1
|
Jian Y, Liu Z, He P, Shan L. An emerging connected view: Phytocytokines in regulating stomatal, apoplastic, and vascular immunity. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102623. [PMID: 39236593 DOI: 10.1016/j.pbi.2024.102623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/22/2024] [Accepted: 08/11/2024] [Indexed: 09/07/2024]
Abstract
Foliar pathogens exploit natural openings, such as stomata and hydathodes, to invade plants, multiply in the apoplast, and potentially spread through the vasculature. To counteract these threats, plants dynamically regulate stomatal movement and apoplastic water potential, influencing hydathode guttation and water transport. This review highlights recent advances in understanding how phytocytokines, plant small peptides with immunomodulatory functions, regulate these processes to limit pathogen entry and proliferation. Additionally, we discuss the coordinated actions of stomatal movement, hydathode guttation, and the vascular system in restricting pathogen entry, multiplication, and dissemination. We also explore future perspectives and key questions arising from these findings, aiming to advance our knowledge of plant immunity and improve disease resistance strategies.
Collapse
Affiliation(s)
- Yunqing Jian
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zunyong Liu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ping He
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Libo Shan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Gan CD, Wang H, Gou M, Yang JY, Tang YQ. Enhancement mechanism of xanthan gum production in Xanthomonas campestris induced by atmospheric and room-temperature plasma (ARTP) mutagenesis. Int J Biol Macromol 2024; 283:137628. [PMID: 39547629 DOI: 10.1016/j.ijbiomac.2024.137628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/02/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Xanthan gum, produced by the aerobic fermentation of carbohydrates by Xanthomonas campestris, is a significant natural and industrial biopolymer known for its exceptional properties. Enhancing the yield of xanthan gum production remains a critical challenge. This study employed atmospheric and room temperature plasma (ARTP) technology to induce mutagenesis in X. campestris, resulting in a high-yielding strain, X20. The X20 mutant exhibited a substantial increase in xanthan gum yield, ranging from 13.3 % to 30.0 % over the starting strain across NaCl concentrations of 0, 6.0, and 8.0 g/L, along with improved viscosity and molecular weight. In the whole genome of X20 mutant, a total of 80 variant sites differing from the reference genome were identified, involving 76 mutated genes. Among these, 19 were missense mutations primarily associated with the two-component system. Transcriptome analysis highlighted their role in enhancing flagellar movement, biofilm formation, and metabolic synthesis, thereby elevating the capability of the mutant strain in xanthan gum production. This study demonstrates the potential of ARTP as an effective tool for microbial mutagenesis breeding, providing theoretical guidance for future studies on the synthesis regulation of xanthan gum and the engineering modification of X. campestris.
Collapse
Affiliation(s)
- Chun-Dan Gan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China
| | - Hong Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Min Gou
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China.
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Routaboul JM, Bellenot C, Olympio A, Clément G, Citerne S, Remblière C, Charvin M, Franke L, Chiarenza S, Vasselon D, Jardinaud MF, Carrère S, Nussaume L, Laufs P, Leonhardt N, Navarro L, Schattat M, Noël LD. Arabidopsis hydathodes are sites of auxin accumulation and nutrient scavenging. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:857-871. [PMID: 39254742 DOI: 10.1111/tpj.17014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024]
Abstract
Hydathodes are small organs found on the leaf margins of vascular plants which release excess xylem sap through a process called guttation. While previous studies have hinted at additional functions of hydathode in metabolite transport or auxin metabolism, experimental support is limited. We conducted comprehensive transcriptomic, metabolomic and physiological analyses of mature Arabidopsis hydathodes. This study identified 1460 genes differentially expressed in hydathodes compared to leaf blades, indicating higher expression of most genes associated with auxin metabolism, metabolite transport, stress response, DNA, RNA or microRNA processes, plant cell wall dynamics and wax metabolism. Notably, we observed differential expression of genes encoding auxin-related transcriptional regulators, biosynthetic processes, transport and vacuolar storage supported by the measured accumulation of free and conjugated auxin in hydathodes. We also showed that 78% of the total content of 52 xylem metabolites was removed from guttation fluid at hydathodes. We demonstrate that NRT2.1 and PHT1;4 transporters capture nitrate and inorganic phosphate in guttation fluid, respectively, thus limiting the loss of nutrients during this process. Our transcriptomic and metabolomic analyses unveil an organ with its specific physiological and biological identity.
