1
|
Andrade-Pavón D, Gómez-García O, Villa-Tanaca L. Review and Current Perspectives on DNA Topoisomerase I and II Enzymes of Fungi as Study Models for the Development of New Antifungal Drugs. J Fungi (Basel) 2024; 10:629. [PMID: 39330389 PMCID: PMC11432948 DOI: 10.3390/jof10090629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Fungal infections represent a growing public health problem, mainly stemming from two phenomena. Firstly, certain diseases (e.g., AIDS and COVID-19) have emerged that weaken the immune system, leaving patients susceptible to opportunistic pathogens. Secondly, an increasing number of pathogenic fungi are developing multi-drug resistance. Consequently, there is a need for new antifungal drugs with novel therapeutic targets, such as type I and II DNA topoisomerase enzymes of fungal organisms. This contribution summarizes the available information in the literature on the biology, topology, structural characteristics, and genes of topoisomerase (Topo) I and II enzymes in humans, two other mammals, and 29 fungi (including Basidiomycetes and Ascomycetes). The evidence of these enzymes as alternative targets for antifungal therapy is presented, as is a broad spectrum of Topo I and II inhibitors. Research has revealed the genes responsible for encoding the Topo I and II enzymes of fungal organisms and the amino acid residues and nucleotide residues at the active sites of the enzymes that are involved in the binding mode of topoisomerase inhibitors. Such residues are highly conserved. According to molecular docking studies, antifungal Topo I and II inhibitors have good affinity for the active site of the respective enzymes. The evidence presented in the current review supports the proposal of the suitability of Topo I and II enzymes as molecular targets for new antifungal drugs, which may be used in the future in combined therapies for the treatment of infections caused by fungal organisms.
Collapse
Affiliation(s)
- Dulce Andrade-Pavón
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala. Col. Sto. Tomás, Ciudad de México 11340, Mexico;
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Nueva Industrial Vallejo, Gustavo A. Madero, Ciudad de México 07738, Mexico
| | - Omar Gómez-García
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala. Col. Sto. Tomás, Ciudad de México 11340, Mexico
| | - Lourdes Villa-Tanaca
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala. Col. Sto. Tomás, Ciudad de México 11340, Mexico;
| |
Collapse
|
2
|
Kabtani J, Ranque S. A Comparative Description of Dermatophyte Genomes: A State-of-the-Art Review. Mycopathologia 2023; 188:1007-1025. [PMID: 37812320 DOI: 10.1007/s11046-023-00802-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023]
Abstract
The nomenclature and phylogeny of dermatophytes is currently based on the nucleotide sequence polymorphisms of a few genomic regions. However, the limitations of this multilocus sequence-based approach makes dermatophyte species identification difficult. Variation and adaptation are key to the persistence of species. Nevertheless, this heterogeneity poses a genuine problem for the classification and nomenclature of dermatophytes. The relatively high intra-species and low inter-species polymorphisms of this keratinophilic group of fungi hampers both species delineation and identification. Establishing the taxonomic boundaries of dermatophyte species complexes remains controversial. Furthermore, until recently, knowledge of molecular biology, genetics and genomics remained limited. This systematic review highlights the added value of whole genome sequencing and analysis data in dermatophyte classification that might enhance identification and, consequently, the diagnosis and management of dermatophytoses. Our approach consisted in describing and comparing the dermatophyte mitochondrial genomes, secretomes (Adhesins, LysM domains, proteases) and metabolic pathways, with the aim to provide new insights and a better understanding of the phylogeny and evolution of dermatophytes.
Collapse
Affiliation(s)
- J Kabtani
- IHU Méditerranée Infection, 13005, Marseille, France
| | - S Ranque
- IHU Méditerranée Infection, 13005, Marseille, France.
