1
|
Ernst S, Nonno R, Langeveld J, Andreoletti O, Acin C, Papasavva-Stylianou P, Sklaviadis T, Acutis PL, van Keulen L, Spiropoulos J, Keller M, Groschup MH, Fast C. Characterisation of European Field Goat Prion Isolates in Ovine PrP Overexpressing Transgenic Mice (Tgshp IX) Reveals Distinct Prion Strains. Pathogens 2024; 13:629. [PMID: 39204230 PMCID: PMC11357236 DOI: 10.3390/pathogens13080629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
After the detection of bovine spongiform encephalopathy (BSE), and a zoonotic transmissible spongiform encephalopathy (TSE) caused by the pathological prion protein (PrPSc) in two goats, the investigation of goat prions became of greater interest. Therefore, a broad collection of European goat TSE isolates, including atypical scrapie, CH1641 and goat BSE as reference prion strains were biochemically characterised and subsequently inoculated into seven rodent models for further analysis (already published results of this comprehensive study are reviewed here for comparative reasons). We report here the histopathological and immunohistochemical data of this goat TSE panel, obtained after the first passage in Tgshp IX (tg-shARQ) mice, which overexpress the ovine prion protein. In addition to the clear-cut discrimination of all reference prion strains from the classical scrapie (CS) isolates, we were further able to determine three categories of CS strains. The investigation further indicates the occurrence of sub-strains that slightly resemble distant TSE strains, such as BSE or CH1641, reinforcing the theory that CS is not a single strain but a mixture of sub-strains, existing at varying extents in one isolate. This study further proved that Tgshp IX is a potent and reliable tool for the in-depth characterisation of prion strains.
Collapse
Affiliation(s)
- Sonja Ernst
- Friedrich-Loeffler-Institut, 17493 Greifswald-Isle of Riems, Germany; (S.E.)
| | - Romolo Nonno
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Jan Langeveld
- Wageningen BioVeterinary Research, Wageningen University & Research, P.O. Box 65, 8200 AB Lelystad, The Netherlands
| | - Olivier Andreoletti
- UMR INRAe/ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| | - Cristina Acin
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza IA2 IIS Aragón, C/ Miguel Servet 177, 50013 Zaragoza, Spain
| | | | - Theodoros Sklaviadis
- School of Pharmacy, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Pier Luigi Acutis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy
| | - Lucien van Keulen
- Wageningen BioVeterinary Research, Wageningen University & Research, P.O. Box 65, 8200 AB Lelystad, The Netherlands
| | - John Spiropoulos
- Department of Pathology and Animal Science, APHA Weybridge, Addlestone KT15 3NB, Surrey, UK
| | - Markus Keller
- Friedrich-Loeffler-Institut, 17493 Greifswald-Isle of Riems, Germany; (S.E.)
| | - Martin H. Groschup
- Friedrich-Loeffler-Institut, 17493 Greifswald-Isle of Riems, Germany; (S.E.)
| | - Christine Fast
- Friedrich-Loeffler-Institut, 17493 Greifswald-Isle of Riems, Germany; (S.E.)
| |
Collapse
|
2
|
van Keulen LJM, Dolstra CH, Vries RBD, Bossers A, Jacobs JG, Baron T, Torres JM, Langeveld JPM. Change in the molecular properties of CH1641 prions after transmission to wild-type mice: Evidence for a single strain. Neuropathol Appl Neurobiol 2024; 50:e12963. [PMID: 38353056 DOI: 10.1111/nan.12963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/23/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024]
Abstract
AIM CH1641 was discovered in 1970 as a scrapie isolate that was unlike all other classical strains of scrapie isolated so far. We performed bio-assays of CH1641 in mice in order to further characterise this specific isolate. METHODS We inoculated the original CH1641 isolate into ovine and bovine prion protein (PrP) transgenic mice as well as wild-type mice. In addition, we performed cross- and back passages between the various mouse lines to examine if one identical prion strain was isolated in all mouse lines or whether multiple prion strains exist in CH1641. RESULTS We report the first successful transmission of CH1641 to wild-type RIII mice and via RIII mice to wild-type VM mice. Unexpectedly, analysis of the protease-resistant prion protein (PrPres ) in wild-type mice showed a classical scrapie banding pattern differing from the banding pattern of the original CH1641 isolate. Cross- and back passages of CH1641 between the various mouse lines confirmed that the same prion strain had been isolated in all mouse lines. CONCLUSIONS The CH1641 isolate consists of a single prion strain but its molecular banding pattern of PrPres differs between wild-type mice and PrP transgenic mice. Consequently, molecular banding patterns of PrPres should be used with caution in strain typing since they do not solely depend on the properties of the prion strain but also on the host prion protein.
