1
|
Pavan E, Peruzzo P, Cattarossi S, Bergamin N, Bordugo A, Sechi A, Scarpa M, Biasizzo J, Colucci F, Dardis A. Deficiency of Glucocerebrosidase Activity beyond Gaucher Disease: PSAP and LIMP-2 Dysfunctions. Int J Mol Sci 2024; 25:6615. [PMID: 38928321 PMCID: PMC11204053 DOI: 10.3390/ijms25126615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Glucocerebrosidase (GCase) is a lysosomal enzyme that catalyzes the breakdown of glucosylceramide in the presence of its activator saposin C (SapC). SapC arises from the proteolytical cleavage of prosaposin (encoded by PSAP gene), which gives rise to four saposins. GCase is targeted to the lysosomes by LIMP-2, encoded by SCARB2 gene. GCase deficiency causes Gaucher Disease (GD), which is mainly due to biallelic pathogenetic variants in the GCase-encoding gene, GBA1. However, impairment of GCase activity can be rarely caused by SapC or LIMP-2 deficiencies. We report a new case of LIMP-2 deficiency and a new case of SapC deficiency (missing all four saposins, PSAP deficiency), and measured common biomarkers of GD and GCase activity. Glucosylsphingosine and chitotriosidase activity in plasma were increased in GCase deficiencies caused by PSAP and GBA1 mutations, whereas SCARB2-linked deficiency showed only Glucosylsphingosine elevation. GCase activity was reduced in fibroblasts and leukocytes: the decrease was sharper in GBA1- and SCARB2-mutant fibroblasts than PSAP-mutant ones; LIMP-2-deficient leukocytes displayed higher residual GCase activity than GBA1-mutant ones. Finally, we demonstrated that GCase mainly undergoes proteasomal degradation in LIMP-2-deficient fibroblasts and lysosomal degradation in PSAP-deficient fibroblasts. Thus, we analyzed the differential biochemical profile of GCase deficiencies due to the ultra-rare PSAP and SCARB2 biallelic pathogenic variants in comparison with the profile observed in GBA1-linked GCase deficiency.
Collapse
Affiliation(s)
- Eleonora Pavan
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (P.P.); (S.C.); (N.B.); (A.B.); (A.S.)
| | - Paolo Peruzzo
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (P.P.); (S.C.); (N.B.); (A.B.); (A.S.)
| | - Silvia Cattarossi
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (P.P.); (S.C.); (N.B.); (A.B.); (A.S.)
| | - Natascha Bergamin
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (P.P.); (S.C.); (N.B.); (A.B.); (A.S.)
| | - Andrea Bordugo
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (P.P.); (S.C.); (N.B.); (A.B.); (A.S.)
| | - Annalisa Sechi
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (P.P.); (S.C.); (N.B.); (A.B.); (A.S.)
| | - Maurizio Scarpa
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (P.P.); (S.C.); (N.B.); (A.B.); (A.S.)
| | - Jessica Biasizzo
- Clinical Pathology Division, Department of Laboratory Medicine, University Hospital Friuli Centrale ASUFC, 33100 Udine, Italy;
| | - Fabiana Colucci
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| | - Andrea Dardis
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (P.P.); (S.C.); (N.B.); (A.B.); (A.S.)
| |
Collapse
|
2
|
Erdoğan S, Yalçın Çakmaklı G, Elibol B, Ceylaner S, Akbostancı MC. Could miglustat be a potential candidate in the treatment of action myoclonus renal failure syndrome? Acta Neurol Belg 2023; 123:2441-2444. [PMID: 37119471 DOI: 10.1007/s13760-023-02269-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/05/2023] [Indexed: 05/01/2023]
Affiliation(s)
- Seyda Erdoğan
- Department of Neurology, School of Medicine, Ankara University, Ibn-I SinaHospital, 06100, Ankara, Turkey.
