in freshwater and soil sources. A number of Chitinimonas species have been characterized, including the green-pigmented Chitinimonas viridis. The isolate described here, BJB300, was obtained from a freshwater source in the Hudson Valley, NY. BJB300 is the first Chitinimonas isolate expressing violacein, a pigment with biotherapeutic potential.
Collapse
|