1
|
Urquhart A, Vogan AA, Gluck-Thaler E. Starships: a new frontier for fungal biology. Trends Genet 2024:S0168-9525(24)00183-5. [PMID: 39299886 DOI: 10.1016/j.tig.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024]
Abstract
Transposable elements (TEs) are semiautonomous genetic entities that proliferate in genomes. We recently discovered the Starships, a previously hidden superfamily of giant TEs found in a diverse subphylum of filamentous fungi, the Pezizomycotina. Starships are unlike other eukaryotic TEs because they have evolved mechanisms for both mobilizing entire genes, including those encoding conditionally beneficial phenotypes, and for horizontally transferring between individuals. We argue that Starships have unrivaled capacity to engage their fungal hosts as genetic parasites and mutualists, revealing unexplored terrain for investigating the ecoevolutionary dynamics of TE-eukaryote interactions. We build on existing models of fungal genome evolution by conceptualizing Starships as a distinct genomic compartment whose dynamics profoundly shape fungal biology.
Collapse
Affiliation(s)
- Andrew Urquhart
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, 752 36, Sweden
| | - Aaron A Vogan
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, 752 36, Sweden
| | - Emile Gluck-Thaler
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI 53706, USA; Wisconsin Institute for Discovery, Madison, WI 53706, USA.
| |
Collapse
|
2
|
Tang X, Yang Q, Hu S, Guo K, Li Y, Wu Z. Comparative transcriptome reveals importance of export apparatus subunit (ascR) in type III secretion system and its roles on biological properties, gene expression profiles, virulence and colonization of Aeromonas veronii. Int J Biol Macromol 2024; 274:133270. [PMID: 38906357 DOI: 10.1016/j.ijbiomac.2024.133270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Aeromonas veronii, an opportunistic pathogen, is known to cause serious infections across various species. In our previous study, we discovered that A. veronii GL2 exhibited a virulence up to ten times greater than that of FO1. To ascertain the factors contributing to the disparity in virulence between the two strains, we conducted a comparative transcriptome analysis. This analysis reveals a significant upregulation (P < 0.05) of the ascR gene in GL2 compared with FO1. Additionally, six differentially expressed genes (DEGs) were identified within the "Bacterial secretion system" pathway (map03070), with ascR being an essential component of type III secretion system (T3SS). AscR, considered as SctR family export apparatus subunit within the T3SS, has ambiguous roles in the biological properties, gene expression profiles, virulence and colonization of A. veronii. Therefore, we constructed a mutant strain (ΔascR) by homologous recombination. Comparative analysis with the wide-type GL2 reveals no significant differences in terms of colony morphology, growth curve, hemolytic activity and protease activity. However, significant reductions (P < 0.01) were observed in the abilities of biofilm formation and swimming mobility. No remarkable difference was noted in the lengths of flagella. The LD50 value of ΔascR was to be 5.15 times higher than that of GL2. Interestingly, the mRNA expression of ascC, ascD, ascJ and ascI genes in the T3SS, and mshB, mshE, mshK and mshP genes in the MSHA type pili were significantly upregulated (P < 0.05) in ΔascR, potentially due to transcriptional compensation. Further analysis of enzymatic biomarkers revealed that ΔascR might not destruct the recognition of innate immune response in host remarkably, but the colonization levels of A.veronii were significantly suppressed (P < 0.01) in ΔascR group. In conclusion, the ascR gene may be a key determinant in regulating the virulence of A. veronii, and the destruction of the T3SS caused by ascR deficiency results in these notable changes.