- AP-HM, IRD, SSA, VITROME, Aix-Marseille Université, 13005, Marseille, France.
| |
Collapse
|
3
|
Zhou X, Ahmed SA, Tang C, Grisolia ME, Warth JFG, Webster K, Peano A, Uhrlass S, Cafarchia C, Hayette MP, Sacheli R, Matos T, Kang Y, de Hoog GS, Feng P. Human adaptation and diversification in the Microsporum canis complex. IMA Fungus 2023; 14:14. [PMID: 37488659 PMCID: PMC10367411 DOI: 10.1186/s43008-023-00120-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 06/26/2023] [Indexed: 07/26/2023] Open
Abstract
The Microsporum canis complex consists of one zoophilic species, M. canis, and two anthropophilic species, M. audouinii and M. ferrugineum. These species are the most widespread zoonotic pathogens causing dermatophytosis in cats and humans worldwide. To clarify the evolutionary relationship between the three species and explore the potential host shift process, this study used phylogenetic analysis, population structure analysis, multispecies coalescent analyses, determination of MAT idiomorph distribution, sexual crosses, and macromorphology and physicochemical features to address the above questions. The complex of Microsporum canis, M. audouinii and M. ferrugineum comprises 12 genotypes. MAT1-1 was present only in M. canis, while the anthropophilic entities contained MAT1-2. The pseudocleistothecia were yielded by the mating behaviour of M. canis and M. audouinii. Growth rates and lipase, keratinolysis and urea hydrolytic capacities of zoophilic M. canis isolates were all higher than those of anthropophilic strains; DNase activity of M. ferrugineum exceeded that of M. canis. The optimum growth temperature was 28 °C, but 22 °C favoured the development of macroconidia. Molecular data, physicochemical properties and phenotypes suggest the adaptation of zoophilic M. canis to anthropophilic M. ferrugineum, with M. audouinii in an intermediate position.
Collapse
Affiliation(s)
- Xin Zhou
- Center of Expertise in Mycology of Radboud University Medical Center, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Department of Dermatology, 3rd Affiliated Hospital, Sun Yat-senen University, Guangzhou, China
| | - Sarah A Ahmed
- Center of Expertise in Mycology of Radboud University Medical Center, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Foundation Atlas of Clinical Fungi, Hilversum, The Netherlands
| | - Chao Tang
- Center of Expertise in Mycology of Radboud University Medical Center, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Maria Eduarda Grisolia
- Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| | | | - Kristen Webster
- Department of Dermatology, Center for Medical Mycology, University Hospitals, Cleveland, USA
| | - Andrea Peano
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Silke Uhrlass
- Labor für Medizinische Mikrobiologie Nenoff / Krüger, Mölbis, Germany
| | - Claudia Cafarchia
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Marie Pierre Hayette
- Belgian National Reference Center, Clinical Microbiology, University Hospital of Liege, Liege, Belgium
| | - Rosalie Sacheli
- Belgian National Reference Center, Clinical Microbiology, University Hospital of Liege, Liege, Belgium
| | - Tadeja Matos
- Medical Faculty, Institute of Microbiology and Immunology, University of Ljubljana, Ljubljana, Slovenia
| | - Yingqian Kang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Guizhou Talent Base for Microbiology and Human Health, School of Basic Medical Sciences, Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, China.
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China.
| | - G Sybren de Hoog
- Center of Expertise in Mycology of Radboud University Medical Center, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands.
- Foundation Atlas of Clinical Fungi, Hilversum, The Netherlands.
- Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil.
