1
|
Liu L, Li J, Wang Z, Zhou H, Wang Y, Qin W, Duan H, Zhao H, Ge X. Suppression of plant immunity by Verticillium dahliae effector Vd6317 through AtNAC53 association. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1767-1781. [PMID: 38924284 DOI: 10.1111/tpj.16883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/24/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Verticillium dahliae, a soil-borne fungal pathogen, compromises host innate immunity by secreting a plethora of effectors, thereby facilitating host colonization and causing substantial yield and quality losses. The mechanisms underlying the modulation of cotton immunity by V. dahliae effectors are predominantly unexplored. In this study, we identified that the V. dahliae effector Vd6317 inhibits plant cell death triggered by Vd424Y and enhances PVX viral infection in Nicotiana benthamiana. Attenuation of Vd6317 significantly decreased the virulence of V. dahliae, whereas ectopic expression of Vd6317 in Arabidopsis and cotton enhanced susceptibility to V. dahliae infection, underscoring Vd6317's critical role in pathogenicity. We observed that Vd6317 targeted the Arabidopsis immune regulator AtNAC53, thereby impeding its transcriptional activity on the defense-associated gene AtUGT74E2. Arabidopsis nac53 and ugt74e2 mutants exhibited heightened sensitivity to V. dahliae compared to wild-type plants. A mutation at the conserved residue 193L of Vd6317 abrogated its interaction with AtNAC53 and reduced the virulence of V. dahliae, which was partially attributable to a reduction in Vd6317 protein stability. Our findings unveil a hitherto unrecognized regulatory mechanism by which the V. dahliae effector Vd6317 directly inhibits the plant transcription factor AtNAC53 activity to suppress the expression of AtUGT74E2 and plant defense.
Collapse
Affiliation(s)
- Lisen Liu
- Henan Normal University Research Base of National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Xinxiang, 453000, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jianing Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhaohan Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Haodan Zhou
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Ye Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wenqiang Qin
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Hongying Duan
- Henan Normal University Research Base of National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Xinxiang, 453000, China
| | - Hang Zhao
- Henan Normal University Research Base of National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Xinxiang, 453000, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Xiaoyang Ge
- Henan Normal University Research Base of National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Xinxiang, 453000, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| |
Collapse
|
2
|
Cao P, Shi H, Zhang S, Chen J, Wang R, Liu P, Zhu Y, An Y, Zhang M. A robust high-throughput functional screening assay for plant pathogen effectors using the TMV-GFP vector. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:617-631. [PMID: 38647454 DOI: 10.1111/tpj.16774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Uncovering the function of phytopathogen effectors is crucial for understanding mechanisms of pathogen pathogenicity and for improving our ability to protect plants from diseases. An increasing number of effectors have been predicted in various plant pathogens. Functional characterization of these effectors has become a major focus in the study of plant-pathogen interactions. In this study, we designed a novel screening system that combines the TMV (tobacco mosaic virus)-GFP vector and Agrobacterium-mediated transient expression in the model plant Nicotiana benthamiana. This system enables the rapid identification of effectors that interfere with plant immunity. The biological function of these effectors can be easily evaluated by observing the GFP fluorescence signal using a UV lamp within just a few days. To evaluate the TMV-GFP system, we initially tested it with well-described virulence and avirulence type III effectors from the bacterial pathogen Ralstonia solanacearum. After proving the accuracy and efficiency of the TMV-GFP system, we successfully screened a novel virulence effector, RipS1, using this approach. Furthermore, using the TMV-GFP system, we reproduced consistent results with previously known cytoplasmic effectors from a diverse array of pathogens. Additionally, we demonstrated the effectiveness of the TMV-GFP system in identifying apoplastic effectors. The easy operation, time-saving nature, broad effectiveness, and low technical requirements of the TMV-GFP system make it a promising approach for high-throughput screening of effectors with immune interference activity from various pathogens.