Collapse
Affiliation(s)
- Jean-Marc Routaboul
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE UMR 0441, CNRS UMR 2598, Castanet-Tolosan, F-31326, France
| | - Caroline Bellenot
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE UMR 0441, CNRS UMR 2598, Castanet-Tolosan, F-31326, France
| | - Aurore Olympio
- Institut de Biosciences et Biotechnologies d'Aix-Marseille, Aix-Marseille Université, CEA, CNRS UMR 7265, Saint Paul-Lez-Durance, F-13108, France
| | - Gilles Clément
- Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, Versailles, 78000, France
| | - Sylvie Citerne
- Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, Versailles, 78000, France
| | - Céline Remblière
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE UMR 0441, CNRS UMR 2598, Castanet-Tolosan, F-31326, France
| | - Magali Charvin
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR8197, INSERM U1024, Paris, 75005, France
| | - Lars Franke
- Department of Plant Physiology, Institute for Biology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), D-06120, Germany
| | - Serge Chiarenza
- Institut de Biosciences et Biotechnologies d'Aix-Marseille, Aix-Marseille Université, CEA, CNRS UMR 7265, Saint Paul-Lez-Durance, F-13108, France
| | - Damien Vasselon
- Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, Versailles, 78000, France
| | - Marie-Françoise Jardinaud
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE UMR 0441, CNRS UMR 2598, Castanet-Tolosan, F-31326, France
| | - Sébastien Carrère
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE UMR 0441, CNRS UMR 2598, Castanet-Tolosan, F-31326, France
| | - Laurent Nussaume
- Institut de Biosciences et Biotechnologies d'Aix-Marseille, Aix-Marseille Université, CEA, CNRS UMR 7265, Saint Paul-Lez-Durance, F-13108, France
| | - Patrick Laufs
- Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, Versailles, 78000, France
| | - Nathalie Leonhardt
- Institut de Biosciences et Biotechnologies d'Aix-Marseille, Aix-Marseille Université, CEA, CNRS UMR 7265, Saint Paul-Lez-Durance, F-13108, France
| | - Lionel Navarro
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR8197, INSERM U1024, Paris, 75005, France
| | - Martin Schattat
- Department of Plant Physiology, Institute for Biology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), D-06120, Germany
| | - Laurent D Noël
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE UMR 0441, CNRS UMR 2598, Castanet-Tolosan, F-31326, France
| |
Collapse
|
4
|
Monnens TQ, Roux B, Cunnac S, Charbit E, Carrère S, Lauber E, Jardinaud MF, Darrasse A, Arlat M, Szurek B, Pruvost O, Jacques MA, Gagnevin L, Koebnik R, Noël LD, Boulanger A. Comparative transcriptomics reveals a highly polymorphic Xanthomonas HrpG virulence regulon. BMC Genomics 2024; 25:777. [PMID: 39123115 PMCID: PMC11316434 DOI: 10.1186/s12864-024-10684-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Bacteria of the genus Xanthomonas cause economically significant diseases in various crops. Their virulence is dependent on the translocation of type III effectors (T3Es) into plant cells by the type III secretion system (T3SS), a process regulated by the master response regulator HrpG. Although HrpG has been studied for over two decades, its regulon across diverse Xanthomonas species, particularly beyond type III secretion, remains understudied. RESULTS In this study, we conducted transcriptome sequencing to explore the HrpG regulons of 17 Xanthomonas strains, encompassing six species and nine pathovars, each exhibiting distinct host and tissue specificities. We employed constitutive expression of plasmid-borne hrpG*, which encodes a constitutively active form of HrpG, to induce the regulon. Our findings reveal substantial inter- and intra-specific diversity in the HrpG* regulons across the strains. Besides 21 genes directly involved in the biosynthesis of the T3SS, the core HrpG* regulon is limited to only five additional genes encoding the transcriptional activator HrpX, the two T3E proteins XopR and XopL, a major facility superfamily (MFS) transporter, and the phosphatase PhoC. Interestingly, genes involved in chemotaxis and genes encoding enzymes with carbohydrate-active and proteolytic activities are variably regulated by HrpG*. CONCLUSIONS The diversity in the HrpG* regulon suggests that HrpG-dependent virulence in Xanthomonas might be achieved through several distinct strain-specific strategies, potentially reflecting adaptation to diverse ecological niches. These findings enhance our understanding of the complex role of HrpG in regulating various virulence and adaptive pathways, extending beyond T3Es and the T3SS.
