1
|
Sheikh AH, Zacharia I, Tabassum N, Hirt H, Ntoukakis V. 14-3-3 proteins as a major hub for plant immunity. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00145-6. [PMID: 38955584 DOI: 10.1016/j.tplants.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/07/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024]
Abstract
14-3-3 proteins, ubiquitously present in eukaryotic cells, are regulatory proteins involved in a plethora of cellular processes. In plants, they have been studied in the context of metabolism, development, and stress responses. Recent studies have highlighted the pivotal role of 14-3-3 proteins in regulating plant immunity. The ability of 14-3-3 proteins to modulate immune responses is primarily attributed to their function as interaction hubs, mediating protein-protein interactions and thereby regulating the activity and overall function of their binding partners. Here, we shed light on how 14-3-3 proteins contribute to plant defense mechanisms, the implications of their interactions with components of plant immunity cascades, and the potential for leveraging this knowledge for crop improvement strategies.
Collapse
Affiliation(s)
- Arsheed H Sheikh
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Iosif Zacharia
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Naheed Tabassum
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Heribert Hirt
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Vardis Ntoukakis
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
2
|
Revanasiddappa PD, Gowtham HG, G. S. C, Gangadhar S, A. S, Murali M, Shivamallu C, Achar RR, Silina E, Stupin V, Manturova N, Shati AA, Alfaifi MY, Elbehairi SEI, Kollur SP, Amruthesh KN. Exploration of Type III effector Xanthomonas outer protein Q (XopQ) inhibitor from Picrasma quassioides as an antibacterial agent using chemoinformatics analysis. PLoS One 2024; 19:e0302105. [PMID: 38889115 PMCID: PMC11185476 DOI: 10.1371/journal.pone.0302105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/27/2024] [Indexed: 06/20/2024] Open
Abstract
The present study was focused on exploring the efficient inhibitors of closed state (form) of type III effector Xanthomonas outer protein Q (XopQ) (PDB: 4P5F) from the 44 phytochemicals of Picrasma quassioides using cutting-edge computational analysis. Among them, Kumudine B showed excellent binding energy (-11.0 kcal/mol), followed by Picrasamide A, Quassidine I and Quassidine J with the targeted closed state of XopQ protein compared to the reference standard drug (Streptomycin). The molecular dynamics (MD) simulations performed at 300 ns validated the stability of top lead ligands (Kumudine B, Picrasamide A, and Quassidine I)-bound XopQ protein complex with slightly lower fluctuation than Streptomycin. The MM-PBSA calculation confirmed the strong interactions of top lead ligands (Kumudine B and QuassidineI) with XopQ protein, as they offered the least binding energy. The results of absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis confirmed that Quassidine I, Kumudine B and Picrasamide A were found to qualify most of the drug-likeness rules with excellent bioavailability scores compared to Streptomycin. Results of the computational studies suggested that Kumudine B, Picrasamide A, and Quassidine I could be considered potential compounds to design novel antibacterial drugs against X. oryzae infection. Further in vitro and in vivo antibacterial activities of Kumudine B, Picrasamide A, and Quassidine I are required to confirm their therapeutic potentiality in controlling the X. oryzae infection.
Collapse
Affiliation(s)
| | - H. G. Gowtham
- Department of Studies and Research in Food Science and Nutrition, KSOU, Mysuru, Karnataka, India
| | - Chikkanna G. S.
- Department of Home Science, ICAR Krishi Vigyan Kendra, Kolar, India
| | - Suchithra Gangadhar
- Department of Biotechnology, Siddaganga Institute of Technology, Tumkur, India
| | - Satish A.