Collapse
Affiliation(s)
- Peng Cao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Haotian Shi
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuangxi Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Jialan Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rongbo Wang
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Peiqing Liu
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Yuyan An
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Meixiang Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
3
|
Wu S, Shi J, Zheng Q, Ma Y, Zhou W, Mao C, Chen C, Fang Z, Xia R, Qiao Y. Phytophthora sojae Effector PsAvh113 Targets Transcription Factors in Nicotiana benthamiana. J Fungi (Basel) 2024; 10:318. [PMID: 38786673 PMCID: PMC11122517 DOI: 10.3390/jof10050318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Phytophthora sojae is a type of pathogenic oomycete that causes Phytophthora root stem rot (PRSR), which can seriously affect the soybean yield and quality. To subvert immunity, P. sojae secretes a large quantity of effectors. However, the molecular mechanisms regulated by most P. sojae effectors, and their host targets remain unexplored. Previous studies have shown that the expression of PsAvh113, an effector secreted by Phytophthora sojae, enhances viral RNA accumulations and symptoms in Nicotiana benthamiana via VIVE assay. In this study, we analyzed RNA-sequencing data based on disease symptoms in N. benthamiana leaves that were either mocked or infiltrated with PVX carrying the empty vector (EV) and PsAvh113. We identified 1769 differentially expressed genes (DEGs) dependent on PsAvh113. Using stricter criteria screening and Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) analysis of DEGs, we found that 38 genes were closely enriched in response to PsAvh113 expression. We selected three genes of N. benthamiana (NbNAC86, NbMyb4, and NbERF114) and found their transcriptional levels significantly upregulated in N. benthamiana infected with PVX carrying PsAvh113. Furthermore, individual silencing of these three genes promoted P. capsici infection, while their overexpression increased resistance to P. capsici in N. benthamiana. Our results show that PsAvh113 interacts with transcription factors NbMyb4 and NbERF114 in vivo. Collectively, these data may help us understand the pathogenic mechanism of effectors and manage PRSR in soybeans.
Collapse
Affiliation(s)
- Shuai Wu
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Jinxia Shi
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Qi Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou 510640, China
| | - Yuqin Ma
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Wenjun Zhou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Chengjie Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Chengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou 510640, China
| | - Zhengwu Fang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou 510640, China
| | - Yongli Qiao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
4
|
Naalden D, Dermauw W, Ilias A, Baggerman G, Mastop M, Silven JJM, van Kleeff PJM, Dangol S, Gaertner NF, Roseboom W, Kwaaitaal M, Kramer G, van den Burg HA, Vontas J, Van Leeuwen T, Kant MR, Schuurink RC. Interaction of Whitefly Effector G4 with Tomato Proteins Impacts Whitefly Performance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:98-111. [PMID: 38051229 DOI: 10.1094/mpmi-04-23-0045-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The phloem-feeding insect Bemisia tabaci is an important pest, responsible for the transmission of several crop-threatening virus species. While feeding, the insect secretes a cocktail of effectors to modulate plant defense responses. Here, we present a set of proteins identified in an artificial diet on which B. tabaci was salivating. We subsequently studied whether these candidate effectors can play a role in plant immune suppression. Effector G4 was the most robust suppressor of an induced- reactive oxygen species (ROS) response in Nicotiana benthamiana. In addition, G4 was able to suppress ROS production in Solanum lycopersicum (tomato) and Capsicum annuum (pepper). G4 localized predominantly in the endoplasmic reticulum in N. benthamiana leaves and colocalized with two identified target proteins in tomato: REF-like stress related protein 1 (RSP1) and meloidogyne-induced giant cell protein DB141 (MIPDB141). Silencing of MIPDB141 in tomato reduced whitefly fecundity up to 40%, demonstrating that the protein is involved in susceptibility to B. tabaci. Together, our data demonstrate that effector G4 impairs tomato immunity to whiteflies by interfering with ROS production and via an interaction with tomato susceptibility protein MIPDB141. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Diana Naalden