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Guizhou Talent Base for Microbiology and Human Health, School of Basic Medical Sciences, Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, China.
| | - Peiying Feng
- Department of Dermatology, 3rd Affiliated Hospital, Sun Yat-senen University, Guangzhou, China.
| |
Collapse
|
4
|
Rudramurthy SM, Shaw D, Shankarnarayan SA, Dogra S. Comprehensive Taxonomical Analysis of Trichophyton mentagrophytes/interdigitale Complex of Human and Animal Origin from India. J Fungi (Basel) 2023; 9:jof9050577. [PMID: 37233288 DOI: 10.3390/jof9050577] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Taxonomic delineation of etiologic agents responsible for recalcitrant dermatophytosis causing an epidemic in India is still debated. The organism responsible for this epidemic is designated as T. indotineae, a clonal offshoot of T. mentagrophytes. To evaluate the real identity of the agent causing this epidemic, we performed a multigene sequence analysis of Trichophyton species isolated from human and animal origin. We included Trichophyton species isolated from 213 human and six animal hosts. Internal transcribed spacer (ITS) (n = 219), translational elongation factors (TEF 1-α) (n = 40), ß-tubulin (BT) (n = 40), large ribosomal subunit (LSU) (n = 34), calmodulin (CAL) (n = 29), high mobility group (HMG) transcription factor gene (n = 17) and α-box gene (n = 17) were sequenced. Our sequences were compared with Trichophyton mentagrophytes species complex sequences in the NCBI database. Except for one isolate (ITS genotype III) from animal origin, all the tested genes grouped our isolates and belonged to the "Indian ITS genotype", currently labeled as T. indotineae. ITS and TEF 1-α were more congruent compared to other genes. In this study, for the first time, we isolated the T mentagrophytes ITS Type VIII from animal origin, suggesting the role of zoonotic transmission in the ongoing epidemic. Isolation of T. mentagrophytes type III only from animal indicates its niche among animals. Outdated/inaccurate naming for these dermatophytes in the public database has created confusion in using appropriate species designation.
Collapse
Affiliation(s)
- Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Dipika Shaw
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | | | - Sunil Dogra
- Department of Dermatology, Venerology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
5
|
Batvandi A, Pchelin IM, Kiasat N, Kharazi M, Mohammadi R, Zomorodian K, Rezaei‐Matehkolaei A. Time and Cost‐efficient Identification of
Trichophyton indotineae. Mycoses 2022; 66:75-81. [DOI: 10.1111/myc.13530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Abolfazl Batvandi
- Cellular and Molecular Research Center Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
- Department of Medical Mycology School of Medicine, Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | - Ivan M. Pchelin
- Laboratory of Innovative Methods in Microbiological Monitoring Research Centre for Personalized Medicine, Institute of Experimental Medicine Saint Petersburg Russia
| | - Neda Kiasat
- Cellular and Molecular Research Center Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
- Department of Medical Mycology School of Medicine, Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | - Mahboobeh Kharazi
- Department of Parasitology and Mycology School of Medicine, Shiraz University of Medical Sciences Shiraz Iran
| | - Rasoul Mohammadi
- Department of Medical Parasitology and Mycology School of Medicine, Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences Isfahan Iran
| | - Kamiar Zomorodian
- Department of Parasitology and Mycology School of Medicine, Shiraz University of Medical Sciences Shiraz Iran
| | - Ali Rezaei‐Matehkolaei
- Cellular and Molecular Research Center Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
- Department of Medical Mycology School of Medicine, Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| |
Collapse
|
6
|
Verma SB, Panda S, Nenoff P, Singal A, Rudramurthy SM, Uhrlass S, Das A, Bisherwal K, Shaw D, Vasani R. The unprecedented epidemic-like scenario of dermatophytosis in India: II. Diagnostic methods and taxonomical aspects. Indian J Dermatol Venereol Leprol 2021; 87:326-332. [PMID: 33871195 DOI: 10.25259/ijdvl_302_20] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 12/01/2020] [Indexed: 11/04/2022]
Abstract
Trichophyton (T.) mentagrophytes now accounts for an overwhelming majority of clinical cases in India, a new "Indian genotype" (T. mentagrophytes ITS genotype VIII) having been isolated from skin samples obtained from cases across a wide geographical distribution in this country. The conventional diagnostic methods, like fungal culture, are, however, inadequate for diagnosing this agent. Thus, molecular methods of diagnosis are necessary for proper characterization of the causative agent. The shift in the predominant agent of dermatophytosis from T. rubrum to T. mentagrophytes, within a relatively short span of time, is without historic parallel. The apparent ease of transmission of a zoophilic fungus among human hosts can also be explained by means of mycological phenomena, like anthropization.
