1
|
Huo Y, Chen H, Zhang Z, Song Y, Liu S, Wang P, Fan S. GmARF15 Enhances the Resistance of Soybean to Phytophthora sojae by Promoting GmPT10d Expression in Response to Salicylic Acid Signalling. Int J Mol Sci 2024; 26:191. [PMID: 39796049 PMCID: PMC11720048 DOI: 10.3390/ijms26010191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/19/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
Phytophthora root and stem rot caused by Phytophthora sojae (P. sojae) is a globally prevalent oomycete disease. The use of resistant cultivars is an effective and environmentally friendly strategy to manage this disease. It is important to understand the molecular mechanisms underlying the response of Glycine max (soybean) to P. sojae infection. In this study, we demonstrated that an isoflavonoid-specific prenyltransferase gene (GmPT10d, Glyma.10G070300) was significantly upregulated in the soybean cultivar Williams 82 with high resistance to P. sojae infection. Transgenic soybean seedlings overexpressing GmPT10d exhibited enhanced resistance to P. sojae, and those subjected to RNA interference showed increased susceptibility to the pathogen. Yeast-one-hybrid and electrophoretic mobility shift assays revealed that GmARF15 could directly bind to the promoter of GmPT10d. Further analysis of the GmARF15 function showed that transgenic soybean seedlings overexpressing GmARF15 also exhibited enhanced resistance to P. sojae. Transactivation assay, luciferase assay, and qPCR analysis showed that GmARF15 could promote the expression of GmPT10d. Further analysis indicated that elevated salicylic acid levels were associated with increased expression of GmARF15 and GmPT10d. Taken together, these findings reveal a regulatory mechanism by which GmARF15 enhances soybean resistance to P. sojae, potentially by promoting the expression of GmPT10d through the salicylic acid signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Piwu Wang
- Plant Biotechnology Center, College of Agronomy, Jilin Agriculture University, Changchun 130118, China; (Y.H.)
| | - Sujie Fan
- Plant Biotechnology Center, College of Agronomy, Jilin Agriculture University, Changchun 130118, China; (Y.H.)
| |
Collapse
|
2
|
Li N, Li C, Zheng A, Liu W, Shi Y, Jiang M, Xiao Y, Qiu Z, Qiu Y, Jia A. Ultra-high-performance liquid chromatography-mass spectrometry combined with molecular docking and molecular dynamics simulation reveals the source of bitterness in the traditional Chinese medicine formula Runchang-Tongbian. Biomed Chromatogr 2024; 38:e5929. [PMID: 38881323 DOI: 10.1002/bmc.5929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/20/2024] [Indexed: 06/18/2024]
Abstract
The Runchang-Tongbian (RCTB) formula is a traditional Chinese medicine (TCM) formula consisting of four herbs, namely Cannabis Fructus (Huomaren), Rehmanniae Radix (Dihuang), Atractylodis Macrocephalae Rhizoma (Baizhu), and Aurantii Fructus (Zhiqiao). It is widely used clinically because of its beneficial effect on constipation. However, its strong bitter taste leads to poor patient compliance. The bitter components of TCM compounds are complex and numerous, and inhibiting the bitter taste of TCM has become a major clinical challenge. Here, we use ultra-high-performance liquid chromatography coupled with mass spectrometry (UPLC-MS) and high-resolution mass spectrometry to identify 59 chemical components in the TCM compound RCTB formula. Next, four bitter taste receptors, TAS2R39, TAS2R14, TAS2R7, and TAS2R5, which are tightly bound to the compounds in RCTB, were screened as molecular docking receptors using the BitterX database. The top-three-scoring receptor-small-molecule complexes for each of the four receptors were selected for molecular dynamics simulation. Finally, seven bitter components were identified, namely six flavonoids (rhoifolin, naringin, poncirin, diosmin, didymin, and narirutin) and one phenylpropanoid (purpureaside C). Thus, we proposed a new method for identifying the bitter components in TCM compounds, which provides a theoretical reference for bitter taste inhibition in TCM compounds.
