1
|
Xu J. Is Natural Population of Candida tropicalis Sexual, Parasexual, and/or Asexual? Front Cell Infect Microbiol 2021; 11:751676. [PMID: 34760719 PMCID: PMC8573272 DOI: 10.3389/fcimb.2021.751676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/12/2021] [Indexed: 01/04/2023] Open
Abstract
Candida tropicalis is one of the most common opportunistic yeast pathogens of humans, especially prevalent in tropical and subtropical regions. This yeast has broad ecological distributions, can be found in both terrestrial and aquatic ecosystems, including being associated with a diversity of trees, animals, and humans. Evolutionary theory predicts that organisms thriving in diverse ecological niches likely have efficient mechanisms to generate genetic diversity in nature. Indeed, abundant genetic variations have been reported in natural populations (both environmental and clinical) of C. tropicalis. However, at present, our understanding on how genetic diversity is generated in natural C. tropicalis population remains controversial. In this paper, I review the current understanding on the potential modes of reproduction in C. tropicalis. I describe expectations of the three modes of reproduction (sexual, parasexual, and asexual) and compare them with the observed genotypic variations in natural populations. Though sexual and parasexual reproduction cannot be excluded, the analyses suggest asexual reproduction alone could explain all the observations reported so far. The results here have implications for understanding the evolution and epidemiology of C. tropicalis and other related human fungal pathogens.
Collapse
Affiliation(s)
- Jianping Xu
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China.,Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
2
|
Samarasinghe H, Lu Y, Aljohani R, Al-Amad A, Yoell H, Xu J. Global patterns in culturable soil yeast diversity. iScience 2021; 24:103098. [PMID: 34622153 PMCID: PMC8479693 DOI: 10.1016/j.isci.2021.103098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/09/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Yeasts, broadly defined as unicellular fungi, fulfill essential roles in soil ecosystems as decomposers and nutrition sources for fellow soil-dwellers. Broad-scale investigations of soil yeasts pose a methodological challenge as metagenomics are of limited use for identifying this group of fungi. Here we characterize global soil yeast diversity using fungal DNA barcoding on 1473 yeasts cultured from 3826 soil samples obtained from nine countries in six continents. We identify mean annual precipitation and international air travel as two significant correlates with soil yeast community structure and composition worldwide. Evidence for anthropogenic influences on soil yeast communities, directly via travel and indirectly via altered rainfall patterns resulting from climate change, is concerning as we found common infectious yeasts frequently distributed in soil in several countries. Our discovery of 41 putative novel species highlights the continued need for culture-based studies to advance our knowledge of environmental yeast diversity. Mean annual rainfall is a positive predictor of global soil yeast diversity International travel predicts number of shared yeast species between countries 41 novel yeast species were discovered from soils in eight countries Continued culture-based studies are needed to investigate soil yeast populations
Collapse
Affiliation(s)
| | - Yi Lu
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Renad Aljohani
- Department of Biology, McMaster University, Hamilton, ON, Canada.,Department of Infectious Diseases, South Kensington Campus, Imperial College London, London, UK
| | - Ahmad Al-Amad
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Heather Yoell
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
3
|
Jackson BR, Chow N, Forsberg K, Litvintseva AP, Lockhart SR, Welsh R, Vallabhaneni S, Chiller T. On the Origins of a Species: What Might Explain the Rise of Candida auris? J Fungi (Basel) 2019; 5:E58. [PMID: 31284576 PMCID: PMC6787658 DOI: 10.3390/jof5030058] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 11/16/2022] Open
Abstract
Candida auris is an emerging multidrug-resistant yeast first described in 2009 that has since caused healthcare-associated outbreaks of severe human infections around the world. In some hospitals, it has become a leading cause of invasive candidiasis. C. auris is markedly different from most other pathogenic Candida species in its genetics, antifungal resistance, and ability to spread between patients. The reasons why this fungus began spreading widely in the last decade remain a mystery. We examine available data on C. auris and related species, including genomic epidemiology, phenotypic characteristics, and sites of detection, to put forth hypotheses on its possible origins. C. auris has not been detected in the natural environment; related species have been detected in in plants, insects, and aquatic environments, as well as from human body sites. It can tolerate hypersaline environments and higher temperatures than most Candida species. We explore hypotheses about the pre-emergence niche of C. auris, whether in the environmental or human microbiome, and speculate on factors that might have led to its spread, including the possible roles of healthcare, antifungal use, and environmental changes, including human activities that might have expanded its presence in the environment or caused increased human contact.
Collapse
Affiliation(s)
- Brendan R Jackson
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne, and Environmental Diseases, Mycotic Diseases Branch, Atlanta, GA 30329, USA.