Collapse
Affiliation(s)
| | - Saumya Panda
- Department of Dermatology, Belle Vue Clinic, Kolkata, West Bengal, India
| | - Pietro Nenoff
- Department of Dermatology and Laboratory Medicine, Laboratory of Medical Microbiology, Moelbis, Germany
| | - Archana Singal
- Department of Dermatology and STD, University College of Medical Sciences and GTB Hospital, Delhi, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Silke Uhrlass
- Department of Dermatology and Laboratory Medicine, Laboratory of Medical Microbiology, Moelbis, Germany
| | - Anupam Das
- Department of Dermatology, KPC Medical College and Hospital, Kolkata, West Bengal, India
| | - Kavita Bisherwal
- Department of Dermatology, Venereology and Leprosy, Lady Harding Medical College and SSK Hospital, Delhi, India
| | - Dipika Shaw
- Department of Medical Microbiology, PGI, Chandigarh, India
| | - Resham Vasani
- Department of Dermatology, Bhojani Clinic, Mumbai, Maharashtra, India
| |
Collapse
|
7
|
Spread of Terbinafine-Resistant Trichophyton mentagrophytes Type VIII (India) in Germany-"The Tip of the Iceberg?". J Fungi (Basel) 2020; 6:jof6040207. [PMID: 33027904 PMCID: PMC7712673 DOI: 10.3390/jof6040207] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic recalcitrant dermatophytoses, due to Trichophyton (T.) mentagrophytes Type VIII are on the rise in India and are noteworthy for their predominance. It would not be wrong to assume that travel and migration would be responsible for the spread of T. mentagrophytes Type VIII from India, with many strains resistant to terbinafine, to other parts of the world. From September 2016 until March 2020, a total of 29 strains of T. mentagrophytes Type VIII (India) were isolated. All patients were residents of Germany: 12 females, 15 males and the gender of the remaining two was not assignable. Patients originated from India (11), Pakistan (two), Bangladesh (one), Iraq (two), Bahrain (one), Libya (one) and other unspecified countries (10). At least two patients were German-born residents. Most samples (21) were collected in 2019 and 2020. All 29 T. mentagrophytes isolates were sequenced (internal transcribed spacer (ITS) and translation elongation factor 1-α gene (TEF1-α)). All were identified as genotype VIII (India) of T. mentagrophytes. In vitro resistance testing revealed 13/29 strains (45%) to be terbinafine-resistant with minimum inhibitory concentration (MIC) breakpoints ≥0.2 µg/mL. The remaining 16 strains (55%) were terbinafine-sensitive. Point mutation analysis revealed that 10/13 resistant strains exhibited Phe397Leu amino acid substitution of squalene epoxidase (SQLE), indicative for in vitro resistance to terbinafine. Two resistant strains showed combined Phe397Leu and Ala448Thr amino acid substitutions, and one strain a single Leu393Phe amino acid substitution. Out of 16 terbinafine-sensitive strains, in eight Ala448Thr, and in one Ala448Thr +, new Val444 Ile amino acid substitutions were detected. Resistance to both itraconazole and voriconazole was observed in three out of 13 analyzed strains. Treatment included topical ciclopirox olamine plus topical miconazole or sertaconazole. Oral itraconazole 200 mg twice daily for four to eight weeks was found to be adequate. Terbinafine-resistant T. mentagrophytes Type VIII are being increasingly isolated. In Germany, transmission of T. mentagrophytes Type VIII from the Indian subcontinent to Europe should be viewed as a significant public health issue.
Collapse
|