Collapse
Affiliation(s)
- Na Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Chunyu Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Aizhu Zheng
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Weipeng Liu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yuwen Shi
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Mengcheng Jiang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yusheng Xiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Zhidong Qiu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Ye Qiu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Ailing Jia
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
3
|
Liu T, Wang Q, Li Y, Chen Y, Jia B, Zhang J, Guo W, Li FY. Bio-organic fertilizer facilitated phytoremediation of heavy metal(loid)s-contaminated saline soil by mediating the plant-soil-rhizomicrobiota interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171278. [PMID: 38417528 DOI: 10.1016/j.scitotenv.2024.171278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/11/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
Bio-organic fertilizer (BOF) was effective to promote the phytoremediation efficiency of heavy metal(loid)s-contaminated saline soil (HCSS) by improving rhizosphere soil properties, especially microbiome. However, there existed unclear impacts of BOF on plant metabolome and plant-driven manipulation on rhizosphere soil microbiota in HCSS, which were pivotal contributors to stress defense of plants trapped in adverse conditions. Here, a pot experiment was conducted to explore the mechanisms of BOF in improving alfalfa (Medicago sativa)-performing phytoremediation of HCSS. BOF application significantly increased the biomass (150.87-401.58 %) to support the augments of accumulation regarding heavy metal(loid)s (87.50 %-410.54 %) and salts (38.27 %-271.04 %) in alfalfa. BOF promoted nutrients and aggregates stability but declined pH of rhizosphere soil, accompanied by the boosts of rhizomicrobiota including increased activity, reshaped community structure, enriched plant growth promoting rhizobacteria (Blastococcus, Modestobacter, Actinophytocola, Bacillus, and Streptomyces), strengthened mycorrhizal symbiosis (Leohumicola, Funneliformis, and unclassified_f_Ceratobasidiaceae), optimized co-occurrence networks, and beneficial shift of keystones. The conjoint analysis of plant metabolome and physiological indices confirmed that BOF reprogrammed the metabolic processes (synthesis, catabolism, and long-distance transport of amino acid, lipid, carbohydrate, phytohormone, stress-resistant secondary metabolites, etc) and physiological functions (energy supply, photosynthesis, plant immunity, nutrients assimilation, etc) that are associated intimately. The consortium of root metabolome, soil metabolome, and soil microbiome revealed that BOF facilitated the exudation of metabolites correlated with rhizomicrobiota (structure, biomarker, and keystone) and rhizosphere oxidative status, e.g., fatty acyls, phenols, coumarins, phenylpropanoids, highlighting the plant-driven regulation on rhizosphere soil microbes and environment. By compiling various results and omics data, it was concluded that BOF favored the adaptation and phytoremediation efficiency of alfalfa by mediating the plant-soil-rhizomicrobiota interactions. The results would deepen understanding of the mechanisms by which BOF improved phytoremediation of HCSS, and provide theoretical guidance to soil amelioration and BOF application.
Collapse
Affiliation(s)
- Tai Liu
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Qian Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yongchao Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yunong Chen
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Bingbing Jia
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Jingxia Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wei Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Frank Yonghong Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
4
|
Yang Q, Wang G. Isoflavonoid metabolism in leguminous plants: an update and perspectives. FRONTIERS IN PLANT SCIENCE 2024; 15:1368870. [PMID: 38405585 PMCID: PMC10884283 DOI: 10.3389/fpls.2024.1368870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Isoflavonoids constitute a well-investigated category of phenylpropanoid-derived specialized metabolites primarily found in leguminous plants. They play a crucial role in legume development and interactions with the environment. Isoflavonoids usually function as phytoalexins, acting against pathogenic microbes in nature. Additionally, they serve as signaling molecules in rhizobial symbiosis. Notably, owing to their molecular structure resembling human estrogen, they are recognized as phytoestrogens, imparting positive effects on human health. This review comprehensively outlines recent advancements in research pertaining to isoflavonoid biosynthesis, transcriptional regulation, transport, and physiological functions, with a particular emphasis on soybean plants. Additionally, we pose several questions to encourage exploration into novel contributors to isoflavonoid metabolism and their potential roles in plant-microbe interactions.