- Department of Clinical Nutrition and Dietetics, Sri Devaraj Urs Academy of Higher Education and Research, Kolar, Karnataka, India
| | - M. Murali
- Department of Studies in Botany, University of Mysore, Mysuru, Karnataka, India
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ekaterina Silina
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Hospital Surgery, NI. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Victor Stupin
- Department of Hospital Surgery, NI. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Natalia Manturova
- Department of Hospital Surgery, NI. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ali A. Shati
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Tissue Culture and Cancer Biology Research Laborotory, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Tissue Culture and Cancer Biology Research Laborotory, King Khalid University, Abha, Saudi Arabia
| | - Serag Eldin I. Elbehairi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Tissue Culture and Cancer Biology Research Laborotory, King Khalid University, Abha, Saudi Arabia
| | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, Karnataka, India
| | | |
Collapse
|
3
|
Yang S, Wan M, Cheng X, Cheng Q, Shen H. A 14-3-3 Protein Ca16R Acts Positively in Pepper Immunity against Ralstonia solanacearum by Interacting with CaASR1. PLANTS (BASEL, SWITZERLAND) 2024; 13:1289. [PMID: 38794360 PMCID: PMC11125135 DOI: 10.3390/plants13101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024]
Abstract
Although 14-3-3 proteins have been implicated in plant growth, development, and stress response, their roles in pepper immunity against R. solanacearum remain poorly understood. In this study, a 14-3-3-encoding gene in pepper, Ca16R, was found to be upregulated by R. solanacearum inoculation (RSI), its silencing significantly reduced the resistance of pepper plants to RSI, and its overexpression significantly enhanced the resistance of Nicotiana benthamiana to RSI. Consistently, its transient overexpression in pepper leaves triggered HR cell death, indicating that it acts positively in pepper immunity against RSI, and it was further found to act positively in pepper immunity against RSI by promoting SA but repressing JA signaling. Ca16R was also found to interact with CaASR1, originally using pull-down combined with a spectrum assay, and then confirmed using bimolecular fluorescence complementation (BiFC) and a pull-down assay. Furthermore, we found that CaASR1 transient overexpression induced HR cell death and SA-dependent immunity while repressing JA signaling, although this induction and repression was blocked by Ca16R silencing. All these data indicate that Ca16R acts positively in pepper immunity against RSI by interacting with CaASR1, thereby promoting SA-mediated immunity while repressing JA signaling. These results provide new insight into mechanisms underlying pepper immunity against RSI.
Collapse
Affiliation(s)
- Sheng Yang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China;
| | - Meiyun Wan
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.); (X.C.)
| | - Xingge Cheng
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.); (X.C.)
| | - Qing Cheng
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China;
| | - Huolin Shen
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
4
|
Rufián JS, Rueda-Blanco J, Beuzón CR, Ruiz-Albert J. Suppression of NLR-mediated plant immune detection by bacterial pathogens. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6069-6088. [PMID: 37429579 PMCID: PMC10575702 DOI: 10.1093/jxb/erad246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
The plant immune system is constituted of two functionally interdependent branches that provide the plant with an effective defense against microbial pathogens. They can be considered separate since one detects extracellular pathogen-associated molecular patterns by means of receptors on the plant surface, while the other detects pathogen-secreted virulence effectors via intracellular receptors. Plant defense depending on both branches can be effectively suppressed by host-adapted microbial pathogens. In this review we focus on bacterially driven suppression of the latter, known as effector-triggered immunity (ETI) and dependent on diverse NOD-like receptors (NLRs). We examine how some effectors secreted by pathogenic bacteria carrying type III secretion systems can be subject to specific NLR-mediated detection, which can be evaded by the action of additional co-secreted effectors (suppressors), implying that virulence depends on the coordinated action of the whole repertoire of effectors of any given bacterium and their complex epistatic interactions within the plant. We consider how ETI activation can be avoided by using suppressors to directly alter compromised co-secreted effectors, modify plant defense-associated proteins, or occasionally both. We also comment on the potential assembly within the plant cell of multi-protein complexes comprising both bacterial effectors and defense protein targets.