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Wannes Dermauw
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
- Flanders Research Institute for Agriculture, Fisheries and Food, Plant Sciences Unit, 9820 Merelbeke, Belgium
| | - Aris Ilias
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece
| | - Geert Baggerman
- Centre for Proteomics, University of Antwerp, 2020 Antwerp, Belgium
- Unit Environmental Risk and Health, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Marieke Mastop
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Juliette J M Silven
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Paula J M van Kleeff
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Sarmina Dangol
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Nicolas Frédéric Gaertner
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Winfried Roseboom
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Mark Kwaaitaal
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Gertjan Kramer
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Harrold A van den Burg
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Merijn R Kant
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Robert C Schuurink
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
5
|
Shi J, Gong Y, Shi H, Ma X, Zhu Y, Yang F, Wang D, Fu Y, Lin Y, Yang N, Yang Z, Zeng C, Li W, Zhou C, Wang X, Qiao Y. ' Candidatus Liberibacter asiaticus' secretory protein SDE3 inhibits host autophagy to promote Huanglongbing disease in citrus. Autophagy 2023; 19:2558-2574. [PMID: 37249424 PMCID: PMC10392736 DOI: 10.1080/15548627.2023.2213040] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 05/31/2023] Open
Abstract
Antimicrobial acroautophagy/autophagy plays a vital role in degrading intracellular pathogens or microbial molecules in host-microbe interactions. However, microbes evolved various mechanisms to hijack or modulate autophagy to escape elimination. Vector-transmitted phloem-limited bacteria, Candidatus Liberibacter (Ca. Liberibacter) species, cause Huanglongbing (HLB), one of the most catastrophic citrus diseases worldwide, yet contributions of autophagy to HLB disease proliferation remain poorly defined. Here, we report the identification of a virulence effector in "Ca. Liberibacter asiaticus" (Las), SDE3, which is highly conserved among the "Ca. Liberibacter". SDE3 expression not only promotes the disease development of HLB and canker in sweet orange (Citrus sinensis) plants but also facilitates Phytophthora and viral infections in Arabidopsis, and Nicotiana benthamiana (N. benthamiana). SDE3 directly associates with citrus cytosolic glyceraldehyde-3-phosphate dehydrogenases (CsGAPCs), which negatively regulates plant immunity. Overexpression of CsGAPCs and SDE3 significantly inhibits autophagy in citrus, Arabidopsis, and N. benthamiana. Intriguingly, SDE3 undermines autophagy-mediated immunity by the specific degradation of CsATG8 family proteins in a CsGAPC1-dependent manner. CsATG8 degradation is largely rescued by treatment with an inhibitor of the late autophagic pathway, E64d. Furthermore, ectopic expression of CsATG8s enhances Phytophthora resistance. Collectively, these results suggest that SDE3-CsGAPC interactions modulate CsATG8-mediated autophagy to enhance Las progression in citrus.Abbreviations: ACP: asian citrus psyllid; ACD2: ACCELERATED CELL DEATH 2; ATG: autophagy related; Ca. Liberibacter: Candidatus Liberibacter; CaMV: cauliflower mosaic virus; CMV: cucumber mosaic virus; Cs: Citrus sinensis; EV: empty vector; GAPC: cytosolic glyceraldehyde-3-phosphate dehydrogenase; HLB: huanglongbing; H2O2: hydrogen peroxide; Las: liberibacter asiaticus; Laf: liberibacter africanus; Lam: liberibacter americanus; Pst: Pseudomonas syringae pv. tomato; PVX: potato virus X; ROS: reactive oxygen species; SDE3: sec-delivered effector 3; TEM: transmission electron microscopy; VIVE : virus-induced virulence effector; WT: wild-type; Xcc: Xanthomonas citri subsp. citri.
