1
|
Sopha P, Meerod T, Chantrathonkul B, Phutubtim N, Cyr DM, Govitrapong P. Novel functions of the ER-located Hsp40s DNAJB12 and DNAJB14 on proteins at the outer mitochondrial membrane under stress mediated by CCCP. Mol Cell Biochem 2024; 479:2637-2652. [PMID: 37851175 PMCID: PMC11472741 DOI: 10.1007/s11010-023-04866-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
The endoplasmic reticulum (ER) membrane provides infrastructure for intracellular signaling, protein degradation, and communication among the ER lumen, cytosol, and nucleus via transmembrane and membrane-associated proteins. Failure to maintain homeostasis at the ER leads to deleterious conditions in humans, such as protein misfolding-related diseases and neurodegeneration. The ER transmembrane heat shock protein 40 (Hsp40) proteins, including DNAJB12 (JB12) and DNAJB14 (JB14), have been studied for their importance in multiple aspects of cellular events, including degradation of misfolded membrane proteins, proteasome-mediated control of proapoptotic Bcl-2 members, and assembly of multimeric ion channels. This study elucidates a novel facet of JB12 and JB14 in that their expression could be regulated in response to stress caused by the presence of ER stressors and the mitochondrial potential uncoupler CCCP. Furthermore, JB14 overexpression could affect the level of PTEN-induced kinase 1 (PINK1) expression under CCCP-mediated stress. Cells with genetic knockout (KO) of DNAJB12 and DNAJB14 exhibited an altered kinetic of phosphorylated Drp1 in response to the stress caused by CCCP treatment. Surprisingly, JB14-KO cells exhibited a prolonged stabilization of PINK1 during chronic exposure to CCCP. Cells depleted with JB12 or JB14 also revealed an increase in the mitochondrial count and branching. Hence, this study indicates the possible novel functions of JB12 and JB14 involving mitochondria in nonstress conditions and under stress caused by CCCP.
Collapse
Affiliation(s)
- Pattarawut Sopha
- Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, 906 Kamphaeng Phet 6 Road, Lak-Si, Bangkok, 10210, Thailand.
- Center of Excellence On Environmental Health and Toxicology, Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok, 10400, Thailand.
| | - Tirawit Meerod
- Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, 906 Kamphaeng Phet 6 Road, Lak-Si, Bangkok, 10210, Thailand
| | - Bunkuea Chantrathonkul
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Lak-Si, Bangkok, 10210, Thailand
| | - Nadgrita Phutubtim
- Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, 906 Kamphaeng Phet 6 Road, Lak-Si, Bangkok, 10210, Thailand
| | - Douglas M Cyr
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Piyarat Govitrapong
- Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, 906 Kamphaeng Phet 6 Road, Lak-Si, Bangkok, 10210, Thailand
- Center of Excellence On Environmental Health and Toxicology, Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok, 10400, Thailand
| |
Collapse
|
2
|
Sun X, Du Y, Cheng Y, Guan W, Li Y, Chen H, Jia D, Wei T. Insect ribosome-rescuer Pelo-Hbs1 complex on sperm surface mediates paternal arbovirus transmission. Nat Commun 2024; 15:6817. [PMID: 39122673 PMCID: PMC11316119 DOI: 10.1038/s41467-024-51020-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Arboviruses can be paternally transmitted by male insects to offspring for long-term persistence, but the mechanism remains largely unknown. Here, we use a model system of a destructive rice reovirus and its leafhopper vector to find that insect ribosome-rescuer Pelo-Hbs1 complex expressed on the sperm surface mediates paternal arbovirus transmission. This occurs through targeting virus-containing tubules constituted by viral nonstructural protein Pns11 to sperm surface via Pns11-Pelo interaction. Tubule assembly is dependent on Hsp70 activity, while Pelo-Hbs1 complex inhibits tubule assembly via suppressing Hsp70 activity. However, virus-activated ubiquitin ligase E3 mediates Pelo ubiquitinated degradation, synergistically causing Hbs1 degradation. Importantly, Pns11 effectively competes with Pelo for binding to E3, thus antagonizing E3-mediated Pelo-Hbs1 degradation. These processes cause a slight reduction of Pelo-Hbs1 complex in infected testes, promoting effective tubule assembly. Our findings provide insight into how insect sperm-specific Pelo-Hbs1 complex is modulated to promote paternal virus transmission without disrupting sperm function.