Collapse
Affiliation(s)
- Xiaoqi Tang
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing 400715, China
| | - Qinglin Yang
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing 400715, China
| | - Shaoyu Hu
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing 400715, China
| | - Kefan Guo
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing 400715, China
| | - Yanhong Li
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing 400715, China
| | - Zhengli Wu
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Paineau M, Minio A, Mestre P, Fabre F, Mazet ID, Couture C, Legeai F, Dumartinet T, Cantu D, Delmotte F. Multiple deletions of candidate effector genes lead to the breakdown of partial grapevine resistance to downy mildew. THE NEW PHYTOLOGIST 2024; 243:1490-1505. [PMID: 39021210 DOI: 10.1111/nph.19861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/21/2024] [Indexed: 07/20/2024]
Abstract
Grapevine downy mildew, caused by the oomycete Plasmopara viticola (P. viticola, Berk. & M. A. Curtis; Berl. & De Toni), is a global threat to Eurasian wine grapes Vitis vinifera. Although resistant grapevine varieties are becoming more accessible, P. viticola populations are rapidly evolving to overcome these resistances. We aimed to uncover avirulence genes related to Rpv3.1-mediated grapevine resistance. We sequenced the genomes and characterized the development of 136 P. viticola strains on resistant and sensitive grapevine cultivars. A genome-wide association study was conducted to identify genomic variations associated with resistant-breaking phenotypes. We identified a genomic region associated with the breakdown of Rpv3.1 grapevine resistance (avrRpv3.1 locus). A diploid-aware reassembly of the P. viticola INRA-Pv221 genome revealed structural variations in this locus, including a 30 kbp deletion. Virulent P. viticola strains displayed multiple deletions on both haplotypes at the avrRpv3.1 locus. These deletions involve two paralog genes coding for proteins with 800-900 amino acids and signal peptides. These proteins exhibited a structure featuring LWY-fold structural modules, common among oomycete effectors. When transiently expressed, these proteins induced cell death in grapevines carrying Rpv3.1 resistance, confirming their avirulence nature. This discovery sheds light on the genetic mechanisms enabling P. viticola to adapt to grapevine resistance, laying a foundation for developing strategies to manage this destructive crop pathogen.
Collapse
Affiliation(s)
- Manon Paineau
- INRAE, Bordeaux Sciences Agro, SAVE, ISVV, F-33340, Villenave d'Ornon, France
- Department of Viticulture and Enology, University of California Davis, Davis, 95616, CA, USA
| | - Andrea Minio
- Department of Viticulture and Enology, University of California Davis, Davis, 95616, CA, USA
| | - Pere Mestre
- INRAE, Université de Strasbourg, SVQV, F-68125, Colmar, France
| | - Frédéric Fabre
- INRAE, Bordeaux Sciences Agro, SAVE, ISVV, F-33340, Villenave d'Ornon, France
| | - Isabelle D Mazet
- INRAE, Bordeaux Sciences Agro, SAVE, ISVV, F-33340, Villenave d'Ornon, France
| | - Carole Couture
- INRAE, Bordeaux Sciences Agro, SAVE, ISVV, F-33340, Villenave d'Ornon, France
| | - Fabrice Legeai
- INRAE, IGEPP, F-35650, Le-Rheu, France
- INRIA, IRISA, GenOuest Core Facility, F-35000, Rennes, France
| | | | - Dario Cantu
- Department of Viticulture and Enology, University of California Davis, Davis, 95616, CA, USA
- Genome Center, University of California Davis, Davis, 95616, CA, USA
| | - François Delmotte
- INRAE, Bordeaux Sciences Agro, SAVE, ISVV, F-33340, Villenave d'Ornon, France
| |
Collapse
|
4
|
Dhakal U, Kim HS, Toomajian C. The landscape and predicted roles of structural variants in Fusarium graminearum genomes. G3 (BETHESDA, MD.) 2024; 14:jkae065. [PMID: 38546739 DOI: 10.1093/g3journal/jkae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/22/2024] [Indexed: 06/06/2024]
Abstract
Structural rearrangements, such as inversions, translocations, duplications, and large insertions and deletions, are large-scale genomic variants that can play an important role in shaping phenotypic variation and in genome adaptation and evolution. We used chromosomal-level assemblies from eight Fusarium graminearum isolates to study structural variants and their role in fungal evolution. We generated the assemblies of four of these genomes after Oxford Nanopore sequencing. A total of 87 inversions, 159 translocations, 245 duplications, 58,489 insertions, and 34,102 deletions were detected. Regions of high recombination rate are associated with structural rearrangements, and a significant proportion of inversions, translocations, and duplications overlap with the repeat content of the genome, suggesting recombination and repeat elements are major factors in the origin of structural rearrangements in F. graminearum. Large insertions and deletions introduce presence-absence polymorphisms for many genes, including secondary metabolite biosynthesis cluster genes and predicted effectors genes. Translocation events were found to be shuffling predicted effector-rich regions of the genomes and are likely contributing to the gain and loss of effectors facilitated by recombination. Breakpoints of some structural rearrangements fall within coding sequences and are likely altering the protein products. Structural rearrangements in F. graminearum thus have an important role to play in shaping pathogen-host interactions and broader evolution through genome reorganization, the introduction of presence-absence polymorphisms, and changing protein products and gene regulation.
