1
|
Nie C, Huang X, Xiang T, Wang Z, Zhang X. Discovery and characterization of the PpqI/R quorum sensing system activated by GacS/A and Hfq in Pseudomonas protegens H78. Microbiol Res 2024; 287:127868. [PMID: 39126862 DOI: 10.1016/j.micres.2024.127868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Pseudomonas protegens can generally produce multiple antibiotics including pyoluteorin (Plt), 2,4-diacetylphloroglucinol (DAPG), and pyrrolnitrin (Prn). In this study, we discovered and characterized a quorum sensing (QS) system, PpqI/R, in P. protegens H78. PpqI/R, encoded by two open reading frames (ORFs) (H78_01960/01961) in P. protegens H78 genome, is a LuxI/R-type QS system. Four long-chain acyl homoserine lactone (AHL) signaling molecules, 3-OH-C10-HSL, 3-OH-C12-HSL, C12-HSL, and 3-OH-C14-HSL, are produced by H78. Biosynthesis of these AHLs is catalyzed by PpqI synthase and activated by the PpqR regulator in H78 and in Escherichia coli when heterologously expressed. PpqR activates ppqI expression by targeting the lux box upstream of the ppqI promoter in cooperation with corresponding AHLs. The four aforementioned AHLs exhibited different capabilities to induce ppqI promoter expression, with 3-OH-C12-HSL showing the highest induction activity. In H78 cells, ppqI/R expression is activated by the two-component system GacS/A and the RNA chaperone Hfq. Differential regulation of the PpqI/R system in secondary metabolism has a negative effect on DAPG biosynthesis and ped operon (involved in volatile organic compound biosynthesis) expression. In contrast, Plt biosynthesis and prn operon expression were positively regulated by PpqI/R. In summary, PpqI/R, the first characterized QS system in P. protegens, is activated by GacS/A and Hfq and controls the expression of secondary metabolites, including antibiotics.
Collapse
Affiliation(s)
- Chenxi Nie
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xianqing Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Tao Xiang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Yue SJ, Zhou Z, Huang P, Wei YC, Zhan SX, Feng TT, Liu JR, Sun HC, Han WS, Xue ZL, Yan ZX, Wang W, Zhang XH, Hu HB. Development of the Static and Dynamic Gene Expression Regulation Toolkit in Pseudomonas chlororaphis. ACS Synth Biol 2024; 13:913-920. [PMID: 38377538 DOI: 10.1021/acssynbio.3c00714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The advancement of metabolic engineering and synthetic biology has promoted in-depth research on the nonmodel microbial metabolism, and the potential of nonmodel organisms in industrial biotechnology is becoming increasingly evident. The nonmodel organism Pseudomonas chlororaphis is a safe plant growth promoting bacterium for the production of phenazine compounds; however, its application is seriously hindered due to the lack of an effective gene expression precise regulation toolkit. In this study, we constructed a library of 108 promoter-5'-UTR (PUTR) and characterized them through fluorescent protein detection. Then, 6 PUTRs with stable low, intermediate, and high intensities were further characterized by report genes lacZ encoding β-galactosidase from Escherichia coli K12 and phzO encoding PCA monooxygenase from P. chlororaphis GP72 and thus developed as a static gene expression regulation system. Furthermore, the stable and high-intensity expressed PMOK_RS0128085UTR was fused with the LacO operator to construct an IPTG-induced plasmid, and a self-induced plasmid was constructed employing the high-intensity PMOK_RS0116635UTR regulated by cell density, resulting in a dynamic gene expression regulation system. In summary, this study established two sets of static and dynamic regulatory systems for P. chlororaphis, providing an effective toolkit for fine-tuning gene expression and reprograming the metabolism flux.
Collapse
Affiliation(s)
- Sheng-Jie Yue
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zheng Zhou
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng Huang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi-Chen Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sheng-Xuan Zhan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tong-Tong Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ji-Rui Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao-Cheng Sun
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei-Shang Han
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhao-Long Xue
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zi-Xin Yan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xue-Hong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong-Bo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Lv F, Zhan Y, Lu W, Ke X, Shao Y, Ma Y, Zheng J, Yang Z, Jiang S, Shang L, Ma Y, Cheng L, Elmerich C, Yan Y, Lin M. Regulation of hierarchical carbon substrate utilization, nitrogen fixation, and root colonization by the Hfq/Crc/CrcZY genes in Pseudomonas stutzeri. iScience 2022; 25:105663. [PMID: 36505936 PMCID: PMC9730152 DOI: 10.1016/j.isci.2022.105663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/08/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Bacteria of the genus Pseudomonas consume preferred carbon substrates in nearly reverse order to that of enterobacteria, and this process is controlled by RNA-binding translational repressors and regulatory ncRNA antagonists. However, their roles in microbe-plant interactions and the underlying mechanisms remain uncertain. Here we show that root-associated diazotrophic Pseudomonas stutzeri A1501 preferentially catabolizes succinate, followed by the less favorable substrate citrate, and ultimately glucose. Furthermore, the Hfq/Crc/CrcZY regulatory system orchestrates this preference and contributes to optimal nitrogenase activity and efficient root colonization. Hfq has a central role in this regulatory network through different mechanisms of action, including repressing the translation of substrate-specific catabolic genes, activating the nitrogenase gene nifH posttranscriptionally, and exerting a positive effect on the transcription of an exopolysaccharide gene cluster. Our results illustrate an Hfq-mediated mechanism linking carbon metabolism to nitrogen fixation and root colonization, which may confer rhizobacteria competitive advantages in rhizosphere environments.