| | - Gül Yalçın Çakmaklı
- Department of Neurology, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Bülent Elibol
- Department of Neurology, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Serdar Ceylaner
- Intergen Genetic Diagnosis, Research and Education Center, Ankara, Turkey
| | - M Cenk Akbostancı
- Department of Neurology, School of Medicine, Ankara University, Ibn-I SinaHospital, 06100, Ankara, Turkey
| |
Collapse
|
3
|
Bernardi S, Gemignani F, Marchese M. The involvement of Purkinje cells in progressive myoclonic epilepsy: Focus on neuronal ceroid lipofuscinosis. Neurobiol Dis 2023; 185:106258. [PMID: 37573956 PMCID: PMC10480493 DOI: 10.1016/j.nbd.2023.106258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023] Open
Abstract
The progressive myoclonic epilepsies (PMEs) are a group of rare neurodegenerative diseases characterized by myoclonus, epileptic seizures, and progressive neurological deterioration with cerebellar involvement. They include storage diseases like Gaucher disease, Lafora disease, and forms of neuronal ceroid lipofuscinosis (NCL). To date, 13 NCLs have been reported (CLN1-CLN8, CLN10-CLN14), associated with mutations in different genes. These forms, which affect both children and adults, are characterized by seizures, cognitive and motor impairments, and in most cases visual loss. In NCLs, as in other PMEs, central nervous system (CNS) neurodegeneration is widespread and involves different subpopulations of neurons. One of the most affected regions is the cerebellar cortex, where motor and non-motor information is processed and transmitted to deep cerebellar nuclei through the axons of Purkinje cells (PCs). PCs, being GABAergic, have an inhibitory effect on their target neurons, and provide the only inhibitory output of the cerebellum. Degeneration of PCs has been linked to motor impairments and epileptic seizures. Seizures occur when some insult upsets the normal balance in the CNS between excitatory and inhibitory impulses, causing hyperexcitability. Here we review the role of PCs in epilepsy onset and progression following their PME-related loss. In particular, we focus on the involvement of PCs in seizure phenotype in NCLs, highlighting findings from case reports and studies of animal models in which epilepsy can be linked to PC loss.
Collapse
Affiliation(s)
- Sara Bernardi
- Department Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy; Department of Biology, University of Pisa, Pisa, Italy
| | | | - Maria Marchese
- Department Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy.
| |
Collapse
|
4
|
Atasu B, Acarlı ANO, Bilgic B, Baykan B, Demir E, Ozluk Y, Turkmen A, Hauser AK, Guven G, Hanagasi H, Gurvit H, Emre M, Gasser T, Lohmann E. Genotype-Phenotype correlations of SCARB2 associated clinical presentation: a case report and in-depth literature review. BMC Neurol 2022; 22:122. [PMID: 35346091 PMCID: PMC8962058 DOI: 10.1186/s12883-022-02628-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/09/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Biallelic pathogenic variants in the SCARB2 gene have been associated with action myoclonus-renal failure (AMRF) syndrome. Even though SCARB2 associated phenotype has been reported to include typical neurological characteristics, depending on the localization and the feature of the pathogenic variants, clinical course and the presentations have been shown to differ. CASE PRESENTATION Whole exome sequencing (WES) analysis revealed a homozygous truncating variant (p.N45MfsX88) in SCARB2 gene in the index case, and subsequent sanger sequencing analysis validated the variant in all affected family members from a Turkish family with the clinical characteristics associated with AMRF and related disorders. Intrafamilial clinical heterogeneity with common features including dysarthria, tremor and proteinuria, and distinct features such as peripheral neuropathy (PNP), myoclonus and seizures between the affected cases, was observed in the family. In-depth literature review enabled the detailed investigation of the reported variants associated with AMRF and suggested that while the type of the variant did not have a major impact on the course of the clinical characteristics, only the C terminal localization of the pathogenic variant significantly affected the clinical presentation, particularly the age at onset (AO) of the disease. CONCLUSIONS In this study we showed that biallelic SCARB2 pathogenic variants might cause a spectrum of common and distinct features associated with AMRF. Of those features while the common features include myoclonus (100%), ataxia (96%), tonic clonic seizures (82%), dysarthria (68%), tremor (65%), and renal impairment (62%), the uncommon features involve PNP (17%), hearing loss (6.8%), and cognitive impairment (13.7%). AO has been found to be significantly higher in the carriers of the p.G462DfsX34 pathogenic variant. SCARB2 pathogenic variants have not been only implicated in AMRF but also in the pathogenesis of Parkinson's disease (PD) and Gaucher disease (GD), suggesting the importance of genetic and functional studies in the clinical and the diagnostic settings. Given the proven role of SCARB2 gene in the pathogenesis of AMRF, PD and GD with a wide spectrum of clinical symptoms, investigation of the possible modifiers, such as progranulin and HSP7, has a great importance.