Collapse
Affiliation(s)
- Thomas Quiroz Monnens
- LIPME, INRAE/CNRS UMR 0441/2594, Université de Toulouse, Université Paul Sabatier Toulouse 3, UMR, Castanet-Tolosan, 31320, France
| | - Brice Roux
- LIPME, INRAE/CNRS UMR 0441/2594, Université de Toulouse, Université Paul Sabatier Toulouse 3, UMR, Castanet-Tolosan, 31320, France
| | - Sébastien Cunnac
- PHIM, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Erika Charbit
- Univ. Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, F-49000, France
| | - Sébastien Carrère
- LIPME, INRAE/CNRS UMR 0441/2594, Université de Toulouse, Université Paul Sabatier Toulouse 3, UMR, Castanet-Tolosan, 31320, France
| | - Emmanuelle Lauber
- LIPME, INRAE/CNRS UMR 0441/2594, Université de Toulouse, Université Paul Sabatier Toulouse 3, UMR, Castanet-Tolosan, 31320, France
| | - Marie-Françoise Jardinaud
- LIPME, INRAE/CNRS UMR 0441/2594, Université de Toulouse, Université Paul Sabatier Toulouse 3, UMR, Castanet-Tolosan, 31320, France
| | - Armelle Darrasse
- Univ. Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, F-49000, France
| | - Matthieu Arlat
- LIPME, INRAE/CNRS UMR 0441/2594, Université de Toulouse, Université Paul Sabatier Toulouse 3, UMR, Castanet-Tolosan, 31320, France
| | - Boris Szurek
- PHIM, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | | | - Marie-Agnès Jacques
- Univ. Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, F-49000, France
| | - Lionel Gagnevin
- CIRAD, UMR PVBMT, Saint-Pierre, La Réunion, F-97410, France
- PHIM, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR PHIM, Montpellier, F-34398, France
| | - Ralf Koebnik
- PHIM, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Laurent D Noël
- LIPME, INRAE/CNRS UMR 0441/2594, Université de Toulouse, Université Paul Sabatier Toulouse 3, UMR, Castanet-Tolosan, 31320, France.
| | - Alice Boulanger
- LIPME, INRAE/CNRS UMR 0441/2594, Université de Toulouse, Université Paul Sabatier Toulouse 3, UMR, Castanet-Tolosan, 31320, France.
| |
Collapse
|
5
|
Greer SF, Rabiey M, Studholme DJ, Grant M. The potential of bacteriocins and bacteriophages to control bacterial disease of crops with a focus on Xanthomonas spp. J R Soc N Z 2024; 55:302-326. [PMID: 39677383 PMCID: PMC11639067 DOI: 10.1080/03036758.2024.2345315] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/02/2024] [Indexed: 12/17/2024]
Abstract
Crop production plays a crucial role in ensuring global food security and maintaining economic stability. The presence of bacterial phytopathogens, particularly Xanthomonas species (a key focus of this review), poses significant threats to crops, leading to substantial economic losses. Current control strategies, such as the use of chemicals and antibiotics, face challenges such as environmental impact and the development of antimicrobial resistance. This review discusses the potential of bacteriocins, bacterial-derived proteinaceous antimicrobials and bacteriophages, viruses that target bacteria as sustainable alternatives for effectively managing Xanthomonas diseases. We focus on the diversity of bacteriocins found within xanthomonads by identifying and predicting the structures of candidate bacteriocin genes from publicly available genome sequences using BAGEL4 and AlphaFold. Harnessing the power of bacteriocins and bacteriophages has great potential as an eco-friendly and sustainable approach for precision control of Xanthomonas diseases in agriculture. However, realising the full potential of these natural antimicrobials requires continued research, field trials and collaboration among scientists, regulators and farmers. This collective effort is crucial to establishing these alternatives as promising substitutes for traditional disease management methods.