Collapse
Affiliation(s)
- Fanyang Lv
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhua Zhan
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Lu
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiubin Ke
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yahui Shao
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yiyuan Ma
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Juan Zheng
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhimin Yang
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shanshan Jiang
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liguo Shang
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yao Ma
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Cheng
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | | | - Yongliang Yan
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China,Corresponding author
| | - Min Lin
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China,Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China,Corresponding author
| |
Collapse
|
4
|
Wang Z, Huang X, Nie C, Xiang T, Zhang X. The Lon protease negatively regulates pyoluteorin biosynthesis through the Gac/Rsm-RsmE cascade and directly degrades the transcriptional activator PltR in Pseudomonas protegens H78. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:506-519. [PMID: 35297175 DOI: 10.1111/1758-2229.13057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Pyoluteorin (Plt) is a broad-spectrum antibiotic with antibacterial and antifungal activities. In Pseudomonas protegens H78, the Plt biosynthetic operon pltLABCDEFG is transcriptionally activated by the LysR-type regulator PltR and is positively regulated by the Gac/Rsm signal transduction cascade (GacS/A-RsmXYZ-RsmE-pltR/pltAB). Additionally, Plt biosynthesis has been shown to be significantly enhanced by mutation of the Lon protease-encoding gene. This study aims to understand the negative regulation pathway and molecular mechanism by which Lon functions in Plt biosynthesis. lon deletion was first found to improve the antimicrobial ability of strain H78 due to its increased Plt production, while partially inhibiting the growth of H78 strain. Lon protease decreases the abundance and stability of the two-component system response regulator GacA and thus participates in the abovementioned Gac/Rsm cascade and negatively regulates Plt biosynthesis. Similarly, Lon protease also decreases the abundance and stability of transcriptional activator PltR. PltR protein can be directly degraded by the Lon protease but not by a mutated form of Lon protease with an amino acid replacement of S674 -A. In summary, Lon protease negatively regulates Plt biosynthesis via both the Gac/Rsm-mediated global regulatory pathway and the direct degradation of the transcriptional activator PltR in P. protegens H78.
Collapse
Affiliation(s)
- Zheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xianqing Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chenxi Nie
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tao Xiang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
5
|
Monteagudo-Cascales E, Santero E, Canosa I. The Regulatory Hierarchy Following Signal Integration by the CbrAB Two-Component System: Diversity of Responses and Functions. Genes (Basel) 2022; 13:genes13020375. [PMID: 35205417 PMCID: PMC8871633 DOI: 10.3390/genes13020375] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
CbrAB is a two-component system, unique to bacteria of the family Pseudomonaceae, capable of integrating signals and involved in a multitude of physiological processes that allow bacterial adaptation to a wide variety of varying environmental conditions. This regulatory system provides a great metabolic versatility that results in excellent adaptability and metabolic optimization. The two-component system (TCS) CbrA-CbrB is on top of a hierarchical regulatory cascade and interacts with other regulatory systems at different levels, resulting in a robust output. Among the regulatory systems found at the same or lower levels of CbrAB are the NtrBC nitrogen availability adaptation system, the Crc/Hfq carbon catabolite repression cascade in Pseudomonas, or interactions with the GacSA TCS or alternative sigma ECF factor, such as SigX. The interplay between regulatory mechanisms controls a number of physiological processes that intervene in important aspects of bacterial adaptation and survival. These include the hierarchy in the use of carbon sources, virulence or resistance to antibiotics, stress response or definition of the bacterial lifestyle. The multiple actions of the CbrAB TCS result in an important competitive advantage.
Collapse
Affiliation(s)
| | - Eduardo Santero
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo, CSIC, Junta de Andalucía, 41013 Seville, Spain;
| | - Inés Canosa
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo, CSIC, Junta de Andalucía, 41013 Seville, Spain;
- Correspondence: ; Tel.: +34-954349052
| |
Collapse
|