Collapse
Affiliation(s)
- Jinxia Shi
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yinan Gong
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Hongwei Shi
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Xiaoding Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuanhong Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Dan Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yating Fu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yu Lin
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Naiying Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zhuhui Yang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Chunhua Zeng
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Weimin Li
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, China
| | - Changyong Zhou
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Xuefeng Wang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Yongli Qiao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
6
|
Tuo D, Yao Y, Yan P, Chen X, Qu F, Xue W, Liu J, Kong H, Guo J, Cui H, Dai Z, Shen W. Development of cassava common mosaic virus-based vector for protein expression and gene editing in cassava. PLANT METHODS 2023; 19:78. [PMID: 37537660 PMCID: PMC10399001 DOI: 10.1186/s13007-023-01055-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/15/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Plant virus vectors designed for virus-mediated protein overexpression (VOX), virus-induced gene silencing (VIGS), and genome editing (VIGE) provide rapid and cost-effective tools for functional genomics studies, biotechnology applications and genome modification in plants. We previously reported that a cassava common mosaic virus (CsCMV, genus Potexvirus)-based VIGS vector was used for rapid gene function analysis in cassava. However, there are no VOX and VIGE vectors available in cassava. RESULTS In this study, we developed an efficient VOX vector (CsCMV2-NC) for cassava by modifying the CsCMV-based VIGS vector. Specifically, the length of the duplicated putative subgenomic promoter (SGP1) of the CsCMV CP gene was increased to improve heterologous protein expression in cassava plants. The modified CsCMV2-NC-based VOX vector was engineered to express genes encoding green fluorescent protein (GFP), bacterial phytoene synthase (crtB), and Xanthomonas axonopodis pv. manihotis (Xam) type III effector XopAO1 for viral infection tracking, carotenoid biofortification and Xam virulence effector identification in cassava. In addition, we used CsCMV2-NC to deliver single guide RNAs (gMePDS1/2) targeting two loci of the cassava phytoene desaturase gene (MePDS) in Cas9-overexpressing transgenic cassava lines. The CsCMV-gMePDS1/2 efficiently induced deletion mutations of the targeted MePDS with the albino phenotypes in systemically infected cassava leaves. CONCLUSIONS Our results provide a useful tool for rapid and efficient heterologous protein expression and guide RNA delivery in cassava. This expands the potential applications of CsCMV-based vector in gene function studies, biotechnology research, and precision breeding for cassava.
Collapse
Affiliation(s)
- Decai Tuo
- National Key Laboratory for Tropical Crops Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops (Ministry of Agriculture and Rural Affairs), Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou & Sanya, Hainan, China
| | - Yuan Yao
- National Key Laboratory for Tropical Crops Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops (Ministry of Agriculture and Rural Affairs), Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou & Sanya, Hainan, China
| | - Pu Yan
- National Key Laboratory for Tropical Crops Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops (Ministry of Agriculture and Rural Affairs), Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou & Sanya, Hainan, China
| | - Xin Chen
- National Key Laboratory for Tropical Crops Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops (Ministry of Agriculture and Rural Affairs), Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou & Sanya, Hainan, China
| | - Feihong Qu
- School of Tropical Agriculture and Forestry, Sanya Nanfan Research Institute, Hainan University, Haikou & Sanya, Hainan, China
| | - Weiqian Xue
- School of Tropical Agriculture and Forestry, Sanya Nanfan Research Institute, Hainan University, Haikou & Sanya, Hainan, China
| | - Jinping Liu
- School of Tropical Agriculture and Forestry, Sanya Nanfan Research Institute, Hainan University, Haikou & Sanya, Hainan, China
| | - Hua Kong
- National Key Laboratory for Tropical Crops Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops (Ministry of Agriculture and Rural Affairs), Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou & Sanya, Hainan, China
| | - Jianchun Guo
- National Key Laboratory for Tropical Crops Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops (Ministry of Agriculture and Rural Affairs), Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou & Sanya, Hainan, China
| | - Hongguang Cui
- School of Tropical Agriculture and Forestry, Sanya Nanfan Research Institute, Hainan University, Haikou & Sanya, Hainan, China
| | - Zhaoji Dai
- School of Tropical Agriculture and Forestry, Sanya Nanfan Research Institute, Hainan University, Haikou & Sanya, Hainan, China
| | - Wentao Shen
- National Key Laboratory for Tropical Crops Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops (Ministry of Agriculture and Rural Affairs), Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou & Sanya, Hainan, China.
