1
|
Slama D, Essid R, Sghaier S, Babba H. Host blood meal analysis of Culicoides oxystoma (Diptera: Ceratopogonidae) in Tunisia. Parasitol Res 2025; 124:27. [PMID: 40042621 PMCID: PMC11882646 DOI: 10.1007/s00436-025-08471-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 02/18/2025] [Indexed: 03/09/2025]
Abstract
Culicoides are small hematophagous biting midges belonging to the family Ceratopogonidae. The genus is distributed worldwide yet remains poorly studied. This study investigated the vector and host specificity of Culicoides oxystoma, a species of significant relevance to the surveillance of vector-borne diseases in Tunisia and globally. The research was conducted in two Tunisian governments: Tozeur and Kairouan. A total of 24,366 adult midges were collected using two types of suction traps: the Center for Disease Control trap and the Onderstepoort Veterinary Institute trap. Females of Culicoides oxystoma were isolated, carefully dissected, and slide mounted in a phenol alcohol balsam mixture. A portion of the abdomen was excised for total DNA extraction to identify the origin of the blood meal. A total of 108 engorged females were analyzed using polymerase chain reaction (PCR) to amplify specific fragments of the cytochrome b gene, followed by sequencing and sequence analysis. However, DNA sequences were successfully obtained for only 56 individuals. Sequence analysis revealed that the midges fed on a variety of mammalian hosts, including humans, with a prevalence of Mus musculus and Bos taurus. This represents the first study aiming to identify a wide range of hosts in Tunisia and North Africa, providing valuable insights into the hosts utilized by Culicoides oxystoma for blood feeding.
Collapse
Affiliation(s)
- Darine Slama
- Faculté de Pharmacie, Laboratory of Parasitology-Mycology Medical and Molecular, Université de Monastir, LR12ES085000, Monastir, Tunisia
| | - Rania Essid
- Faculté de Pharmacie, Laboratory of Parasitology-Mycology Medical and Molecular, Université de Monastir, LR12ES085000, Monastir, Tunisia
| | - Soufien Sghaier
- Food and Agriculture Organization (FAO), Subregional Office for North Africa, Les Berges du Lac 1, 1053, Tunis, Tunisia
| | - Hamouda Babba
- Faculté de Pharmacie, Laboratory of Parasitology-Mycology Medical and Molecular, Université de Monastir, LR12ES085000, Monastir, Tunisia.
- Laboratory of the Maternity, Neonatology Center of Monastir, Monastir, Tunisia.
| |
Collapse
|
2
|
Hadj-Henni L, Millot C, Lehrter V, Augot D. Wing morphometrics of biting midges (Diptera: Culicoides) of veterinary importance in Madagascar. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 114:105494. [PMID: 37640128 DOI: 10.1016/j.meegid.2023.105494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Biting midges are vectors of arboviruses such as bluetongue virus, bovine ephemeral fever virus, Akabane virus, African horse sickness virus, epizootic haemorrhagic disease virus and Schmallenberg virus. Fast and accurate identification of biting midges is crucial in the study of Culicoides-borne diseases. Morphological identification of biting midges has revealed the presence of cryptic species. A total of 20 species are reported in Madagascar. In this study, we assessed wing morphometric analysis for identification of seven species namely C. dubitatus Kremer, Rebholtz-Hirtzel and Delécolle, C. enderleini Cornet and Brunhes, C. kibatiensis Goetghebuer, C. miombo Meiswinkel, C. moreli Clastrier, C. nevilli Cornet and Brunhes, and C. zuluensis de Meillon. Culicoides enderleini, C. miombo, C. moreli, C. nevilli and C. zuluensis are vectors diseases. A molecular approach, based on the cytochrome oxidase I gene (Cox1), was used for species delimitation. The molecular analysis presented seven different clades grouped two-by-two according to morphological characters. A total of 179 wing images were digitised. We found morphometric variation among seven species based on 11 landmarks and two outlines. Wing shape variation plots showed that species overlapped with species belonging to the same group. The cross-validation revealed a relatively high percentage of correct classification in most species, ranging from 91.3% to 100% for landmarks; 60% to 82.6% for outlines-1 and 77.1% to 91.3% for outlines-2. Our study suggests that wing geometric morphometric analysis is a robust tool for reliable "Moka Fohy" identification in Madagascar. This inexpensive and simple method is a precise supplement to morphological identification, with reaches the accuracy of Cox1 barcoding.