Collapse
Affiliation(s)
- Shannon F. Greer
- School of Life Sciences, University of Warwick, Innovation Campus, Stratford-upon-Avon, UK
| | - Mojgan Rabiey
- School of Life Sciences, University of Warwick, Innovation Campus, Stratford-upon-Avon, UK
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, UK
| | | | - Murray Grant
- School of Life Sciences, University of Warwick, Innovation Campus, Stratford-upon-Avon, UK
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, UK
| |
Collapse
|
6
|
Lauber E, González-Fuente M, Escouboué M, Vicédo C, Luneau JS, Pouzet C, Jauneau A, Gris C, Zhang ZM, Pichereaux C, Carrère S, Deslandes L, Noël LD. Bacterial host adaptation through sequence and structural variations of a single type III effector gene. iScience 2024; 27:109224. [PMID: 38439954 PMCID: PMC10909901 DOI: 10.1016/j.isci.2024.109224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 12/02/2023] [Accepted: 02/08/2024] [Indexed: 03/06/2024] Open
Abstract
Molecular mechanisms underlying quantitative variations of pathogenicity remain elusive. Here, we identified the Xanthomonas campestris XopJ6 effector that triggers disease resistance in cauliflower and Arabidopsis thaliana. XopJ6 is a close homolog of the Ralstoniapseudosolanacearum PopP2 YopJ family acetyltransferase. XopJ6 is recognized by the RRS1-R/RPS4 NLR pair that integrates a WRKY decoy domain mimicking effector targets. We identified a XopJ6 natural variant carrying a single residue substitution in XopJ6 WRKY-binding site that disrupts interaction with WRKY proteins. This mutation allows XopJ6 to evade immune perception while retaining some XopJ6 virulence functions. Interestingly, xopJ6 resides in a Tn3-family transposon likely contributing to xopJ6 copy number variation (CNV). Using synthetic biology, we demonstrate that xopJ6 CNV tunes pathogen virulence on Arabidopsis through gene dosage-mediated modulation of xopJ6 expression. Together, our findings highlight how sequence and structural genetic variations restricted at a particular effector gene contribute to bacterial host adaptation.
Collapse
Affiliation(s)
- Emmanuelle Lauber
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| | - Manuel González-Fuente
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| | - Maxime Escouboué
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| | - Céline Vicédo
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| | - Julien S. Luneau
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| | - Cécile Pouzet
- TRI-FRAIB Imaging Platform Facilities, FRAIB, Université de Toulouse, CNRS, UPS, 31320 Castanet-Tolosan, France
| | - Alain Jauneau
- TRI-FRAIB Imaging Platform Facilities, FRAIB, Université de Toulouse, CNRS, UPS, 31320 Castanet-Tolosan, France
| | - Carine Gris
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| | - Zhi-Min Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Carole Pichereaux
- Fédération de Recherche Agrobiosciences, Interactions et Biodiversité (FRAIB), Université de Toulouse, CNRS, Université de Toulouse III - Paul Sabatier (UT3), Auzeville-Tolosane, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université de Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Infrastructure nationale de protéomique, ProFI, FR 2048, Toulouse, France
| | - Sébastien Carrère
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| | - Laurent Deslandes
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| | - Laurent D. Noël
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| |
Collapse
|
7
|
Pfeilmeier S, Werz A, Ote M, Bortfeld-Miller M, Kirner P, Keppler A, Hemmerle L, Gäbelein CG, Petti GC, Wolf S, Pestalozzi CM, Vorholt JA. Leaf microbiome dysbiosis triggered by T2SS-dependent enzyme secretion from opportunistic Xanthomonas pathogens. Nat Microbiol 2024; 9:136-149. [PMID: 38172620 PMCID: PMC10769872 DOI: 10.1038/s41564-023-01555-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/13/2023] [Indexed: 01/05/2024]
Abstract
In healthy plants, the innate immune system contributes to maintenance of microbiota homoeostasis, while disease can be associated with microbiome perturbation or dysbiosis, and enrichment of opportunistic plant pathogens like Xanthomonas. It is currently unclear whether the microbiota change occurs independently of the opportunistic pathogens or is caused by the latter. Here we tested if protein export through the type-2 secretion system (T2SS) by Xanthomonas causes microbiome dysbiosis in Arabidopsis thaliana in immunocompromised plants. We found that Xanthomonas strains secrete a cocktail of plant cell wall-degrading enzymes that promote Xanthomonas growth during infection. Disease severity and leaf tissue degradation were increased in A. thaliana mutants lacking the NADPH oxidase RBOHD. Experiments with gnotobiotic plants, synthetic bacterial communities and wild-type or T2SS-mutant Xanthomonas revealed that virulence and leaf microbiome composition are controlled by the T2SS. Overall, a compromised immune system in plants can enrich opportunistic pathogens, which damage leaf tissues and ultimately cause microbiome dysbiosis by facilitating growth of specific commensal bacteria.