Collapse
Affiliation(s)
- Xinyan Sun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Centre, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yu Du
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Centre, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yu Cheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Centre, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wang Guan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Centre, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - You Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Centre, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hongyan Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Centre, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Dongsheng Jia
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Centre, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Taiyun Wei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Centre, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
3
|
Jia D, Luo G, Guan H, Yu T, Sun X, Du Y, Wang Y, Chen H, Wei T. Arboviruses antagonize insect Toll antiviral immune signaling to facilitate the coexistence of viruses with their vectors. PLoS Pathog 2024; 20:e1012318. [PMID: 38865374 PMCID: PMC11198909 DOI: 10.1371/journal.ppat.1012318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/25/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
Many plant arboviruses are persistently transmitted by piercing-sucking insect vectors. However, it remains largely unknown how conserved insect Toll immune response exerts antiviral activity and how plant viruses antagonize it to facilitate persistent viral transmission. Here, we discover that southern rice black-streaked dwarf virus (SRBSDV), a devastating planthopper-transmitted rice reovirus, activates the upstream Toll receptors expression but suppresses the downstream MyD88-Dorsal-defensin cascade, resulting in the attenuation of insect Toll immune response. Toll pathway-induced the small antibacterial peptide defensin directly interacts with viral major outer capsid protein P10 and thus binds to viral particles, finally blocking effective viral infection in planthopper vector. Furthermore, viral tubular protein P7-1 directly interacts with and promotes RING E3 ubiquitin ligase-mediated ubiquitinated degradation of Toll pathway adaptor protein MyD88 through the 26 proteasome pathway, finally suppressing antiviral defensin production. This virus-mediated attenuation of Toll antiviral immune response to express antiviral defensin ensures persistent virus infection without causing evident fitness costs for the insects. E3 ubiquitin ligase also is directly involved in the assembly of virus-induced tubules constructed by P7-1 to facilitate viral spread in planthopper vector, thereby acting as a pro-viral factor. Together, we uncover a previously unknown mechanism used by plant arboviruses to suppress Toll immune response through the ubiquitinated degradation of the conserved adaptor protein MyD88, thereby facilitating the coexistence of arboviruses with their vectors in nature.
Collapse
Affiliation(s)
- Dongsheng Jia
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Guozhong Luo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Heran Guan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Tingting Yu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xinyan Sun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yu Du
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yiheng Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hongyan Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Taiyun Wei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Purificação ADD, Debbas V, Tanaka LY, Gabriel GVDM, Wosniak Júnior J, De Bessa TC, Garcia-Rosa S, Laurindo FRM, Oliveira PVS. DNAJB12 and DNJB14 are non-redundant Hsp40 redox chaperones involved in endoplasmic reticulum protein reflux. Biochim Biophys Acta Gen Subj 2024; 1868:130502. [PMID: 37925033 DOI: 10.1016/j.bbagen.2023.130502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 10/19/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND The endoplasmic reticulum (ER) transmembrane chaperones DNAJB12(B12) and DNAJB14(B14) are cofactors that cooperate with cytosolic Heat Shock-70 protein (HSC70) facilitating folding/degradation of nascent membrane proteins and supporting the ER-membrane penetration of viral particles. Here, we assessed structural/functional features of B12/B14 with respect to their regulation by ER stress and their involvement in ER stress-mediated protein reflux. METHODS We investigated the effect of Unfolded Protein Response(UPR)-eliciting drugs on the expression/regulation of B12-B14 and their roles in ER-to-cytosol translocation of Protein Disulfide Isomerase-A1(PDI). RESULTS We show that B12 and B14 are similar but do not seem redundant. They share predicted structural features and show high homology of their cytosolic J-domains, while their ER-lumen DUF1977 domains are quite dissimilar. Interactome analysis suggested that B12/B14 associate with different biological processes. UPR activation did not significantly impact on B12 gene expression, while B14 transcripts were up-regulated. Meanwhile, B12 and B14 (33.4 kDa isoform) protein levels were degraded by the proteasome upon acute reductive challenge. Also, B12 degradation was impaired upon sulfenic-acid trapping by dimedone. We originally report that knockdown of B12/B14 and their cytosolic partner SGTA in ER-stressed cells significantly impaired the amount of the ER redox-chaperone PDI in a cytosolic-enriched fraction. Additionally, B12 but not B14 overexpression increased PDI relocalization in non-stressed cells. CONCLUSIONS AND GENERAL SIGNIFICANCE Our findings reveal that B12/B14 regulation involves thiol redox processes that may impact on their stability and possibly on physiological effects. Furthermore, we provide novel evidence that these proteins are involved in UPR-induced ER protein reflux.