Collapse
Affiliation(s)
- Qilin Yang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, Chinese Academy of Sciences, Beijing, China
| | - Guodong Wang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Hashemi M, Amiel A, Zouaoui M, Adam K, Clemente HS, Aguilar M, Pendaries R, Couzigou JM, Marti G, Gaulin E, Roy S, Rey T, Dumas B. The mycoparasite Pythium oligandrum induces legume pathogen resistance and shapes rhizosphere microbiota without impacting mutualistic interactions. FRONTIERS IN PLANT SCIENCE 2023; 14:1156733. [PMID: 37929182 PMCID: PMC10625430 DOI: 10.3389/fpls.2023.1156733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023]
Abstract
Pythium oligandrum is a soil-borne oomycete associated with rhizosphere and root tissues. Its ability to enhance plant growth, stimulate plant immunity and parasitize fungal and oomycete preys has led to the development of agricultural biocontrol products. Meanwhile, the effect of P. oligandrum on mutualistic interactions and more generally on root microbial communities has not been investigated. Here, we developed a biological system comprising P. oligandrum interacting with two legume plants, Medicago truncatula and Pisum sativum. P. oligandrum activity was investigated at the transcriptomics level through an RNAseq approach, metabolomics and finally metagenomics to investigate the impact of P. oligandrum on root microbiota. We found that P. oligandrum promotes plant growth in these two species and protects them against infection by the oomycete Aphanomyces euteiches, a devastating legume root pathogen. In addition, P. oligandrum up-regulated more than 1000 genes in M. truncatula roots including genes involved in plant defense and notably in the biosynthesis of antimicrobial compounds and validated the enhanced production of M. truncatula phytoalexins, medicarpin and formononetin. Despite this activation of plant immunity, we found that root colonization by P. oligandrum did not impaired symbiotic interactions, promoting the formation of large and multilobed symbiotic nodules with Ensifer meliloti and did not negatively affect the formation of arbuscular mycorrhizal symbiosis. Finally, metagenomic analyses showed the oomycete modifies the composition of fungal and bacterial communities. Together, our results provide novel insights regarding the involvement of P. oligandrum in the functioning of plant root microbiota.
Collapse
Affiliation(s)
- Maryam Hashemi
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Toulouse Institut National Polytechnique (INP), Auzeville-Tolosane, France
| | - Aurélien Amiel
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Toulouse Institut National Polytechnique (INP), Auzeville-Tolosane, France
- DE SANGOSSE, Pont-Du-Casse, France
| | - Mohamed Zouaoui
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Toulouse Institut National Polytechnique (INP), Auzeville-Tolosane, France
| | - Kévin Adam
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Toulouse Institut National Polytechnique (INP), Auzeville-Tolosane, France
| | - Hélène San Clemente
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Toulouse Institut National Polytechnique (INP), Auzeville-Tolosane, France
| | - Marielle Aguilar
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Toulouse Institut National Polytechnique (INP), Auzeville-Tolosane, France
| | - Rémi Pendaries
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Toulouse Institut National Polytechnique (INP), Auzeville-Tolosane, France
- DE SANGOSSE, Pont-Du-Casse, France
| | - Jean-Malo Couzigou
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Toulouse Institut National Polytechnique (INP), Auzeville-Tolosane, France
| | - Guillaume Marti
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Toulouse Institut National Polytechnique (INP), Auzeville-Tolosane, France
- Metatoul-AgromiX Platform, MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Elodie Gaulin
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Toulouse Institut National Polytechnique (INP), Auzeville-Tolosane, France
| | - Sébastien Roy
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Toulouse Institut National Polytechnique (INP), Auzeville-Tolosane, France
- AGRONUTRITION, Carbonne, France
| | - Thomas Rey
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Toulouse Institut National Polytechnique (INP), Auzeville-Tolosane, France
- DE SANGOSSE, Pont-Du-Casse, France
| | - Bernard Dumas
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Toulouse Institut National Polytechnique (INP), Auzeville-Tolosane, France
| |
Collapse
|
6
|