Collapse
Affiliation(s)
- Sebastian Pfeilmeier
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland.
- Molecular Plant Pathology, Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam, the Netherlands.
| | - Anja Werz
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Marine Ote
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | - Pascal Kirner
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | - Lucas Hemmerle
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | | | - Sarah Wolf
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
8
|
Bonfim IM, Paixão DA, Andrade MDO, Junior JM, Persinoti GF, de Giuseppe PO, Murakami MT. Plant structural and storage glucans trigger distinct transcriptional responses that modulate the motility of Xanthomonas pathogens. Microbiol Spectr 2023; 11:e0228023. [PMID: 37855631 PMCID: PMC10714752 DOI: 10.1128/spectrum.02280-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/05/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Pathogenic Xanthomonas bacteria can affect a variety of economically relevant crops causing losses in productivity, limiting commercialization and requiring phytosanitary measures. These plant pathogens exhibit high level of host and tissue specificity through multiple molecular strategies including several secretion systems, effector proteins, and a broad repertoire of carbohydrate-active enzymes (CAZymes). Many of these CAZymes act on the plant cell wall and storage carbohydrates, such as cellulose and starch, releasing products used as nutrients and modulators of transcriptional responses to support host colonization by mechanisms yet poorly understood. Here, we reveal that structural and storage β-glucans from the plant cell function as spatial markers, providing distinct chemical stimuli that modulate the transition between higher and lower motility states in Xanthomonas citri, a key virulence trait for many bacterial pathogens.
Collapse
Affiliation(s)
- Isabela Mendes Bonfim
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
- Graduate Program in Molecular and Morphofunctional Biology, Institute of Biology, University of Campinas, São Paulo, Brazil
| | - Douglas Alvarez Paixão
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
| | - Maxuel de Oliveira Andrade
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
| | - Joaquim Martins Junior
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
| | - Gabriela Felix Persinoti
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
| | - Priscila Oliveira de Giuseppe
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
| | - Mário Tyago Murakami
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
| |
Collapse
|
9
|
Li R, Peng J, Liu Q, Chang Z, Huang Y, Tang J, Lu G. Xanthomonas campestris VemR enhances the transcription of the T3SS key regulator HrpX via physical interaction with HrpG. MOLECULAR PLANT PATHOLOGY 2023; 24:232-247. [PMID: 36626275 PMCID: PMC9923393 DOI: 10.1111/mpp.13293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/28/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
VemR is a response regulator of the two-component signalling systems (TCSs). It consists solely of a receiver domain. Previous studies have shown that VemR plays an important role in influencing the production of exopolysaccharides and exoenzymes, cell motility, and virulence of Xanthomonas campestris pv. campestris (Xcc). However, whether VemR is involved in the essential pathogenicity determinant type III secretion system (T3SS) is unclear. In this work, we found by transcriptome analysis that VemR modulates about 10% of Xcc genes, which are involved in various cellular processes including the T3SS. Further experiments revealed that VemR physically interacts with numerous proteins, including the TCS sensor kinases HpaS and RavA, and the TCS response regulator HrpG, which directly activates the transcription of HrpX, a key regulator controlling T3SS expression. It has been demonstrated previously that HpaS composes a TCS with HrpG or VemR to control the expression of T3SS or swimming motility, while RavA and VemR form a TCS to control the expression of flagellar genes. Mutation analysis and in vitro transcription assay revealed that phosphorylation might be essential for the function of VemR and phosphorylated VemR could significantly enhance the activation of hrpX transcription by HrpG. We infer that the binding of VemR to HrpG can modulate the activity of HrpG to the hrpX promoter, thereby enhancing hrpX transcription. Although further studies are required to validate this inference and explore the detailed functional mechanism of VemR, our findings provide some insights into the complex regulatory cascade of the HpaS/RavA-VemR/HrpG-HrpX signal transduction system in the control of T3SS.