Collapse
Affiliation(s)
- Upasana Dhakal
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Hye-Seon Kim
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N University St., Peoria, IL 61604, USA
| | | |
Collapse
|
5
|
Lin L, Sun T, Guo J, Lin L, Chen M, Wang Z, Bao J, Norvienyeku J, Zhang D, Han Y, Lu G, Rensing C, Zheng H, Zhong Z, Wang Z. Transposable elements impact the population divergence of rice blast fungus Magnaporthe oryzae. mBio 2024; 15:e0008624. [PMID: 38534157 PMCID: PMC11077969 DOI: 10.1128/mbio.00086-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Dynamic transposition of transposable elements (TEs) in fungal pathogens has significant impact on genome stability, gene expression, and virulence to the host. In Magnaporthe oryzae, genome plasticity resulting from TE insertion is a major driving force leading to the rapid evolution and diversification of this fungus. Despite their importance in M. oryzae population evolution and divergence, our understanding of TEs in this context remains limited. Here, we conducted a genome-wide analysis of TE transposition dynamics in the 11 most abundant TE families in M. oryzae populations. Our results show that these TEs have specifically expanded in recently isolated M. oryzae rice populations, with the presence/absence polymorphism of TE insertions highly concordant with population divergence on Geng/Japonica and Xian/Indica rice cultivars. Notably, the genes targeted by clade-specific TEs showed clade-specific expression patterns and are involved in the pathogenic process, suggesting a transcriptional regulation of TEs on targeted genes. Our study provides a comprehensive analysis of TEs in M. oryzae populations and demonstrates a crucial role of recent TE bursts in adaptive evolution and diversification of the M. oryzae rice-infecting lineage. IMPORTANCE Magnaporthe oryzae is the causal agent of the destructive blast disease, which caused massive loss of yield annually worldwide. The fungus diverged into distinct clades during adaptation toward the two rice subspecies, Xian/Indica and Geng/Japonica. Although the role of TEs in the adaptive evolution was well established, mechanisms underlying how TEs promote the population divergence of M. oryzae remain largely unknown. In this study, we reported that TEs shape the population divergence of M. oryzae by differentially regulating gene expression between Xian/Indica-infecting and Geng/Japonica-infecting populations. Our results revealed a TE insertion-mediated gene expression adaption that led to the divergence of M. oryzae population infecting different rice subspecies.