Collapse
Affiliation(s)
- José S Rufián
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | | | - Carmen R Beuzón
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | - Javier Ruiz-Albert
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| |
Collapse
|
5
|
Wang N, Shi Y, Jiang Q, Li H, Fan W, Feng Y, Li L, Liu B, Lin F, Jing W, Zhang W, Shen L. A 14-3-3 protein positively regulates rice salt tolerance by stabilizing phospholipase C1. PLANT, CELL & ENVIRONMENT 2023; 46:1232-1248. [PMID: 36539986 DOI: 10.1111/pce.14520] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/06/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
The phosphatidylinositol-specific phospholipase Cs (PI-PLCs) catalyze the hydrolysis of phosphatidylinositols, which play crucial roles in signaling transduction during plant development and stress response. However, the regulation of PI-PLC is still poorly understood. A previous study showed that a rice PI-PLC, OsPLC1, was essential to rice salt tolerance. Here, we identified a 14-3-3 protein, OsGF14b, as an interaction partner of OsPLC1. Similar to OsPLC1, OsGF14b also positively regulates rice salt tolerance, and their interaction can be promoted by NaCl stress. OsGF14b also positively regulated the hydrolysis activity of OsPLC1, and is essential to NaCl-induced activation of rice PI-PLCs. We further discovered that OsPLC1 was degraded via ubiquitin-proteasome pathway, and OsGF14b could inhibit the ubiquitination of OsPLC1 to protect OsPLC1 from degradation. Under salt stress, the OsPLC1 protein level in osgf14b was lower than the corresponding value of WT, whereas overexpression of OsGF14b results in a significant increase of OsPLC1 stability. Taken together, we propose that OsGF14b can interact with OsPLC1 and promote its activity and stability, thereby improving rice salt tolerance. This study provides novel insights into the important roles of 14-3-3 proteins in regulating protein stability and function in response to salt stress.
Collapse
Affiliation(s)
- Ningna Wang
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yiyuan Shi
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Qun Jiang
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Huan Li
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wenxia Fan
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yu Feng
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Li Li
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Bin Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Feng Lin
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wen Jing
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wenhua Zhang
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Like Shen
- Department of Plant Biology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Huang Y, Li H, Zhao G, Bai Q, Huang M, Luo D, Li X. Ethylicin Inhibition of Xanthomonas oryzae pv. oryzicola In Vitro and In Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1405-1416. [PMID: 36644843 DOI: 10.1021/acs.jafc.2c07327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Infestation of rice with the bacterium Xanthomonas oryzae pv. oryzicola (Xoc) causes the serious disease bacterial leaf streak (BLS). We studied the effect of ethylicin, a broad-spectrum bactericide, on Xoc both in vivo and in vitro. Ethylicin increases the defensive enzyme activities and defensive genes expression of rice. Ethylicin also significantly inhibited Xoc activity in vitro compared with other commercial bactericides. The half-maximal effective concentration (EC50) of ethylicin was 2.12 μg/mL. It has been shown that ethylicin can inhibit Xoc quorum sensing through the production of extracellular polysaccharides and enzymes, which disrupt the Xoc cell membrane. We used proteomic analysis to identify two oxidative phosphorylation pathway proteins (ACU12_RS13405 and ACU12_RS13355) which affected the virulence of Xoc and validated them using quantitative real-time polymerase chain reaction (qRT-PCR). The results indicate that ethylicin can increase the defense responses of rice and control Xoc proliferation.