Collapse
Affiliation(s)
- Rui‐Fang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect PestsPlant Protection Research Institute, Guangxi Academy of Agricultural SciencesNanningChina
| | - Jian‐Ling Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| | - Qian‐Qian Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| | - Zheng Chang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| | - Yi‐Xin Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| | - Ji‐Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| | - Guang‐Tao Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| |
Collapse
|
10
|
Paauw M, van Hulten M, Chatterjee S, Berg JA, Taks NW, Giesbers M, Richard MMS, van den Burg HA. Hydathode immunity protects the Arabidopsis leaf vasculature against colonization by bacterial pathogens. Curr Biol 2023; 33:697-710.e6. [PMID: 36731466 DOI: 10.1016/j.cub.2023.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 10/27/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023]
Abstract
Plants prevent disease by passively and actively protecting potential entry routes against invading microbes. For example, the plant immune system actively guards roots, wounds, and stomata. How plants prevent vascular disease upon bacterial entry via guttation fluids excreted from specialized glands at the leaf margin remains largely unknown. These so-called hydathodes release xylem sap when root pressure is too high. By studying hydathode colonization by both hydathode-adapted (Xanthomonas campestris pv. campestris) and non-adapted pathogenic bacteria (Pseudomonas syringae pv. tomato) in immunocompromised Arabidopsis mutants, we show that the immune hubs BAK1 and EDS1-PAD4-ADR1 restrict bacterial multiplication in hydathodes. Both immune hubs effectively confine bacterial pathogens to hydathodes and lower the number of successful escape events of an hydathode-adapted pathogen toward the xylem. A second layer of defense, which is dependent on the plant hormones' pipecolic acid and to a lesser extent on salicylic acid, reduces the vascular spread of the pathogen. Thus, besides glands, hydathodes represent a potent first line of defense against leaf-invading microbes.
Collapse
Affiliation(s)
- Misha Paauw
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Marieke van Hulten
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Sayantani Chatterjee
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jeroen A Berg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Nanne W Taks
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Marcel Giesbers
- Wageningen Electron Microscopy Centre, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands
| | - Manon M S Richard
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Harrold A van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Luneau JS, Baudin M, Quiroz Monnens T, Carrère S, Bouchez O, Jardinaud M, Gris C, François J, Ray J, Torralba B, Arlat M, Lewis JD, Lauber E, Deutschbauer AM, Noël LD, Boulanger A. Genome-wide identification of fitness determinants in the Xanthomonas campestris bacterial pathogen during early stages of plant infection. THE NEW PHYTOLOGIST 2022; 236:235-248. [PMID: 35706385 PMCID: PMC9543026 DOI: 10.1111/nph.18313] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/07/2022] [Indexed: 05/31/2023]
Abstract
Plant diseases are an important threat to food production. While major pathogenicity determinants required for disease have been extensively studied, less is known on how pathogens thrive during host colonization, especially at early infection stages. Here, we used randomly barcoded-transposon insertion site sequencing (RB-TnSeq) to perform a genome-wide screen and identify key bacterial fitness determinants of the vascular pathogen Xanthomonas campestris pv campestris (Xcc) during infection of the cauliflower host plant (Brassica oleracea). This high-throughput analysis was conducted in hydathodes, the natural entry site of Xcc, in xylem sap and in synthetic media. Xcc did not face a strong bottleneck during hydathode infection. In total, 181 genes important for fitness were identified in plant-associated environments with functional enrichment in genes involved in metabolism but only few genes previously known to be involved in virulence. The biological relevance of 12 genes was independently confirmed by phenotyping single mutants. Notably, we show that XC_3388, a protein with no known function (DUF1631), plays a key role in the adaptation and virulence of Xcc possibly through c-di-GMP-mediated regulation. This study revealed yet unsuspected social behaviors adopted by Xcc individuals when confined inside hydathodes at early infection stages.