Collapse
Affiliation(s)
- Lianyu Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ting Sun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiayuan Guo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Lili Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Meilian Chen
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Zhe Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiandong Bao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Justice Norvienyeku
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Dongmei Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yijuan Han
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huakun Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhenhui Zhong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, China
| |
Collapse
|
6
|
Qutb AM, Cambon F, McDonald MC, Saintenac C, Kettles GJ. The Egyptian wheat cultivar Gemmeiza-12 is a source of resistance against the fungus Zymoseptoria tritici. BMC PLANT BIOLOGY 2024; 24:248. [PMID: 38580955 PMCID: PMC10996218 DOI: 10.1186/s12870-024-04930-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/19/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Wheat is one of the world's most important cereal crops. However, the fungal pathogen Zymoseptoria tritici can cause disease epidemics, leading to reduced yields. With climate change and development of new agricultural areas with suitable environments, Z. tritici may advance into geographical areas previously unaffected by this pathogen. It is currently unknown how Egyptian wheat will perform in the face of this incoming threat. This project aimed to assess the resistance of Egyptian wheat germplasm to Z. tritici, to identify cultivars with high levels of resistance and characterise the mechanism(s) of resistance present in these cultivars. RESULTS Eighteen Egyptian wheat cultivars were screened against two Z. tritici model isolates and exhibited a wide spectrum of responses. This ranged from resistance to complete susceptibility to one or both isolates tested. The most highly resistant cultivars from the initial screen were then tested under two environmental conditions against modern UK field isolates. Disease levels under UK-like conditions were higher, however, symptom development on the cultivar Gemmeiza-12 was noticeably slower than on other Egyptian wheats. The robustness of the resistance shown by Gemmeiza-12 was confirmed in experiments mimicking Egyptian environmental conditions, where degree of Z. tritici infection was lower. The Kompetitive allele-specific PCR (KASP) diagnostic assay suggested the presence of an Stb6 resistant allele in several Egyptian wheats including Gemmeiza-12. Infection assays using the IPO323 WT and IPO323ΔAvrStb6 mutant confirmed the presence of Stb6 in several Egyptian cultivars including Gemmeiza-12. Confocal fluorescence microscopy demonstrated that growth of the IPO323 strain is blocked at the point of stomatal penetration on Gemmeiza-12, consistent with previous reports of Stb gene mediated resistance. In addition to this R-gene mediated resistance, IPO323 spores showed lower adherence to leaves of Gemmeiza-12 compared to UK wheat varieties, suggesting other aspects of leaf physiology may also contribute to the resistance phenotype of this cultivar. CONCLUSION These results indicate that Gemmeiza-12 will be useful in future breeding programs where improved resistance to Z. tritici is a priority.
Collapse
Affiliation(s)
- Abdelrahman M Qutb
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Department of Agricultural Botany, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Florence Cambon
- Université Clermont Auvergne, INRAE, GDEC, Clermont-Ferrand, 63000, France
| | - Megan C McDonald
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Cyrille Saintenac
- Université Clermont Auvergne, INRAE, GDEC, Clermont-Ferrand, 63000, France
| | - Graeme J Kettles
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
7
|
Badet T, Tralamazza SM, Feurtey A, Croll D. Recent reactivation of a pathogenicity-associated transposable element is associated with major chromosomal rearrangements in a fungal wheat pathogen. Nucleic Acids Res 2024; 52:1226-1242. [PMID: 38142443 PMCID: PMC10853768 DOI: 10.1093/nar/gkad1214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/26/2023] Open
Abstract
Transposable elements (TEs) are key drivers of genomic variation contributing to recent adaptation in most species. Yet, the evolutionary origins and insertion dynamics within species remain poorly understood. We recapitulate the spread of the pathogenicity-associated Styx element across five species that last diverged ∼11 000 years ago. We show that the element likely originated in the Zymoseptoria fungal pathogen genus and underwent multiple independent reactivation events. Using a global 900-genome panel of the wheat pathogen Zymoseptoria tritici, we assess Styx copy number variation and identify renewed transposition activity in Oceania and South America. We show that the element can mobilize to create additional Styx copies in a four-generation pedigree. Importantly, we find that new copies of the element are not affected by genomic defenses suggesting minimal control against the element. Styx copies are preferentially located in recombination breakpoints and likely triggered multiple types of large chromosomal rearrangements. Taken together, we establish the origin, diversification and reactivation of a highly active TE with likely major consequences for chromosomal integrity and the expression of disease.