Collapse
Affiliation(s)
- Yajiao Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang550025, China
| | - Hongde Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang550025, China
| | - Guili Zhao
- College of Chemical Engineering, Guizhou Institute of Technology, Guiyang550003, China
| | - Qian Bai
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang550025, China
| | - Min Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang550025, China
| | - Dan Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang550025, China
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang550025, China
| |
Collapse
|
7
|
Deb S, Gokulan CG, Nathawat R, Patel HK, Sonti RV. Suppression of XopQ-XopX-induced immune responses of rice by the type III effector XopG. MOLECULAR PLANT PATHOLOGY 2022; 23:634-648. [PMID: 35150038 PMCID: PMC8995061 DOI: 10.1111/mpp.13184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/01/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Effectors that suppress effector-triggered immunity (ETI) are an essential part of the arms race in the co-evolution of bacterial pathogens and their host plants. Xanthomonas oryzae pv. oryzae uses multiple type III secretion system (T3SS) secreted effectors such as XopU, XopV, XopP, XopG, and AvrBs2 to suppress rice immune responses that are induced by the interaction of two other effectors, XopQ and XopX. Here we show that each of these five suppressors can interact individually with both XopQ and XopX. One of the suppressors, XopG, is a predicted metallopeptidase that appears to have been introduced into X. oryzae pv. oryzae by horizontal gene transfer. XopQ and XopX interact with each other in the nucleus while interaction with XopG sequesters them in the cytoplasm. The XopG E76A and XopG E85A mutants are defective in interaction with XopQ and XopX, and are also defective in suppression of XopQ-XopX-mediated immune responses. Both mutations individually affect the virulence-promoting ability of XopG. These results indicate that XopG is important for X. oryzae pv. oryzae virulence and provide insights into the mechanisms by which this protein suppresses ETI in rice.
Collapse
Affiliation(s)
- Sohini Deb
- CSIR ‐ Centre for Cellular and Molecular Biology (CSIR‐CCMB)HyderabadIndia
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - C. G. Gokulan
- CSIR ‐ Centre for Cellular and Molecular Biology (CSIR‐CCMB)HyderabadIndia
| | - Rajkanwar Nathawat
- CSIR ‐ Centre for Cellular and Molecular Biology (CSIR‐CCMB)HyderabadIndia
| | - Hitendra K. Patel
- CSIR ‐ Centre for Cellular and Molecular Biology (CSIR‐CCMB)HyderabadIndia
| | - Ramesh V. Sonti
- CSIR ‐ Centre for Cellular and Molecular Biology (CSIR‐CCMB)HyderabadIndia
- Indian Institute of Science Education and Research (IISER) TirupatiTirupatiIndia
| |
Collapse
|
8
|
Gao Z, Zhang D, Wang X, Zhang X, Wen Z, Zhang Q, Li D, Dinesh-Kumar SP, Zhang Y. Coat proteins of necroviruses target 14-3-3a to subvert MAPKKKα-mediated antiviral immunity in plants. Nat Commun 2022; 13:716. [PMID: 35132090 PMCID: PMC8821596 DOI: 10.1038/s41467-022-28395-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades play an important role in innate immunity against various pathogens in plants and animals. However, we know very little about the importance of MAPK cascades in plant defense against viral pathogens. Here, we used a positive-strand RNA necrovirus, beet black scorch virus (BBSV), as a model to investigate the relationship between MAPK signaling and virus infection. Our findings showed that BBSV infection activates MAPK signaling, whereas viral coat protein (CP) counteracts MAPKKKα-mediated antiviral defense. CP does not directly target MAPKKKα, instead it competitively interferes with the binding of 14-3-3a to MAPKKKα in a dose-dependent manner. This results in the instability of MAPKKKα and subversion of MAPKKKα-mediated antiviral defense. Considering the conservation of 14-3-3-binding sites in the CPs of diverse plant viruses, we provide evidence that 14-3-3-MAPKKKα defense signaling module is a target of viral effectors in the ongoing arms race of defense and viral counter-defense.