| | - Nancy Chow
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne, and Environmental Diseases, Mycotic Diseases Branch, Atlanta, GA 30329, USA
| | - Kaitlin Forsberg
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne, and Environmental Diseases, Mycotic Diseases Branch, Atlanta, GA 30329, USA
- IHRC, Inc., Atlanta, GA 30346, USA
| | - Anastasia P Litvintseva
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne, and Environmental Diseases, Mycotic Diseases Branch, Atlanta, GA 30329, USA
| | - Shawn R Lockhart
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne, and Environmental Diseases, Mycotic Diseases Branch, Atlanta, GA 30329, USA
| | - Rory Welsh
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne, and Environmental Diseases, Mycotic Diseases Branch, Atlanta, GA 30329, USA
| | - Snigdha Vallabhaneni
- Centers for Disease Control and Prevention, Division of Healthcare Quality Promotion, Prevention and Response Branch, Atlanta, GA 30329, USA
| | - Tom Chiller
- Centers for Disease Control and Prevention, Division of Foodborne, Waterborne, and Environmental Diseases, Mycotic Diseases Branch, Atlanta, GA 30329, USA
| |
Collapse
|
4
|
Wu JY, Zhou DY, Zhang Y, Mi F, Xu J. Analyses of the Global Multilocus Genotypes of the Human Pathogenic Yeast Candida tropicalis. Front Microbiol 2019; 10:900. [PMID: 31080446 PMCID: PMC6497803 DOI: 10.3389/fmicb.2019.00900] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/09/2019] [Indexed: 12/13/2022] Open
Abstract
Candida tropicalis is a globally distributed human pathogenic yeast, especially prevalent in tropical and sub-tropical regions. Over the last several decades, a large number of studies have been published on the genetic diversity and molecular epidemiology of C. tropicalis from different parts of the world. However, the global pattern of genetic variation remains largely unknown. Here we analyzed the published multilocus sequence data at six loci for 876 isolates from 16 countries representing five continents. Our results showed that 280 of the 2677 (10.5%) analyzed nucleotides were polymorphic, resulting in a mean of 82 (a range of 38–150) genotypes per locus and a total of 633 combined diploid sequence types (DSTs). Among these, 93 combined DSTs were shared by 336 strains, including 10 by strains from different continents. Analysis of Molecular Variance (AMOVA) showed that 89% of the observed genetic variations were found within regional and national populations while < 10% was due to among-country separations. Pairwise geographic population analyses showed overall low but statistically significant genetic differentiation between most geographic populations, with the Singaporean and Indian populations being the most distinct from other populations. However, the Mantel test showed no significant correlation between genetic distance and geographic distance among the geographic populations. Consistent with high genetic variation within and limited variations among geographic populations, results from STRUCTURE analyses showed that the 876 isolates could be grouped into 15 genetic clusters, with each cluster having a broad geographic distribution. Together, our results suggest frequent gene flows among certain regional, national, and continental populations of C. tropicalis, resulting in abundant regional and national genetic diversities of this important human fungal pathogen.
Collapse
Affiliation(s)
- Jin-Yan Wu
- Public Research Laboratory, Hainan Medical University, Haikou, China.,Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Duan-Yong Zhou
- Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Ying Zhang
- Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Fei Mi
- Research Institute of Nutrition and Food Science, Kunming Medical University, Kunming, China
| | - Jianping Xu
- Public Research Laboratory, Hainan Medical University, Haikou, China.,Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China.,Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
5
|
Bensasson D, Dicks J, Ludwig JM, Bond CJ, Elliston A, Roberts IN, James SA. Diverse Lineages of Candida albicans Live on Old Oaks. Genetics 2019; 211:277-288. [PMID: 30463870 PMCID: PMC6325710 DOI: 10.1534/genetics.118.301482] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/05/2018] [Indexed: 12/26/2022] Open
Abstract
The human pathogen Candida albicans is considered an obligate commensal of animals, yet it is occasionally isolated from trees, shrubs, and grass. We generated genome sequence data for three strains of C. albicans that we isolated from oak trees in an ancient wood pasture, and compared these to the genomes of over 200 clinical strains. C. albicans strains from oak are similar to clinical C. albicans in that they are predominantly diploid and can become homozygous at the mating locus through whole-chromosome loss of heterozygosity. Oak strains differed from clinical strains in showing slightly higher levels of heterozygosity genome-wide. Using phylogenomic analyses and in silico chromosome painting, we show that each oak strain is more closely related to strains from humans and other animals than to strains from other oaks. The high genetic diversity of C. albicans from old oaks shows that they can live in this environment for extended periods of time.
Collapse
Affiliation(s)
- Douda Bensasson
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
- Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602
| | - Jo Dicks
- National Collection of Yeast Cultures, Quadram Institute Bioscience, Norwich NR4 7UA, UK
| | - John M Ludwig
- Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602
| | - Christopher J Bond
- National Collection of Yeast Cultures, Quadram Institute Bioscience, Norwich NR4 7UA, UK
| | - Adam Elliston
- National Collection of Yeast Cultures, Quadram Institute Bioscience, Norwich NR4 7UA, UK
| | - Ian N Roberts
- National Collection of Yeast Cultures, Quadram Institute Bioscience, Norwich NR4 7UA, UK
| | - Stephen A James
- National Collection of Yeast Cultures, Quadram Institute Bioscience, Norwich NR4 7UA, UK
| |
Collapse
|
6
|
Illnait-Zaragozi MT, Martínez-Machín GF, Fernández-Andreu CM, Perurena-Lancha MR, Hagen F, Meis JF. Cryptococcus and Cryptococcosis in Cuba. A minireview. Mycoses 2014; 57:707-17. [DOI: 10.1111/myc.12275] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 10/27/2014] [Indexed: 12/12/2022]
Affiliation(s)
| | | | | | | | - Ferry Hagen
- Department of Medical Microbiology and Infectious Diseases; Canisius-Wilhelmina Hospital; Nijmegen The Netherlands
| | - Jacques F. Meis
- Department of Medical Microbiology and Infectious Diseases; Canisius-Wilhelmina Hospital; Nijmegen The Netherlands
- Department of Medical Microbiology; Radboud University Medical Center; Nijmegen The Netherlands
| |
Collapse
|