Collapse
Affiliation(s)
- Burcu Atasu
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany.
| | - Ayse Nur Ozdag Acarlı
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Basar Bilgic
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Betül Baykan
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Erol Demir
- Division of Nephrology, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Yasemin Ozluk
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Aydin Turkmen
- Division of Nephrology, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
- Division of Nephrology, Department of Internal Medicine, Koc School of Medicine, Koc University, Istanbul, Turkey
| | - Ann-Kathrin Hauser
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany
| | - Gamze Guven
- Institute for Experimental Medicine, Genetics Department, Istanbul University, Istanbul, Turkey
| | - Hasmet Hanagasi
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Hakan Gurvit
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Murat Emre
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Thomas Gasser
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany
| | - Ebba Lohmann
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Yari A, Ali-Nejad RM, Saleh-Gohari N. A novel homozygous splice-site mutation in SCARB2 is associated with progressive myoclonic epilepsy with renal failure. Neurol Sci 2021; 42:5077-5085. [PMID: 33772352 DOI: 10.1007/s10072-021-05196-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/16/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Progressive myoclonic epilepsy-4 with or without renal failure (EPM4) is a rare neurological autosomal recessive disorder caused by mutations in SCARB2 gene. In this study, we described clinical features and genetic causes of an Iranian family with two affected individuals whose clinical manifestations closely resembled progressive myoclonus epilepsy. METHODS Our proband was a 38-year-old male with a history of tremor, generalized seizures, action myoclonus, ataxia, and dysarthria that presumptive diagnosed as progressive myoclonus epilepsy. His older sister has the same symptoms. Whole-exome sequencing of DNA sample from the proband was performed. Candidate variant and cosegregation were confirmed by direct sequencing. Functional prediction of candidate variant was performed using appropriate prediction tools. RESULTS Genetic analysis identified a homozygous splicing c.423+1 G>A variant in the SCARB2 gene of the proband and his affected sister. Segregation study identified heterozygous state in four unaffected family members (parents and two children). The variant is localized at the first nucleotide of intron 3 and was not detected among in-house healthy controls. This variant was not reported in genetic databases and predicted to potentially alter the 5' donor splice site and disease causing using online prediction tools. It was classified as a likely pathogenic variant according to ACMG standards and guidelines. CONCLUSION This is the first report that demonstrates c.423+1 G>A variant in the SCARB2 gene segregating with the phenotype of EPM4 in a consanguineous Iranian family.
Collapse
Affiliation(s)
- Abolfazl Yari
- Department of Medical Genetics, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, 7616914115, Iran
- Student Research Committee, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Molla Ali-Nejad
- Department of Medical Genetics, Faculty of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Nasrollah Saleh-Gohari
- Department of Medical Genetics, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, 7616914115, Iran.
| |
Collapse
|
6
|
Abstract
The presence of unprovoked, recurrent seizures, particularly when drug resistant and associated with cognitive and behavioral deficits, warrants investigation for an underlying genetic cause. This article provides an overview of the major classes of genes associated with epilepsy phenotypes divided into functional categories along with the recommended work-up and therapeutic considerations. Gene discovery in epilepsy supports counseling and anticipatory guidance but also opens the door for precision medicine guiding therapy with a focus on those with disease-modifying effects.