| |
Collapse
|
7
|
Zhu X, Guo L, Zhu R, Zhou X, Zhang J, Li D, He S, Qiao Y. Phytophthora sojae effector PsAvh113 associates with the soybean transcription factor GmDPB to inhibit catalase-mediated immunity. PLANT BIOTECHNOLOGY JOURNAL 2023. [PMID: 36972124 DOI: 10.1111/pbi.14043] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Phytophthora species are the most destructive plant pathogens worldwide and the main threat to agricultural and natural ecosystems; however, their pathogenic mechanism remains largely unknown. Here, we show that Avh113 effector is required for the virulence of Phytophthora sojae and is important for development of Phytophthora root and stem rot (PRSR) in soybean (Glycine max). Ectopic expression of PsAvh113 enhanced viral and Phytophthora infection in Nicotiana benthamiana. PsAvh113 directly associated with the soybean transcription factor GmDPB, inducing its degradation by the 26S proteasome. The internal repeat 2 (IR2) motif of PsAvh113 was important for its virulence and interaction with GmDPB, while silencing and overexpression of GmDPB in soybean hairy roots altered the resistance to P. sojae. Upon binding to GmDPB, PsAvh113 decreased the transcription of the downstream gene GmCAT1, which acts as a positive regulator of plant immunity. Furthermore, we revealed that PsAvh113 suppressed the GmCAT1-induced cell death by associating with GmDPB, thereby enhancing plant susceptibility to Phytophthora. Together, our findings reveal a vital role of PsAvh113 in inducing PRSR in soybean and offer a novel insight into the interplay between defence and counter-defence during the P. sojae infection of soybean.
Collapse
Affiliation(s)
- Xiaoguo Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Liang Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Ruiqing Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xiaoyi Zhou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jianing Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Die Li
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Shidan He
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yongli Qiao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
8
|
Zhang C, Liu S, Li X, Zhang R, Li J. Virus-Induced Gene Editing and Its Applications in Plants. Int J Mol Sci 2022; 23:10202. [PMID: 36142116 PMCID: PMC9499690 DOI: 10.3390/ijms231810202] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/28/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
CRISPR/Cas-based genome editing technologies, which allow the precise manipulation of plant genomes, have revolutionized plant science and enabled the creation of germplasms with beneficial traits. In order to apply these technologies, CRISPR/Cas reagents must be delivered into plant cells; however, this is limited by tissue culture challenges. Recently, viral vectors have been used to deliver CRISPR/Cas reagents into plant cells. Virus-induced genome editing (VIGE) has emerged as a powerful method with several advantages, including high editing efficiency and a simplified process for generating gene-edited DNA-free plants. Here, we briefly describe CRISPR/Cas-based genome editing. We then focus on VIGE systems and the types of viruses used currently for CRISPR/Cas9 cassette delivery and genome editing. We also highlight recent applications of and advances in VIGE in plants. Finally, we discuss the challenges and potential for VIGE in plants.
Collapse
Affiliation(s)
| | | | | | | | - Jun Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
9
|
Feng S, Shi J, Hu Y, Li D, Guo L, Zhao Z, Lee GS, Qiao Y. Genome-Wide Analysis of Soybean Lateral Organ Boundaries Domain Gene Family Reveals the Role in Phytophthora Root and Stem Rot. FRONTIERS IN PLANT SCIENCE 2022; 13:865165. [PMID: 35599907 PMCID: PMC9116278 DOI: 10.3389/fpls.2022.865165] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/16/2022] [Indexed: 06/15/2023]
Abstract
The plant-specific lateral organ boundaries (LOB) domain (LBD) proteins, a family of transcription factors, play important roles in plant growth and development, as well as in responses to various stresses. However, little is known about the functions of LBD genes in soybean (Glycine max). In this study, we investigated the evolution and classification of the LBD family in soybean by a phylogenetic tree of the LBD gene family from 16 species. Phylogenetic analysis categorized these proteins into two classes (Class I and Class II) with seven subgroups. Moreover, we found that all the 18 LBD ancestors in angiosperm were kept in soybean, common bean genomes, and genome-wide duplication, suggesting the main force for the expansion of LBD from common bean to soybean. Analysis of gene expression profiling data indicated that 16 GmLBD genes were significantly induced at different time points after inoculation of soybean plants (cv. Huachun 6) with Phytophthora sojae (P. sojae). We further assessed the role of four highly upregulated genes, GmLBD9, GmLBD16, GmLBD23, and GmLBD88, in plant defense in soybean hairy roots using the transient overexpression and knockdown assays. The results showed that GmLBD9 and GmLBD23 negatively regulate plant immunity against P. sojae, whereas GmLBD16 and GmLBD88 positively manipulate plant immunity against P. sojae. Collectively, our findings expand our knowledge of the origin and evolution of the GmLBD gene family in soybean and promote the potential application of these genes in soybean genetic improvement.