Collapse
Affiliation(s)
- Aline Dias da Purificação
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Victor Debbas
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Leonardo Yuji Tanaka
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Gabriele Verônica de Mello Gabriel
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - João Wosniak Júnior
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Tiphany Coralie De Bessa
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Sheila Garcia-Rosa
- Brazilian Bioscience National Laboratory - LNBio, National Center Research in Energy and material - CNPEM, Campinas, Brazil
| | - Francisco Rafael Martins Laurindo
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Percillia Victoria Santos Oliveira
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
5
|
Wu Z, Luo D, Zhang S, Zhang C, Zhang Y, Chen M, Li X. A systematic review of southern rice black-streaked dwarf virus in the age of omics. PEST MANAGEMENT SCIENCE 2023; 79:3397-3407. [PMID: 37291065 DOI: 10.1002/ps.7605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/22/2023] [Accepted: 06/09/2023] [Indexed: 06/10/2023]
Abstract
Southern rice black-streaked dwarf virus (SRBSDV) is one of the most damaging rice viruses. The virus decreases rice quality and yield, and poses a serious threat to food security. From this perspective, this review performed a survey of published studies in recent years to understand the current status of SRBSDV and white-backed planthopper (WBPH, Sogatella furcifera) transmission processes in rice. Recent studies have shown that the interactions between viral virulence proteins and rice susceptibility factors shape the transmission of SRBSDV. Moreover, the transmission of SRBSDV is influenced by the interactions between viral virulence proteins and S. furcifera susceptibility factors. This review focused on the molecular mechanisms of key genes or proteins associated with SRBSDV infection in rice via the S. furcifera vector, and the host defense response mechanisms against viral infection. A sustainable control strategy using RNAi was summarized to address this pest. Finally, we also present a model for screening anti-SRBSDV inhibitors using viral proteins as targets. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zilin Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Dan Luo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Shanqi Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Chun Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yong Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Moxian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
6
|
Liang Q, Wan J, Liu H, Jia D, Chen Q, Wang A, Wei T. A plant nonenveloped double-stranded RNA virus activates and co-opts BNIP3-mediated mitophagy to promote persistent infection in its insect vector. Autophagy 2023; 19:616-631. [PMID: 35722949 PMCID: PMC9851205 DOI: 10.1080/15548627.2022.2091904] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Mitophagy that selectively eliminates damaged mitochondria is an essential mitochondrial quality control mechanism. Recently, mitophagy has been shown to be induced in host cells infected by a few animal viruses. Here, we report that southern rice black-streaked dwarf virus (SRBSDV), a plant nonenveloped double-stranded RNA virus, can also trigger mitophagy in its planthopper vector to prevent mitochondria-dependent apoptosis and promote persistent viral propagation. We find that the fibrillar structures constructed by the nonstructural protein P7-1 of SRBSDV directly target mitochondria via interaction with the mitophagy receptor BNIP3 (BCL2 interacting protein 3), and these mitochondria are then sequestered within autophagosomes to form mitophagosomes. Moreover, SRBSDV infection or P7-1 expression alone can promote BNIP3 dimerization on the mitochondria, and induce autophagy via the P7-1-ATG8 interaction. Furthermore, SRBSDV infection stimulates the phosphorylation of AMP-activated protein kinase (AMPK), resulting in BNIP3 phosphorylation via the AMPKα-BNIP3 interaction. Together, P7-1 induces BNIP3-mediated mitophagy by promoting the formation of phosphorylated BNIP3 dimers on the mitochondria. Silencing of ATG8, BNIP3, or AMPKα significantly reduces virus-induced mitophagy and viral propagation in insect vectors. These data suggest that in planthopper, SRBSDV-induced mitophagosomes are modified to accommodate virions and facilitate persistent viral propagation. In summary, our results demonstrate a previously unappreciated role of a viral protein in the induction of BNIP3-mediated mitophagy by bridging autophagosomes and mitochondria and reveal the functional importance of virus-induced mitophagy in maintaining persistent viral infection in insect vectors.Abbreviations: AMPK: AMP-activated protein kinase; ATG: autophagy related; BNIP3: BCL2 interacting protein 3; CASP3: caspase 3; dsRNA: double strand RNA; ER: endoplasmic reticulum; FITC: fluorescein isothiocyanate; FKBP8: FKBP prolyl isomerase 8; FUNDC1: FUN14 domain containing 1; GFP: green fluorescent protein; GST: glutathione S-transferase; padp: post-first access to diseased plants; Phos-tag: Phosphate-binding tag; PINK1: PTEN induced kinase 1; Sf9: Spodoptera frugiperda; SQSTM1: sequestosome 1; SRBSDV: southern rice black-streaked dwarf virus; STK11/LKB1: serine/threonine kinase 11; TOMM20: translocase of outer mitochondrial membrane 20; RBSDV: rice black-streaked dwarf virus; TUNEL: terminal deoxynucleotidyl dUTP nick end labeling; ULK1: unc-51 like autophagy activating kinase 1; VDAC1: voltage dependent anion channel 1.