Collapse
Affiliation(s)
- Luis A Martinez
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Drive, Houston, TX 77030, USA
| | - Yi-Chen Lai
- Department of Pediatrics, Section of Pediatric Critical Care Medicine, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Drive, Houston, TX 77030, USA
| | - J Lloyd Holder
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Drive, Houston, TX 77030, USA
| | - Anne E Anderson
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Drive, Houston, TX 77030, USA.
| |
Collapse
|
7
|
Rossi M, van der Veen S, Merello M, Tijssen MAJ, van de Warrenburg B. Myoclonus-Ataxia Syndromes: A Diagnostic Approach. Mov Disord Clin Pract 2020; 8:9-24. [PMID: 33426154 DOI: 10.1002/mdc3.13106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/30/2020] [Accepted: 10/14/2020] [Indexed: 12/30/2022] Open
Abstract
Background A myriad of disorders combine myoclonus and ataxia. Most causes are genetic and an increasing number of genes are being associated with myoclonus-ataxia syndromes (MAS), due to recent advances in genetic techniques. A proper etiologic diagnosis of MAS is clinically relevant, given the consequences for genetic counseling, treatment, and prognosis. Objectives To review the causes of MAS and to propose a diagnostic algorithm. Methods A comprehensive and structured literature search following PRISMA criteria was conducted to identify those disorders that may combine myoclonus with ataxia. Results A total of 135 causes of combined myoclonus and ataxia were identified, of which 30 were charted as the main causes of MAS. These include four acquired entities: opsoclonus-myoclonus-ataxia syndrome, celiac disease, multiple system atrophy, and sporadic prion diseases. The distinction between progressive myoclonus epilepsy and progressive myoclonus ataxia poses one of the main diagnostic dilemmas. Conclusions Diagnostic algorithms for pediatric and adult patients, based on clinical manifestations including epilepsy, are proposed to guide the differential diagnosis and corresponding work-up of the most important and frequent causes of MAS. A list of genes associated with MAS to guide genetic testing strategies is provided. Priority should be given to diagnose or exclude acquired or treatable disorders.
Collapse
Affiliation(s)
- Malco Rossi
- Movement Disorders Section Neuroscience Department Buenos Aires Argentina.,Argentine National Scientific and Technological Research Council (CONICET) Buenos Aires Argentina
| | - Sterre van der Veen
- Pontificia Universidad Católica Argentina (UCA) Buenos Aires Argentina.,Department of Neurology University of Groningen, University Medical Center Groningen Groningen The Netherlands
| | - Marcelo Merello
- Movement Disorders Section Neuroscience Department Buenos Aires Argentina.,Argentine National Scientific and Technological Research Council (CONICET) Buenos Aires Argentina.,Pontificia Universidad Católica Argentina (UCA) Buenos Aires Argentina
| | - Marina A J Tijssen
- Department of Neurology University of Groningen, University Medical Center Groningen Groningen The Netherlands.,Expertise Center Movement Disorders Groningen University Medical Center Groningen (UMCG) Groningen The Netherlands
| | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition & Behaviour Radboud University Medical Center Nijmegen The Netherlands
| |
Collapse
|
8
|
Bhowmick SS, Lang AE. Movement Disorders and Renal Diseases. Mov Disord Clin Pract 2020; 7:763-779. [PMID: 33043074 DOI: 10.1002/mdc3.13005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
Movement disorders often emerge from the interplay of complex pathophysiological processes involving the kidneys and the nervous system. Tremor, myoclonus, ataxia, chorea, and parkinsonism can occur in the context of renal dysfunction (azotemia and electrolyte abnormalities) or they can be part of complications of its management (dialysis and renal transplantation). On the other hand, myoglobinuria from rhabdomyolysis in status dystonicus and certain drugs used in the management of movement disorders can cause nephrotoxicity. Distinct from these well-recognized associations, it is important to appreciate that there are several inherited and acquired disorders in which movement abnormalities do not occur as a consequence of renal dysfunction or vice versa but are manifestations of common pathophysiological processes affecting the nervous system and the kidneys. These disorders are the emphasis of this review. Increasing awareness of these conditions among neurologists may help them to identify renal involvement earlier, take timely intervention by anticipating complications and focus on therapies targeting common mechanisms in addition to symptomatic management of movement disorders. Recognition of renal impairment in a patient with complex neurological presentation may narrow down the differentials and aid in reaching a definite diagnosis.