Collapse
Affiliation(s)
- Siqi Feng
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jinxia Shi
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yongkang Hu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Die Li
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Liang Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zhibo Zhao
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| | - Gang-Seob Lee
- National Institute of Agricultural Science, Jeonju, South Korea
| | - Yongli Qiao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
10
|
Wang L, Chen W, Ma H, Li J, Hao X, Wu Y. Identification of RNA silencing suppressor encoded by wheat blue dwarf (WBD) phytoplasma. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:843-849. [PMID: 33749977 DOI: 10.1111/plb.13257] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
Plants possess an innate immune system for defence against pathogens. In turn, pathogens have various strategies to overcome complex plant defences. Among diverse pathogens, phytoplasmas are associated with serious diseases in a range of species. RNA silencing serves as an efficient defence system against pathogens in eukaryotes but can be interrupted by RNA silencing suppressors (RSSs) encoded by pathogens. Currently, many RSSs have been identified in viruses, bacteria, oomycetes and fungi. Phytoplasmas are pathogens in several hundred plant species. In this research, 37 candidate effectors of wheat blue dwarf (WBD) phytoplasma were screened for presence of RSS. Agro-infiltration assay, yeast expression system, floral-dip method for constructing transgenic A. thaliana, Western blotting and RT-qPCR were used for identification of RNA silencing suppressors. SWP16 encoded by WBD phytoplasma was found to be a secretory protein that inhibited accumulation of GFP siRNA and led to the accumulation of GPF mRNA in systemic N. benthamiana 16c. Furthermore, in A. thaliana SWP16 inhibited production of miRNAs, which are components of RNA silencing. SWP16 also promoted infection of potato virus X. We conclude that SWP16 encoded by WBD phytoplasma was an RSS, suppressing systemic RNA silencing. This is the first evidence that a phytoplasma encodes an RSS and provides a theoretical basis for research on the interaction mechanisms between pathogens and plants.
Collapse
Affiliation(s)
- L Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture & Forestry University, Yangling, P. R. China
| | - W Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture & Forestry University, Yangling, P. R. China
| | - H Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture & Forestry University, Yangling, P. R. China
| | - J Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture & Forestry University, Yangling, P. R. China
| | - X Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture & Forestry University, Yangling, P. R. China
| | - Y Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture & Forestry University, Yangling, P. R. China
| |
Collapse
|
11
|
Venkataraman S, Hefferon K. Application of Plant Viruses in Biotechnology, Medicine, and Human Health. Viruses 2021; 13:1697. [PMID: 34578279 PMCID: PMC8473230 DOI: 10.3390/v13091697] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 01/06/2023] Open
Abstract
Plant-based nanotechnology programs using virus-like particles (VLPs) and virus nanoparticles (VNPs) are emerging platforms that are increasingly used for a variety of applications in biotechnology and medicine. Tobacco mosaic virus (TMV) and potato virus X (PVX), by virtue of having high aspect ratios, make ideal platforms for drug delivery. TMV and PVX both possess rod-shaped structures and single-stranded RNA genomes encapsidated by their respective capsid proteins and have shown great promise as drug delivery systems. Cowpea mosaic virus (CPMV) has an icosahedral structure, and thus brings unique benefits as a nanoparticle. The uses of these three plant viruses as either nanostructures or expression vectors for high value pharmaceutical proteins such as vaccines and antibodies are discussed extensively in the following review. In addition, the potential uses of geminiviruses in medical biotechnology are explored. The uses of these expression vectors in plant biotechnology applications are also discussed. Finally, in this review, we project future prospects for plant viruses in the fields of medicine, human health, prophylaxis, and therapy of human diseases.
Collapse
Affiliation(s)
| | - Kathleen Hefferon
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada;
| |
Collapse
|