Collapse
Affiliation(s)
- Julien S. Luneau
- LIPME, Université de Toulouse, INRAE, CNRSUniversité Paul Sabatier31320Castanet‐TolosanFrance
| | - Maël Baudin
- Plant Gene Expression Center, USDAAlbanyCA94710USA
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCA94720USA
| | - Thomas Quiroz Monnens
- LIPME, Université de Toulouse, INRAE, CNRSUniversité Paul Sabatier31320Castanet‐TolosanFrance
| | - Sébastien Carrère
- LIPME, Université de Toulouse, INRAE, CNRSUniversité Paul Sabatier31320Castanet‐TolosanFrance
| | - Olivier Bouchez
- Genotoul Genome & Transcriptome (GeT‐PlaGe), INRAE31320Castanet‐TolosanFrance
| | | | - Carine Gris
- LIPME, Université de Toulouse, INRAE, CNRSUniversité Paul Sabatier31320Castanet‐TolosanFrance
| | - Jonas François
- LIPME, Université de Toulouse, INRAE, CNRSUniversité Paul Sabatier31320Castanet‐TolosanFrance
| | - Jayashree Ray
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Babil Torralba
- LIPME, Université de Toulouse, INRAE, CNRSUniversité Paul Sabatier31320Castanet‐TolosanFrance
| | - Matthieu Arlat
- LIPME, Université de Toulouse, INRAE, CNRSUniversité Paul Sabatier31320Castanet‐TolosanFrance
| | - Jennifer D. Lewis
- Plant Gene Expression Center, USDAAlbanyCA94710USA
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCA94720USA
| | - Emmanuelle Lauber
- LIPME, Université de Toulouse, INRAE, CNRSUniversité Paul Sabatier31320Castanet‐TolosanFrance
| | - Adam M. Deutschbauer
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCA94720USA
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Laurent D. Noël
- LIPME, Université de Toulouse, INRAE, CNRSUniversité Paul Sabatier31320Castanet‐TolosanFrance
| | - Alice Boulanger
- LIPME, Université de Toulouse, INRAE, CNRSUniversité Paul Sabatier31320Castanet‐TolosanFrance
| |
Collapse
|
12
|
Sanguankiattichai N, Buscaill P, Preston GM. How bacteria overcome flagellin pattern recognition in plants. CURRENT OPINION IN PLANT BIOLOGY 2022; 67:102224. [PMID: 35533494 DOI: 10.1016/j.pbi.2022.102224] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/03/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Efficient plant immune responses depend on the ability to recognise an invading microbe. The 22-amino acids in the N-terminal domain and the 28-amino acids in the central region of the bacterial flagellin, called flg22 and flgII-28, respectively, are important elicitors of plant immunity. Plant immunity is activated after flg22 or flgII-28 recognition by the plant transmembrane receptors FLS2 or FLS3, respectively. There is strong selective pressure on many plant pathogenic and endophytic bacteria to overcome flagellin-triggered immunity. Here we provide an overview of recent developments in our understanding of the evasion and suppression of flagellin pattern recognition by plant-associated bacteria.
Collapse
Affiliation(s)
| | - Pierre Buscaill
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Gail M Preston
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| |
Collapse
|
13
|
Li R, Ren P, Liu Q, Yao J, Wu L, Zhu G, Xian X, Tang J, Lu G. McvR, a single domain response regulator regulates motility and virulence in the plant pathogen Xanthomonas campestris. MOLECULAR PLANT PATHOLOGY 2022; 23:649-663. [PMID: 35152521 PMCID: PMC8995066 DOI: 10.1111/mpp.13186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/19/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Signal transduction pathways mediated by sensor histidine kinases and cognate response regulators control a variety of physiological processes in response to environmental conditions in most bacteria. Comparatively little is known about the mechanism(s) by which single-domain response regulators (SD-RRs), which lack a dedicated output domain but harbour a phosphoryl receiver domain, exert their various regulatory effects in bacteria. Here we have examined the role of the SD-RR proteins encoded by the phytopathogen Xanthomonas campestris pv. campestris (Xcc). We describe the identification and characterization of a SD-RR protein named McvR (motility, chemotaxis, and virulence-related response regulator) that is required for virulence and motility regulation in Xcc. Deletion of the mcvR open reading frame caused reduced motility, chemotactic movement, and virulence in Xcc. Global transcriptome analyses revealed the McvR had a broad regulatory role and that most motility and pathogenicity genes were down-regulated in the mcvR mutant. Bacterial two-hybrid and protein pull-down assays revealed that McvR did not physically interact with components of the bacterial flagellum but interacts with other SD-RR proteins (like CheY) and the subset of DNA-binding proteins involved in gene regulation. Site-directed mutagenesis and phosphor-transfer experiments revealed that the aspartyl residue at position 55 of the receiver domain is important for phosphorylation and the regulatory activity of McvR protein. Taken together, the findings describe a previously unrecognized class of SD-RR protein that contributes to the regulation of motility and virulence in Xcc.