Collapse
Affiliation(s)
- Qifu Liang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jiajia Wan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Huan Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Dongsheng Jia
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qian Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Taiyun Wei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China,CONTACT Taiyun Wei State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
7
|
Peng T, Yuan Y, Huang A, He J, Fu S, Duan S, Yi L, Yuan C, Yuan H, Wang X, Zhou C. Interaction between the flagellum of Candidatus Liberibacter asiaticus and the vitellogenin-like protein of Diaphorina citri significantly influences CLas titer. Front Microbiol 2023; 14:1119619. [PMID: 37143541 PMCID: PMC10152367 DOI: 10.3389/fmicb.2023.1119619] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/10/2023] [Indexed: 05/06/2023] Open
Abstract
Huanglongbing (HLB) is a global devastating citrus disease that is mainly caused by "Candidatus Liberibacter asiaticus" (CLas). It is mostly transmitted by the insect Asian citrus psyllid (ACP, Diaphorina citri) in a persistent and proliferative manner. CLas traverses multiple barriers to complete an infection cycle and is likely involved in multiple interactions with D. citri. However, the protein-protein interactions between CLas and D. citri are largely unknown. Here, we report on a vitellogenin-like protein (Vg_VWD) in D. citri that interacts with a CLas flagellum (flaA) protein. We found that Vg_VWD was upregulated in CLas-infected D. citri. Silencing of Vg_VWD in D. citri via RNAi silencing significantly increased the CLas titer, suggesting that Vg_VWD plays an important role in the CLas-D. citri interaction. Agrobacterium-mediated transient expression assays indicated that Vg_VWD inhibits BAX- and INF1-triggered necrosis and suppresses the callose deposition induced by flaA in Nicotiana benthamiana. These findings provide new insights into the molecular interaction between CLas and D. citri.