Collapse
Affiliation(s)
- Leila Hadj-Henni
- Usc Vecpar-ANSES LSA, EA 7510, SFR Cap Santé, Université de Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51096 Reims Cedex, France
| | - Christine Millot
- Usc Vecpar-ANSES LSA, EA 7510, SFR Cap Santé, Université de Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51096 Reims Cedex, France.
| | - Véronique Lehrter
- Unité BioSpecT, EA7506, Université de Reims Champagne-Ardenne, Reims, France
| | - Denis Augot
- Usc Vecpar-ANSES LSA, EA 7510, SFR Cap Santé, Université de Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51096 Reims Cedex, France; ANSES, INRAe, ENVA, UMR-BIPAR, Laboratoire de Santé Animale, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex, France.
| |
Collapse
|
3
|
Fetene E, Teka G, Dejene H, Mandefro D, Teshome T, Temesgen D, Negussie H, Mulatu T, Jaleta MB, Leta S. Modeling the spatial distribution of Culicoides species (Diptera: Ceratopogonidae) as vectors of animal diseases in Ethiopia. Sci Rep 2022; 12:12904. [PMID: 35902616 PMCID: PMC9334590 DOI: 10.1038/s41598-022-16911-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Culicoides biting midges (Diptera: Ceratopogonidae) are the major vectors of bluetongue, Schmallenberg, and African horse sickness viruses. This study was conducted to survey Culicoides species in different parts of Ethiopia and to develop habitat suitability for the major Culicoides species in Ethiopia. Culicoides traps were set in different parts of the country from December 2018 to April 2021 using UV light Onderstepoort traps and the collected Culicoides were sorted to species level. To develop the species distribution model for the two predominant Culicoides species, namely Culicoides imicola and C. kingi, an ensemble modeling technique was used with the Biomod2 package of R software. KAPPA True skill statistics (TSS) and ROC curve were used to evaluate the accuracy of species distribution models. In the ensemble modeling, models which score TSS values greater than 0.8 were considered. Negative binomialregression models were used to evaluate the relationship between C. imicola and C. kingi catch and various environmental and climatic factors. During the study period, a total of 9148 Culicoides were collected from 66 trapping sites. Of the total 9148, 8576 of them belongs to seven species and the remaining 572 Culicoides were unidentified. The predominant species was C. imicola (52.8%), followed by C. kingi (23.6%). The abundance of these two species was highly influenced by the agro-ecological zone of the capture sites and the proximity of the capture sites to livestock farms. Climatic variables such as mean annual minimum and maximum temperature and mean annual rainfall were found to influence the catch of C. imicola at the different study sites. The ensemble model performed very well for both species with KAPPA (0.9), TSS (0.98), and ROC (0.999) for C. imicola and KAPPA (0.889), TSS (0.999), and ROC (0.999) for C. kingi. Culicoides imicola has a larger suitability range compared to C. kingi. The Great Rift Valley in Ethiopia, the southern and eastern parts of the country, and the areas along the Blue Nile and Lake Tana basins in northern Ethiopia were particularly suitable for C. imicola. High suitability for C. kingi was found in central Ethiopia and the Southern Nations, Nationalities and Peoples Region (SNNPR). The habitat suitability model developed here could help researchers better understand where the above vector-borne diseases are likely to occur and target surveillance to high-risk areas.