Collapse
Affiliation(s)
- Suvorit S Bhowmick
- Division of Neurology, Department of Medicine, Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital University Health Network Toronto Ontario Canada
| | - Anthony E Lang
- Division of Neurology, Department of Medicine, Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital University Health Network Toronto Ontario Canada
| |
Collapse
|
9
|
The best evidence for progressive myoclonic epilepsy: A pathway to precision therapy. Seizure 2019; 71:247-257. [PMID: 31476531 DOI: 10.1016/j.seizure.2019.08.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022] Open
Abstract
Progressive Myoclonus Epilepsies (PMEs) are a group of uncommon clinically and genetically heterogeneous disorders characterised by myoclonus, generalized epilepsy, and neurological deterioration, including dementia and ataxia. PMEs may have infancy, childhood, juvenile or adult onset, but usually present in late childhood or adolescence, at variance from epileptic encephalopathies, which start with polymorphic seizures in early infancy. Neurophysiologic recordings are suited to describe faithfully the time course of the shock-like muscle contractions which characterize myoclonus. A combination of positive and negative myoclonus is typical of PMEs. The gene defects for most PMEs (Unverricht-Lundborg disease, Lafora disease, several forms of neuronal ceroid lipofuscinoses, myoclonus epilepsy with ragged-red fibers [MERRF], and type 1 and 2 sialidoses) have been identified. PMEs are uncommon disorders, difficult to diagnose in the absence of extensive experience. Thus, aetiology is undetermined in many patients, despite the advance in molecular medicine. Treatment of PMEs remains essentially symptomaticof seizures and myoclonus, together with palliative, supportive, and rehabilitative measures. The response to therapy may initially be relatively favourable, afterwards however, seizures may become more frequent, and progressive neurologic decline occurs. The prognosis of a PME depends on the specific disease. The history of PMEs revealed that the international collaboration and sharing experience is the right way to proceed. This emerging picture and biological insights will allow us to find ways to provide the patients with meaningful treatment.
Collapse
|
10
|
He J, Lin H, Li JJ, Su HZ, Wang DN, Lin Y, Wang N, Chen WJ. Identification of a Novel Homozygous Splice-Site Mutation in SCARB2 that Causes Progressive Myoclonus Epilepsy with or without Renal Failure. Chin Med J (Engl) 2018; 131:1575-1583. [PMID: 29941711 PMCID: PMC6032684 DOI: 10.4103/0366-6999.235113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Progressive myoclonus epilepsies (PMEs) comprise a group of rare genetic disorders characterized by action myoclonus, epileptic seizures, and ataxia with progressive neurologic decline. Due to clinical and genetic heterogeneity of PMEs, it is difficult to decide which genes are affected. The aim of this study was to report an action myoclonus with or without renal failure syndrome (EPM4) family and summarize the clinical and genetic characteristics of all reported EPM4 patients. METHODS In the present study, targeted next-generation sequencing (NGS) was applied to screen causative genes in a Chinese PME family. The candidate variant was further confirmed by cosegregation analysis and further functional analysis, including the reverse transcription polymerase chain reaction and Western blot of the proband's muscle. Moreover, literature data on the clinical and mutational features of all reported EPM4 patients were reviewed. RESULTS The gene analysis revealed a novel homozygous splicing mutation (c.995-1G>A) of the SCARB2 gene in two brothers. Further functional analysis revealed that this mutation led to loss function of the SCARB2 protein. The classification of the candidate variant, according to the American College of Medical Genetics and Genomics standards and guidelines and functional analysis, was pathogenic. Therefore, these two brothers were finally diagnostically confirmed as EPM4. CONCLUSIONS These present results suggest the potential for targeted NGS to conduct a more rapid and precise diagnosis for PME patients. A literature review revealed that mutations in the different functional domains of SCARB2 appear to be associated with the phenotype of EPM4.