Collapse
Affiliation(s)
- Thomas Badet
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Sabina Moser Tralamazza
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Alice Feurtey
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
- Plant Pathology, D-USYS, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
8
|
Feurtey A, Lorrain C, McDonald MC, Milgate A, Solomon PS, Warren R, Puccetti G, Scalliet G, Torriani SFF, Gout L, Marcel TC, Suffert F, Alassimone J, Lipzen A, Yoshinaga Y, Daum C, Barry K, Grigoriev IV, Goodwin SB, Genissel A, Seidl MF, Stukenbrock EH, Lebrun MH, Kema GHJ, McDonald BA, Croll D. A thousand-genome panel retraces the global spread and adaptation of a major fungal crop pathogen. Nat Commun 2023; 14:1059. [PMID: 36828814 PMCID: PMC9958100 DOI: 10.1038/s41467-023-36674-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/10/2023] [Indexed: 02/26/2023] Open
Abstract
Human activity impacts the evolutionary trajectories of many species worldwide. Global trade of agricultural goods contributes to the dispersal of pathogens reshaping their genetic makeup and providing opportunities for virulence gains. Understanding how pathogens surmount control strategies and cope with new climates is crucial to predicting the future impact of crop pathogens. Here, we address this by assembling a global thousand-genome panel of Zymoseptoria tritici, a major fungal pathogen of wheat reported in all production areas worldwide. We identify the global invasion routes and ongoing genetic exchange of the pathogen among wheat-growing regions. We find that the global expansion was accompanied by increased activity of transposable elements and weakened genomic defenses. Finally, we find significant standing variation for adaptation to new climates encountered during the global spread. Our work shows how large population genomic panels enable deep insights into the evolutionary trajectory of a major crop pathogen.
Collapse
Affiliation(s)
- Alice Feurtey
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
- Plant Pathology, D-USYS, ETH Zurich, CH-8092, Zurich, Switzerland
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Cécile Lorrain
- Plant Pathology, D-USYS, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Megan C McDonald
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT, Australia
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Andrew Milgate
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Pine Gully Road, Wagga Wagga, NSW, 2650, Australia
| | - Peter S Solomon
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Rachael Warren
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, New Zealand
| | - Guido Puccetti
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
- Syngenta Crop Protection AG, CH-4332, Stein, Switzerland
| | | | | | - Lilian Gout
- Université Paris Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | - Thierry C Marcel
- Université Paris Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | - Frédéric Suffert
- Université Paris Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | | | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yuko Yoshinaga
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Christopher Daum
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 9472, USA
| | | | - Anne Genissel
- Université Paris Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | - Michael F Seidl
- Wageningen University and Research, Laboratory of Phytopathology, Wageningen, The Netherlands
- Utrecht University, Theoretical Biology and Bioinformatics, Utrecht, The Netherlands
| | - Eva H Stukenbrock
- Max Planck Institute for Evolutionary Biology, Plön, Germany
- Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany
| | | | - Gert H J Kema
- Wageningen University and Research, Laboratory of Phytopathology, Wageningen, The Netherlands
| | - Bruce A McDonald
- Plant Pathology, D-USYS, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland.