Collapse
Affiliation(s)
- Zongyu Gao
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Dingliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Xiaoling Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Xin Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Zhiyan Wen
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Qianshen Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
9
|
Deb S, Madhavan VN, Gokulan CG, Patel HK, Sonti RV. Arms and ammunitions: effectors at the interface of rice and it's pathogens and pests. RICE (NEW YORK, N.Y.) 2021; 14:94. [PMID: 34792681 PMCID: PMC8602583 DOI: 10.1186/s12284-021-00534-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
The plant immune system has evolved to resist attack by pathogens and pests. However, successful phytopathogens deliver effector proteins into plant cells where they hijack the host cellular machinery to suppress the plant immune responses and promote infection. This manipulation of the host cellular pathways is done by the pathogen using various enzymatic activities, protein- DNA or protein- protein interactions. Rice is one the major economically important crops and its yield is affected by several pathogens and pests. In this review, we summarize the various effectors at the plant- pathogen/ pest interface for the major pathogens and pests of rice, specifically, on the mode of action and target genes of the effector proteins. We then compare this across the major rice pathogens and pests in a bid to understand probable conserved pathways which are under attack from pathogens and pests in rice. This analysis highlights conserved patterns of effector action, as well as unique host pathways targeted by the pathogens and pests.
Collapse
Affiliation(s)
- Sohini Deb
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
- Present Address: Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | | | - C. G. Gokulan
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
| | - Hitendra K. Patel
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
| | - Ramesh V. Sonti
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
- Present Address: Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507 India
| |
Collapse
|
10
|
Zhao X, Li F, Li K. The 14-3-3 proteins: regulators of plant metabolism and stress responses. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:531-539. [PMID: 33811408 DOI: 10.1111/plb.13268] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
The 14-3-3 proteins bind to and modulate the activity of phosphorylated proteins that regulate a variety of metabolic processes in plants. Over the past decade interest in the plant 14-3-3 field has increased dramatically, mainly due to the vast number of mechanisms by which 14-3-3 proteins regulate metabolism. As this field develops, it is essential to understand the role of these proteins in metabolic and stress responses. This review summarizes current knowledge about 14-3-3 proteins in plants, including their molecular structure and function, regulatory mechanism and roles in carbon and nitrogen metabolism and stress responses. We begin with a molecular structural analysis of 14-3-3 proteins, which describes the basic principles of 14-3-3 function, and then discuss the regulatory mechanisms and roles in carbon and nitrogen metabolism of 14-3-3 proteins. We conclude with a summary of the 14-3-3 response to biotic stress and abiotic stress.
Collapse
Affiliation(s)
- X Zhao
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - F Li
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - K Li
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
11
|
Schreiber KJ, Chau-Ly IJ, Lewis JD. What the Wild Things Do: Mechanisms of Plant Host Manipulation by Bacterial Type III-Secreted Effector Proteins. Microorganisms 2021; 9:1029. [PMID: 34064647 PMCID: PMC8150971 DOI: 10.3390/microorganisms9051029] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 01/05/2023] Open
Abstract
Phytopathogenic bacteria possess an arsenal of effector proteins that enable them to subvert host recognition and manipulate the host to promote pathogen fitness. The type III secretion system (T3SS) delivers type III-secreted effector proteins (T3SEs) from bacterial pathogens such as Pseudomonas syringae, Ralstonia solanacearum, and various Xanthomonas species. These T3SEs interact with and modify a range of intracellular host targets to alter their activity and thereby attenuate host immune signaling. Pathogens have evolved T3SEs with diverse biochemical activities, which can be difficult to predict in the absence of structural data. Interestingly, several T3SEs are activated following injection into the host cell. Here, we review T3SEs with documented enzymatic activities, as well as T3SEs that facilitate virulence-promoting processes either indirectly or through non-enzymatic mechanisms. We discuss the mechanisms by which T3SEs are activated in the cell, as well as how T3SEs modify host targets to promote virulence or trigger immunity. These mechanisms may suggest common enzymatic activities and convergent targets that could be manipulated to protect crop plants from infection.