Collapse
Affiliation(s)
- Jin He
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Han Lin
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Jin-Jing Li
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Hui-Zhen Su
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Dan-Ni Wang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Yu Lin
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China
| |
Collapse
|
11
|
Tian WT, Liu XL, Xu YQ, Huang XJ, Zhou HY, Wang Y, Tang HD, Chen SD, Luan XH, Cao L. Progressive myoclonus epilepsy without renal failure in a Chinese family with a novel mutation in SCARB2 gene and literature review. Seizure 2018; 57:80-86. [PMID: 29605618 DOI: 10.1016/j.seizure.2018.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/16/2018] [Accepted: 03/13/2018] [Indexed: 10/17/2022] Open
Abstract
PURPOSE To describe the clinical and genetic features of a Chinese progressive myoclonus epilepsy (PME) patient related with SCARB2 mutation without renal impairment and review 27 SCARB2-related PME patients from 11 countries. METHODS The patient was a 27-year-old man with progressive action myoclonus, ataxia, epilepsy, dysarthria and absence of cognitive deterioration. Renal functional test was normal. Electroencephalography (EEG) showed progressively slowed background activity and sporadic generalized spike-and-wave discharges. Electromyography (EMG) showed slowed motor and sensory nerve conduction velocities and distal motor latency delay accompanied by normal compound motor action potential (CMAP) and amplitudes of sensory nerve action potential (SNAP). The amplitude of cortical components of brainstem auditory-evoked potential (BAEP) was normal with slightly prolonged latencies. Generalized atrophy, ventricle enlargement and white matter degeneration was observed in brain magnetic resonance imaging (MRI). Open muscle biopsy and genetic analysis were performed. Two hundred healthy individuals were set for control. Quantitative real time PCR (qPCR), western blotting and immunofluorescence were carried out to evaluate the fate of the SCARB2 mRNA and lysosomal-membrane type 2 (LIMP2) protein level. RESULTS One homozygous mutation in SCARB2 gene (c.1187 + 5G > T) was identified in the patient. Each of his parents carried a heterozygous variant. This mutation was not detected among the healthy controls and predicted to be damaging or disease causing by prediction tools. qPCR revealed a significantly lower level of SCARB2 mRNA in peripheral blood cell of the proband compared with his parents and healthy control individuals. Muscle biopsy showed mild variation in fiber size. Western blotting and immunofluorescence detected an extremely weak signal of LIMP2 protein from skeletal muscle of the proband. CONCLUSION In this study, we identified a SCARB2-related PME patient with normal renal function and a novel homozygous splicing mutation. SCARB2 gene should be analyzed in patients with progressive action myoclonus, epilepsy, peripheral neuropathy, without cognitive deterioration or renal failure.
Collapse
Affiliation(s)
- Wo-Tu Tian
- Department of Neurology and Institute of Neurology, Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Xiao-Li Liu
- Department of Neurology and Institute of Neurology, Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Neurology, Shanghai Fengxian District Central Hospital, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, 201406, China.