| |
Collapse
|
9
|
CRISPR-Cas12a induced DNA double-strand breaks are repaired by multiple pathways with different mutation profiles in Magnaporthe oryzae. Nat Commun 2022; 13:7168. [PMID: 36418866 PMCID: PMC9684475 DOI: 10.1038/s41467-022-34736-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/01/2022] [Indexed: 11/24/2022] Open
Abstract
CRISPR-Cas mediated genome engineering has revolutionized functional genomics. However, understanding of DNA repair following Cas-mediated DNA cleavage remains incomplete. Using Cas12a ribonucleoprotein genome editing in the fungal pathogen, Magnaporthe oryzae, we detail non-canonical DNA repair outcomes from hundreds of transformants. Sanger and nanopore sequencing analysis reveals significant variation in DNA repair profiles, ranging from small INDELs to kilobase size deletions and insertions. Furthermore, we find the frequency of DNA repair outcomes varies between loci. The results are not specific to the Cas-nuclease or selection procedure. Through Ku80 deletion analysis, a key protein required for canonical non-homologous end joining, we demonstrate activity of an alternative end joining mechanism that creates larger DNA deletions, and uses longer microhomology compared to C-NHEJ. Together, our results suggest preferential DNA repair pathway activity in the genome that can create different mutation profiles following repair, which could create biased genome variation and impact genome engineering and genome evolution.
Collapse
|
10
|
Gluck-Thaler E, Ralston T, Konkel Z, Ocampos CG, Ganeshan VD, Dorrance AE, Niblack TL, Wood CW, Slot JC, Lopez-Nicora HD, Vogan AA. Giant Starship Elements Mobilize Accessory Genes in Fungal Genomes. Mol Biol Evol 2022; 39:msac109. [PMID: 35588244 PMCID: PMC9156397 DOI: 10.1093/molbev/msac109] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Accessory genes are variably present among members of a species and are a reservoir of adaptive functions. In bacteria, differences in gene distributions among individuals largely result from mobile elements that acquire and disperse accessory genes as cargo. In contrast, the impact of cargo-carrying elements on eukaryotic evolution remains largely unknown. Here, we show that variation in genome content within multiple fungal species is facilitated by Starships, a newly discovered group of massive mobile elements that are 110 kb long on average, share conserved components, and carry diverse arrays of accessory genes. We identified hundreds of Starship-like regions across every major class of filamentous Ascomycetes, including 28 distinct Starships that range from 27 to 393 kb and last shared a common ancestor ca. 400 Ma. Using new long-read assemblies of the plant pathogen Macrophomina phaseolina, we characterize four additional Starships whose activities contribute to standing variation in genome structure and content. One of these elements, Voyager, inserts into 5S rDNA and contains a candidate virulence factor whose increasing copy number has contrasting associations with pathogenic and saprophytic growth, suggesting Voyager's activity underlies an ecological trade-off. We propose that Starships are eukaryotic analogs of bacterial integrative and conjugative elements based on parallels between their conserved components and may therefore represent the first dedicated agents of active gene transfer in eukaryotes. Our results suggest that Starships have shaped the content and structure of fungal genomes for millions of years and reveal a new concerted route for evolution throughout an entire eukaryotic phylum.
Collapse
Affiliation(s)
- Emile Gluck-Thaler
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Plant Pathology, The Ohio State University, Columbus, OH, USA
| | - Timothy Ralston
- Department of Plant Pathology, The Ohio State University, Columbus, OH, USA
| | - Zachary Konkel
- Department of Plant Pathology, The Ohio State University, Columbus, OH, USA
| | | | - Veena Devi Ganeshan
- Arabidopsis Biological Resource Center, The Ohio State University, Columbus, OH, USA
| | - Anne E. Dorrance
- Department of Plant Pathology, The Ohio State University, Wooster, OH, USA
| | - Terry L. Niblack
- Department of Plant Pathology, The Ohio State University, Columbus, OH, USA
| | - Corlett W. Wood
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason C. Slot
- Department of Plant Pathology, The Ohio State University, Columbus, OH, USA
| | - Horacio D. Lopez-Nicora
- Department of Plant Pathology, The Ohio State University, Columbus, OH, USA
- Departamento de Producción Agrícola, Universidad San Carlos, Asunción, Paraguay
| | - Aaron A. Vogan
- Systematic Biology, Department of Organismal Biology, University of Uppsala, Uppsala, Sweden
| |
Collapse
|