Collapse
Affiliation(s)
- Eyerusalem Fetene
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia
| | - Getachew Teka
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia
| | - Hana Dejene
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia.,Faculty of Agriculture and Veterinary Science, Ambo University, P.O. Box 19, Ambo, Ethiopia
| | - Deresegn Mandefro
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia
| | - Tsedale Teshome
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia
| | - Dawit Temesgen
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia
| | - Haileleul Negussie
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia
| | - Tesfaye Mulatu
- National Animal Health Diagnostic and Investigation Centre (NAHDIC), P. O. Box 4, Sebeta, Ethiopia
| | - Megarsa Bedasa Jaleta
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia
| | - Samson Leta
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia.
| |
Collapse
|
4
|
Predicting the possibility of African horse sickness (AHS) introduction into China using spatial risk analysis and habitat connectivity of Culicoides. Sci Rep 2022; 12:3910. [PMID: 35273211 PMCID: PMC8913660 DOI: 10.1038/s41598-022-07512-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/14/2022] [Indexed: 12/04/2022] Open
Abstract
African horse sickness (AHS) is a devastating equine infectious disease. On 17 March 2020, it first appeared in Thailand and threatened all the South-East Asia equine industry security. Therefore, it is imperative to carry out risk warnings of the AHS in China. The maximum entropy algorithm was used to model AHS and Culicoides separately by using climate and non-climate variables. The least cost path (LCP) method was used to analyze the habitat connectivity of Culicoides with the reclassified land cover and altitude as cost factors. The models showed the mean area under the curve as 0.918 and 0.964 for AHS and Culicoides. The prediction result map shows that there is a high risk area in the southern part of China while the habitats of the Culicoides are connected to each other. Therefore, the risk of introducing AHS into China is high and control of the border area should be strengthened immediately.
Collapse
|
5
|
Porphyre T, Grewar JD. Assessing the potential of plains zebra to maintain African horse sickness in the Western Cape Province, South Africa. PLoS One 2019; 14:e0222366. [PMID: 31671099 PMCID: PMC6822716 DOI: 10.1371/journal.pone.0222366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/16/2019] [Indexed: 11/18/2022] Open
Abstract
African horse sickness (AHS) is a disease of equids that results in a non-tariff barrier to the trade of live equids from affected countries. AHS is endemic in South Africa except for a controlled area in the Western Cape Province (WCP) where sporadic outbreaks have occurred in the past 2 decades. There is potential that the presence of zebra populations, thought to be the natural reservoir hosts for AHS, in the WCP could maintain AHS virus circulation in the area and act as a year-round source of infection for horses. However, it remains unclear whether the epidemiology or the ecological conditions present in the WCP would enable persistent circulation of AHS in the local zebra populations. Here we developed a hybrid deterministic-stochastic vector-host compartmental model of AHS transmission in plains zebra (Equus quagga), where host populations are age- and sex-structured and for which population and AHS transmission dynamics are modulated by rainfall and temperature conditions. Using this model, we showed that populations of plains zebra present in the WCP are not sufficiently large for AHS introduction events to become endemic and that coastal populations of zebra need to be >2500 individuals for AHS to persist >2 years, even if zebras are infectious for more than 50 days. AHS cannot become endemic in the coastal population of the WCP unless the zebra population involves at least 50,000 individuals. Finally, inland populations of plains zebra in the WCP may represent a risk for AHS to persist but would require populations of at least 500 zebras or show unrealistic duration of infectiousness for AHS introduction events to become endemic. Our results provide evidence that the risk of AHS persistence from a single introduction event in a given plains zebra population in the WCP is extremely low and it is unlikely to represent a long-term source of infection for local horses.
Collapse
Affiliation(s)
- Thibaud Porphyre
- The Roslin Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- * E-mail:
| | - John D. Grewar
- South African Equine Health & Protocols NPC, Paardevlei, Cape Town, South Africa
| |
Collapse
|