Collapse
Affiliation(s)
- Tao Peng
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Yingzhe Yuan
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Aijun Huang
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Jun He
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Shimin Fu
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Shuo Duan
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Long Yi
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Chenyang Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Huizhu Yuan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
- *Correspondence: Huizhu Yuan, ; Xuefeng Wang, ; Changyong Zhou,
| | - Xuefeng Wang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
- *Correspondence: Huizhu Yuan, ; Xuefeng Wang, ; Changyong Zhou,
| | - Changyong Zhou
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
- *Correspondence: Huizhu Yuan, ; Xuefeng Wang, ; Changyong Zhou,
| |
Collapse
|
8
|
Farooq T, Lin Q, She X, Chen T, Li Z, Yu L, Lan G, Tang Y, He Z. Cotton leaf curl Multan virus differentially regulates innate antiviral immunity of whitefly ( Bemisia tabaci) vector to promote cryptic species-dependent virus acquisition. FRONTIERS IN PLANT SCIENCE 2022; 13:1040547. [PMID: 36452094 PMCID: PMC9702342 DOI: 10.3389/fpls.2022.1040547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Begomoviruses represent the largest group of economically important, highly pathogenic, DNA plant viruses that contribute a substantial amount of global crop disease burden. The exclusive transmission of begomoviruses by whiteflies (Bemisia tabaci) requires them to interact and efficiently manipulate host responses at physiological, biological and molecular scales. However, the molecular mechanisms underlying complex begomovirus-whitefly interactions that consequently substantiate efficient virus transmission largely remain unknown. Previously, we found that whitefly Asia II 7 cryptic species can efficiently transmit cotton leaf curl Multan virus (CLCuMuV) while MEAM1 cryptic species is a poor carrier and incompetent vector of CLCuMuV. To investigate the potential mechanism/s that facilitate the higher acquisition of CLCuMuV by its whitefly vector (Asia II 7) and to identify novel whitefly proteins that putatively interact with CLCuMuV-AV1 (coat protein), we employed yeast two-hybrid system, bioinformatics, bimolecular fluorescence complementation, RNA interference, RT-qPCR and bioassays. We identified a total of 21 Asia II 7 proteins putatively interacting with CLCuMuV-AV1. Further analyses by molecular docking, Y2H and BiFC experiments validated the interaction between a whitefly innate immunity-related protein (BTB/POZ) and viral AV1 (coat protein). Gene transcription analysis showed that the viral infection significantly suppressed the transcription of BTB/POZ and enhanced the accumulation of CLCuMuV in Asia II 7, but not in MEAM1 cryptic species. In contrast to MEAM1, the targeted knock-down of BTB/POZ substantially reduced the ability of Asia II 7 to acquire and accumulate CLCuMuV. Additionally, antiviral immune signaling pathways (Toll, Imd, Jnk and Jak/STAT) were significantly suppressed following viral infection of Asia II 7 whiteflies. Taken together, the begomovirus CLCuMuV potentiates efficient virus accumulation in its vector B. tabaci Asia II 7 by targeting and suppressing the transcription of an innate immunity-related BTB/POZ gene and other antiviral immune responses in a cryptic species-specific manner.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zifu He
- *Correspondence: Yafei Tang, ; Zifu He,
| |
Collapse
|
9
|
Li J, Pan W, Zhao S, Liang C. Heat shock cognate protein 70 is required for rice stripe tenuivirus accumulation and transmission in small brown planthopper. Arch Virol 2022; 167:839-848. [PMID: 35113245 DOI: 10.1007/s00705-022-05384-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/03/2022] [Indexed: 11/29/2022]
Abstract
Rice stripe tenuivirus (RSV) is mainly transmitted by the insect vector small brown planthopper (SBPH, Laodelphax striatellus) in a persistent-propagative manner. Virus transmission is dependent on the interplay between viral proteins and vector factors. Pc2, a nonstructural protein of RSV, plays an important role in virus transmission. However, the vector proteins that interact with Pc2 are unknown. In this study, we identified three SBPH proteins that interact with the N-terminal 381 amino acids of Pc2 (Pc2N) by using a yeast two-hybrid system (Y2H). The interaction of Pc2N with heat shock protein cognate 70 (HSC70) was studied further. HSC70 was verified to interact with RSV Pc2N by biomolecular fluorescence complementation and co-immunoprecipitation assays. HSC70 colocalized with RSV Pc2N in both Sf9 cells and the hemocytes of SBPHs. Inhibition of HSC70 expression via RNA interference reduced virus levels in hemolymph and salivary glands of SBPHs and resulted in decreased virus transmission efficiency. These data provide evidence that a vector protein, HSC70, is employed by RSV to facilitate virus accumulation in the hemolymph and thereby promote virus transmission. These findings are important for a better understanding of the interactions between plant viruses and insect vectors.
Collapse
Affiliation(s)
- Jie Li
- College of Bioscience and Biotechnology, Yangzhou University, No. 48 Wenhui Road East, Yangzhou, 225009, People's Republic of China
| | - Wenyu Pan
- College of Bioscience and Biotechnology, Yangzhou University, No. 48 Wenhui Road East, Yangzhou, 225009, People's Republic of China
| | - Shuling Zhao
- College of Bioscience and Biotechnology, Yangzhou University, No. 48 Wenhui Road East, Yangzhou, 225009, People's Republic of China.
| | - Changyong Liang
- College of Bioscience and Biotechnology, Yangzhou University, No. 48 Wenhui Road East, Yangzhou, 225009, People's Republic of China
| |
Collapse
|