Perez Rojo F, Pillow JJ, Kaur P. Bioprospecting microbes and enzymes for the production of pterocarpans and coumestans. Front Bioeng Biotechnol 2023; 11:1154779. [PMID: 37187887 PMCID: PMC10175578 DOI: 10.3389/fbioe.2023.1154779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
The isoflavonoid derivatives, pterocarpans and coumestans, are explored for multiple clinical applications as osteo-regenerative, neuroprotective and anti-cancer agents. The use of plant-based systems to produce isoflavonoid derivatives is limited due to cost, scalability, and sustainability constraints. Microbial cell factories overcome these limitations in which model organisms such as Saccharomyces cerevisiae offer an efficient platform to produce isoflavonoids. Bioprospecting microbes and enzymes can provide an array of tools to enhance the production of these molecules. Other microbes that naturally produce isoflavonoids present a novel alternative as production chassis and as a source of novel enzymes. Enzyme bioprospecting allows the complete identification of the pterocarpans and coumestans biosynthetic pathway, and the selection of the best enzymes based on activity and docking parameters. These enzymes consolidate an improved biosynthetic pathway for microbial-based production systems. In this review, we report the state-of-the-art for the production of key pterocarpans and coumestans, describing the enzymes already identified and the current gaps. We report available databases and tools for microbial bioprospecting to select the best production chassis. We propose the use of a holistic and multidisciplinary bioprospecting approach as the first step to identify the biosynthetic gaps, select the best microbial chassis, and increase productivity. We propose the use of microalgal species as microbial cell factories to produce pterocarpans and coumestans. The application of bioprospecting tools provides an exciting field to produce plant compounds such as isoflavonoid derivatives, efficiently and sustainably.
Collapse
Affiliation(s)
- Fernando Perez Rojo
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - J. Jane Pillow
- UWA School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| | - Parwinder Kaur
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
7
|
Sharma A, Chandran D. Host nuclear repositioning and actin polarization towards the site of penetration precedes fungal ingress during compatible pea-powdery mildew interactions. PLANTA 2022; 256:45. [PMID: 35864318 DOI: 10.1007/s00425-022-03959-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
MAIN CONCLUSION Actin polarization and actin-driven host nuclear movement towards the fungal penetration site facilitates successful host colonization during compatible pea-Erysiphe pisi interactions. Proper nuclear positioning in plant cells is crucial for developmental processes and response to (a)biotic stimuli. During plant-fungal interactions, the host nucleus moves toward the infection site, a process regulated by the plant cytoskeleton. Notably, rearrangement of the plant cytoskeleton is one of the earliest cellular responses to pathogen invasion and is known to impact penetration efficiency. Yet, the connection between host nuclear movement and fungal ingress is still elusive, particularly in legumes. Here, we investigated the host nuclear dynamics during compatible interactions between Pisum sativum (pea) and the adapted powdery mildew (PM) fungus Erysiphe pisi to gain insights into the functional relevance of PM-induced nuclear movement in legumes. We show that the host nucleus moves towards the fungal appressorium before penetration and becomes associated with the primary haustorium. However, the nucleus migrates away from the primary infection site as the infection progresses toward colony expansion and sporulation. Treatment of pea leaves with the actin-polymerization inhibitor, cytochalasin D, abolished host nuclear movement towards the fungal penetration site and restricted PM growth. In contrast, treatment with oryzalin, a microtubule-polymerization inhibitor, had no effect. In addition to nuclear movement, strong polarization of host actin filaments towards the site of appressorial contact was evident at early infection stages. Our results suggest that actin focusing mediates host nuclear movement to the fungal penetration site and facilitates successful colonization during compatible pea-PM interactions.
Collapse
Affiliation(s)
- Akriti Sharma
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, Haryana, India
| | - Divya Chandran
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, Haryana, India.
| |
Collapse
|