Collapse
Affiliation(s)
- Rui‐Fang Li
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect PestsPlant Protection Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Pei‐Dong Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Qian‐Qian Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Jia‐Li Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Liu Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Gui‐Ning Zhu
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect PestsPlant Protection Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Xiao‐Yong Xian
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect PestsPlant Protection Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Ji‐Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Guang‐Tao Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
| |
Collapse
|
14
|
Morinière L, Mirabel L, Gueguen E, Bertolla F. A Comprehensive Overview of the Genes and Functions Required for Lettuce Infection by the Hemibiotrophic Phytopathogen Xanthomonas hortorum pv. vitians. mSystems 2022; 7:e0129021. [PMID: 35311560 PMCID: PMC9040725 DOI: 10.1128/msystems.01290-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/07/2022] [Indexed: 12/25/2022] Open
Abstract
The successful infection of a host plant by a phytopathogenic bacterium depends on a finely tuned molecular cross talk between the two partners. Thanks to transposon insertion sequencing techniques (Tn-seq), whole genomes can now be assessed to determine which genes are important for the fitness of several plant-associated bacteria in planta. Despite its agricultural relevance, the dynamic molecular interaction established between the foliar hemibiotrophic phytopathogen Xanthomonas hortorum pv. vitians and its host, lettuce (Lactuca sativa), remains completely unknown. To decipher the genes and functions mobilized by the pathogen throughout the infection process, we conducted a Tn-seq experiment in lettuce leaves to mimic the selective pressure occurring during natural infection. This genome-wide screening identified 170 genes whose disruption caused serious fitness defects in lettuce. A thorough examination of these genes using comparative genomics and gene set enrichment analyses highlighted that several functions and pathways were highly critical for the pathogen's survival. Numerous genes involved in amino acid, nucleic acid, and exopolysaccharide biosynthesis were critical. The xps type II secretion system operon, a few TonB-dependent transporters involved in carbohydrate or siderophore scavenging, and multiple genes of the carbohydrate catabolism pathways were also critical, emphasizing the importance of nutrition systems in a nutrient-limited environment. Finally, several genes implied in camouflage from the plant immune system and resistance to immunity-induced oxidative stress were strongly involved in host colonization. As a whole, these results highlight some of the central metabolic pathways and cellular functions critical for Xanthomonas host adaptation and pathogenesis. IMPORTANCE Xanthomonas hortorum was recently the subject of renewed interest, as several studies highlighted that its members were responsible for diseases in a wide range of plant species, including crops of agricultural relevance (e.g., tomato and carrot). Among X. hortorum variants, X. hortorum pv. vitians is a reemerging foliar hemibiotrophic phytopathogen responsible for severe outbreaks of bacterial leaf spot of lettuce all around the world. Despite recent findings, sustainable and practical means of disease control remain to be developed. Understanding the host-pathogen interaction from a molecular perspective is crucial to support these efforts. The genes and functions mobilized by X. hortorum pv. vitians during its interaction with lettuce had never been investigated. Our study sheds light on these processes by screening the whole pathogen genome for genes critical for its fitness during the infection process, using transposon insertion sequencing and comparative genomics.
Collapse
Affiliation(s)
- Lucas Morinière
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
| | - Laurène Mirabel
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
| | - Erwan Gueguen
- Université Lyon, Université Claude Bernard Lyon 1, INSA, CNRS, UMR Microbiologie, Adaptation, Pathogénie, Villeurbanne, France
| | - Franck Bertolla
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
| |
Collapse
|