Collapse
Affiliation(s)
- Karl J. Schreiber
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
| | - Ilea J. Chau-Ly
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
| | - Jennifer D. Lewis
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
- Plant Gene Expression Center, United States Department of Agriculture, University of California, Berkeley, CA 94710, USA
| |
Collapse
|
12
|
Wang N, Han N, Tian R, Chen J, Gao X, Wu Z, Liu Y, Huang L. Role of the Type VI Secretion System in the Pathogenicity of Pseudomonas syringae pv. actinidiae, the Causative Agent of Kiwifruit Bacterial Canker. Front Microbiol 2021; 12:627785. [PMID: 33679650 PMCID: PMC7933208 DOI: 10.3389/fmicb.2021.627785] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/29/2021] [Indexed: 02/03/2023] Open
Abstract
The type VI secretion system (T6SS), a macromolecular machine, plays an important role in the pathogenicity of many Gram-negative bacteria. However, the role of T6SS in the pathogenicity of Pseudomonas syringae pv. actinidiae (Psa), the pathogen of kiwifruit bacterial canker, is yet to be studied. Here, we found a T6SS gene cluster consisting of 13 core genes (A-J) in the genome of Psa M228 based on a genome-wide analysis. To determine whether the T6SS gene cluster affects the pathogenicity of Psa M228, T6SS and its 13 core gene deletion mutants were constructed and their pathogenicity was determined. The deletion mutants showed different degrees of reduction in pathogenicity compared with the wild-type strain M228; in tssM and tssJ mutants, pathogenicity was significantly reduced by 78.7 and 71.3%, respectively. The pathogenicity results were also confirmed by electron microscopy. To further confirm that the reduction in pathogenicity is related to the function of T6SS, we selected the T6SS gene cluster, comprising tssM and tssJ, for further analyses. Western blot results revealed that tssM and tssJ were necessary for hemolytic co-regulatory protein secretion, indicating that they encode a functional T6SS. Further, we explored the mechanism by which T6SS affects the pathogenicity of Psa M228. The ability of bacterial competition, biofilm formation, hydrogen peroxide tolerance, and proteolytic activity were all weakened in the deletion mutants M228ΔT6SS, M228ΔtssM, and M228ΔtssJ. All these properties of the two gene complementation mutants were restored to the same levels as those of the wild-type strain, M228. Quantitative real-time results showed that during the interaction between the deletion mutant M228ΔT6SS and the host, expression levels of T3SS transcriptional regulatory gene hrpR, structural genes hrpZ, hrcC, hopP1, and effector genes hopH1 and hopM1 were down-regulated at different levels. Taken together, our data provide evidence for the first time that the T6SS plays an important role in the pathogenicity of Psa, probably via effects on bacterial competition, biofilm formation, and environmental adaptability. Moreover, a complicated relationship exists between T6SS and T3SS.
Collapse
Affiliation(s)
- Nana Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China.,College of Life Science, Northwest A&F University, Yangling, China
| | - Ning Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China.,College of Plant Protection, Northwest A&F University, Yangling, China
| | - Runze Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China.,College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jiliang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China.,College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xiaoning Gao
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhiran Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China.,College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yuqi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China.,College of Life Science, Northwest A&F University, Yangling, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China.,College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
13
|
Deb S, Ghosh P, Patel HK, Sonti RV. Interaction of the Xanthomonas effectors XopQ and XopX results in induction of rice immune responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:332-350. [PMID: 32654337 DOI: 10.1111/tpj.14924] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/22/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Xanthomonas oryzae pv. oryzae uses several type III secretion system (T3SS) secreted effectors, namely XopN, XopQ, XopX and XopZ, to suppress rice immune responses that are induced following treatment with cell wall degrading enzymes. Here we show that a T3SS secreted effector XopX interacts with two of the eight rice 14-3-3 proteins. Mutants of XopX that are defective in 14-3-3 binding are also defective in suppression of immune responses, suggesting that interaction with 14-3-3 proteins is required for suppression of host innate immunity. However, Agrobacterium-mediated delivery of both XopQ and XopX into rice cells results in induction of rice immune responses. These immune responses are not observed when either protein is individually delivered into rice cells. XopQ-XopX-induced rice immune responses are not observed with a XopX mutant that is defective in 14-3-3 binding. Yeast two-hybrid, bimolecular fluorescence complementation and co-immunoprecipitation assays indicate that XopQ and XopX interact with each other. A screen for Xanthomonas effectors that can suppress XopQ-XopX-induced rice immune responses led to the identification of five effectors, namely XopU, XopV, XopP, XopG and AvrBs2, that could individually suppress these immune responses. These results suggest a complex interplay of Xanthomonas T3SS effectors in suppression of both pathogen-triggered immunity and effector-triggered immunity to promote virulence on rice.
