1
|
Jian Y, Gong D, Wang Z, Liu L, He J, Han X, Tsuda K. How plants manage pathogen infection. EMBO Rep 2024; 25:31-44. [PMID: 38177909 PMCID: PMC10897293 DOI: 10.1038/s44319-023-00023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/27/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
To combat microbial pathogens, plants have evolved specific immune responses that can be divided into three essential steps: microbial recognition by immune receptors, signal transduction within plant cells, and immune execution directly suppressing pathogens. During the past three decades, many plant immune receptors and signaling components and their mode of action have been revealed, markedly advancing our understanding of the first two steps. Activation of immune signaling results in physical and chemical actions that actually stop pathogen infection. Nevertheless, this third step of plant immunity is under explored. In addition to immune execution by plants, recent evidence suggests that the plant microbiota, which is considered an additional layer of the plant immune system, also plays a critical role in direct pathogen suppression. In this review, we summarize the current understanding of how plant immunity as well as microbiota control pathogen growth and behavior and highlight outstanding questions that need to be answered.
Collapse
Affiliation(s)
- Yinan Jian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Dianming Gong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China
| | - Zhe Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Lijun Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Jingjing He
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Xiaowei Han
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Kenichi Tsuda
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China.
| |
Collapse
|
2
|
Wang B, Xu Z, Zhao Y, Wu G, Li K, Hou R, Guo B, Tang B, Zhao Y, Liu F. SstF, a novel sulforaphane-sensing transcription factor of Xanthomonas campestris, is required for sulforaphane tolerance and virulence. MOLECULAR PLANT PATHOLOGY 2023; 24:452-465. [PMID: 36829260 PMCID: PMC10098062 DOI: 10.1111/mpp.13314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 05/03/2023]
Abstract
Avoiding the host defence system is necessary for the survival of pathogens. However, the mechanisms by which pathogenic bacteria sense and resist host defence signals are still unknown. Sulforaphane (SFN) is a secondary metabolite of crucifers. It not only plays an important role in maintaining the local defence response but also directly inhibits the growth of some pathogens. In this study, we identified a key SFN tolerance-related gene, saxF, in Xanthomonas campestris pv. campestris (Xcc), the causal agent of black rot in crucifers. More interestingly, we found that the transcription of saxF was regulated by the novel transcription factor SFN-sensing transcription factor (SstF). As a LysR family transcription factor, SstF can sense SFN and regulate the expression of saxF cluster genes to increase SFN resistance by directly binding to the promoter of saxF. In addition, we found that SstF and saxF also play an important role in positively regulating the virulence of Xcc. Collectively, our results illustrate a previously unknown mechanism by which Xcc senses the host defence signal SFN and activates the expression of SFN tolerance-related genes to increase virulence. Therefore, this study provides a remarkable result; that is, during pathogen-plant co-evolution, new functions of existing scaffolds are activated, thus improving the proficiency of the pathogenic mechanism.
Collapse
Affiliation(s)
- Bo Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
| | - Zhizhou Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Yangyang Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
| | - Guichun Wu
- School of Life ScienceAnhui Agricultural UniversityHefeiChina
| | - Kaihuai Li
- College of AgricultureGuizhou UniversityGuiyangChina
| | - Rongxian Hou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Baodian Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
| | - Bao Tang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
| | - Yancun Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjingChina
| |
Collapse
|