| | - Yang-Qi Xu
- Department of Neurology and Institute of Neurology, Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Xiao-Jun Huang
- Department of Neurology and Institute of Neurology, Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Hai-Yan Zhou
- Department of Neurology and Institute of Neurology, Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Ying Wang
- Department of Neurology and Institute of Neurology, Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Hui-Dong Tang
- Department of Neurology and Institute of Neurology, Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Sheng-Di Chen
- Department of Neurology and Institute of Neurology, Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Xing-Hua Luan
- Department of Neurology and Institute of Neurology, Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Li Cao
- Department of Neurology and Institute of Neurology, Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
12
|
Dibbens L, Schwake M, Saftig P, Rubboli G. SCARB2/LIMP2 deficiency in action myoclonus-renal failure syndrome. Epileptic Disord 2016; 18:63-72. [PMID: 27582254 DOI: 10.1684/epd.2016.0843] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Action myoclonus-renal failure syndrome (AMRF) is an autosomal recessive progressive myoclonus epilepsy (PME) associated with renal dysfunction that appears in the second or third decade of life and that is caused by loss-of-function mutations in the SCARB2 gene encoding lysosomal integral membrane protein type 2 (LIMP2). Recent reports have documented cases with PME associated with SCARB2 mutations without renal compromise. Additional neurological features can be demyelinating peripheral neuropathy, hearing loss and dementia. The course of the disease in relentlessly progressive. In this paper we provide an updated overview of the clinical and genetic features of SCARB2-related PME and on the functions of the LIMP2 protein.
Collapse
Affiliation(s)
- Leanne Dibbens
- Epilepsy Research Group, School of Pharmacy and Medical Sciences, University of South Australia, and Sansom Institute for Health Research, South Australia, Australia
| | | | - Paul Saftig
- Biochemical Institute, Christian-Albrechts-University Kiel, Germany
| | - Guido Rubboli
- Danish Epilepsy Center, Filadelfia/University of Copenhagen, Dianalund, Denmark, IRCCS, Institute of Neurologicak Sciences, Bellaria Hospital, Bologna, Italy
| |
Collapse
|
13
|
Rothaug M, Zunke F, Mazzulli JR, Schweizer M, Altmeppen H, Lüllmann-Rauch R, Kallemeijn WW, Gaspar P, Aerts JM, Glatzel M, Saftig P, Krainc D, Schwake M, Blanz J. LIMP-2 expression is critical for β-glucocerebrosidase activity and α-synuclein clearance. Proc Natl Acad Sci U S A 2014; 111:15573-8. [PMID: 25316793 PMCID: PMC4217458 DOI: 10.1073/pnas.1405700111] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mutations within the lysosomal enzyme β-glucocerebrosidase (GC) result in Gaucher disease and represent a major risk factor for developing Parkinson disease (PD). Loss of GC activity leads to accumulation of its substrate glucosylceramide and α-synuclein. Since lysosomal activity of GC is tightly linked to expression of its trafficking receptor, the lysosomal integral membrane protein type-2 (LIMP-2), we studied α-synuclein metabolism in LIMP-2-deficient mice. These mice showed an α-synuclein dosage-dependent phenotype, including severe neurological impairments and premature death. In LIMP-2-deficient brains a significant reduction in GC activity led to lipid storage, disturbed autophagic/lysosomal function, and α-synuclein accumulation mediating neurotoxicity of dopaminergic (DA) neurons, apoptotic cell death, and inflammation. Heterologous expression of LIMP-2 accelerated clearance of overexpressed α-synuclein, possibly through increasing lysosomal GC activity. In surviving DA neurons of human PD midbrain, LIMP-2 levels were increased, probably to compensate for lysosomal GC deficiency. Therefore, we suggest that manipulating LIMP-2 expression to increase lysosomal GC activity is a promising strategy for the treatment of synucleinopathies.
Collapse
Affiliation(s)
| | | | - Joseph R Mazzulli
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Michaela Schweizer
- Department of Electron Microscopy, Centre for Molecular Neurobiology, and
| | - Hermann Altmeppen
- Institute of Neuropathology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | - Wouter W Kallemeijn
- Department of Medical Biochemistry, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Paulo Gaspar
- Unidade de Biologia do Lisossoma e do Peroxissoma, Instituto de Biologia Molecular e Celular, 4150-180 Porto, Portugal; and
| | - Johannes M Aerts
- Department of Medical Biochemistry, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Michael Schwake
- Institute of Biochemistry and Faculty of Chemistry/Biochemistry III, University of Bielefeld, 33615 Bielefeld, Germany
| | | |
Collapse
|