Collapse
Affiliation(s)
- Sohini Deb
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007, India
| | - Palash Ghosh
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007, India
| | - Hitendra K Patel
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007, India
| | - Ramesh V Sonti
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007, India
- National Institute of Plant Genome Research, New Delhi, 110067, India
| |
Collapse
|
14
|
Shah SMA, Haq F, Ma W, Xu X, Wang S, Xu Z, Zou L, Zhu B, Chen G. Tal1 NXtc01 in Xanthomonas translucens pv. cerealis Contributes to Virulence in Bacterial Leaf Streak of Wheat. Front Microbiol 2019; 10:2040. [PMID: 31551976 PMCID: PMC6737349 DOI: 10.3389/fmicb.2019.02040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022] Open
Abstract
Xanthomonas translucens pv. cerealis (Xtc) causes bacterial leaf streak (BLS) of important cereal crops, including wheat (Triticum aestivum) and barley (Hordeum vulgare). Transcription activator-like effectors (TALEs) play vital roles in many plant diseases caused by Xanthomonas spp., however, TALEs have not been previously characterized in Xtc. In this study, the whole genome of NXtc01, a virulent strain of Xtc from Xinjiang, China, was sequenced and compared with genomes of other Xanthomonas spp. Xtc NXtc01 consists of a single 4,622,298 bp chromosome that encodes 4,004 genes. Alignment of the NXtc01 sequence with the draft genome of Xtc strain CFBP 2541 (United States) revealed a single giant inversion and differences in the location of two tal genes, which were designated tal1 and tal2. In NXtc01, both tal genes are located on the chromosome, whereas tal2 is plasmid-encoded in CFBP 2541. The repeat variable diresidues (RVDs) at the 12th and 13th sites within Tal2 repeat units were identical in both strains, whereas Tal1 showed differences in the third RVD. Xtc NXtc01 and CFBP 2541 encoded 35 and 33 non-TALE type III effectors (T3Es), respectively. tal1, tal2, and tal-free deletion mutants of Xtc NXtc01 were constructed and evaluated for virulence. The tal1 and tal-free deletion mutants were impaired with respect to symptom development and growth in wheat, suggesting that tal1 is a virulence factor in NXtc01. This was confirmed in gain-of-function experiments that showed the introduction of tal1, but not tal2, restored virulence to the tal-free mutant. Furthermore, we generated a hrcC deletion mutant of NXtc01; the hrcC mutant was non-pathogenic on wheat and unable to elicit a hypersensitive response in the non-host Nicotiana benthamiana. Our data provide a platform for exploring the roles of both TALEs and non-TALEs in promoting BLS on wheat.
Collapse
Affiliation(s)
- Syed Mashab Ali Shah
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Fazal Haq
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Wenxiu Ma
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Xiameng Xu
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Sai Wang
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengyin Xu
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Lifang Zou
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Zhu
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Gongyou Chen
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Corrigendum. MOLECULAR PLANT PATHOLOGY 2019; 20:1321-1324. [PMID: 31468720 PMCID: PMC6715591 DOI: 10.1111/mpp.12858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
|