Collapse
Affiliation(s)
- Lucien J M van Keulen
- Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, the Netherlands
| | - Corry H Dolstra
- Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, the Netherlands
| | - Ruth Bossers-de Vries
- Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, the Netherlands
| | - Alex Bossers
- Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, the Netherlands
| | - Jorg G Jacobs
- Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, the Netherlands
| | - Thierry Baron
- Agence nationale de sécurité sanitaire de l'alimentation de l'environnement et du travail (Anses), Laboratoire de Lyon, Unité Maladies Neurodégénératives, Lyon, France
| | - Juan Maria Torres
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Spain
| | - Jan P M Langeveld
- Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, the Netherlands
| |
Collapse
|
3
|
Primary glia cells from bank vole propagate multiple rodent-adapted scrapie prions. Sci Rep 2022; 12:2190. [PMID: 35140295 PMCID: PMC8828835 DOI: 10.1038/s41598-022-06198-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/25/2022] [Indexed: 12/14/2022] Open
Abstract
Since the beginning prion research has been largely dependent on animal models for deciphering the disease, drug development or prion detection and quantification. Thereby, ethical as well as cost and labour-saving aspects call for alternatives in vitro. Cell models can replace or at least complement animal studies, but their number is still limited and the application usually restricted to certain strains and host species due to often strong transmission barriers. Bank voles promise to be an exception as they or materials prepared from them are uniquely susceptible to prions from various species in vivo, in vitro and in cell-free applications. Here we present a mainly astrocyte-based primary glia cell assay from bank vole, which is infectible with scrapie strains from bank vole, mouse and hamster. Stable propagation of bank vole-adapted RML, murine 22L and RML, and hamster 263K scrapie is detectable from 20 or 30 days post exposure onwards. Thereby, the infected bank vole glia cells show similar or even faster prion propagation than likewise infected glia cells of the corresponding murine or hamster hosts. We propose that our bank vole glia cell assay could be a versatile tool for studying and comparing multiple prion strains with different species backgrounds combined in one cell assay.
Collapse
|
4
|
Nonno R, Marin-Moreno A, Carlos Espinosa J, Fast C, Van Keulen L, Spiropoulos J, Lantier I, Andreoletti O, Pirisinu L, Di Bari MA, Aguilar-Calvo P, Sklaviadis T, Papasavva-Stylianou P, Acutis PL, Acin C, Bossers A, Jacobs JG, Vaccari G, D'Agostino C, Chiappini B, Lantier F, Groschup MH, Agrimi U, Maria Torres J, Langeveld JPM. Characterization of goat prions demonstrates geographical variation of scrapie strains in Europe and reveals the composite nature of prion strains. Sci Rep 2020; 10:19. [PMID: 31913327 PMCID: PMC6949283 DOI: 10.1038/s41598-019-57005-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/16/2019] [Indexed: 11/09/2022] Open
Abstract
Bovine Spongiform Encephalopathy (BSE) is the only animal prion which has been recognized as a zoonotic agent so far. The identification of BSE in two goats raised the need to reliably identify BSE in small ruminants. However, our understanding of scrapie strain diversity in small ruminants remains ill-defined, thus limiting the accuracy of BSE surveillance and spreading fear that BSE might lurk unrecognized in goats. We investigated prion strain diversity in a large panel of European goats by a novel experimental approach that, instead of assessing the neuropathological profile after serial transmissions in a single animal model, was based on the direct interaction of prion isolates with several recipient rodent models expressing small ruminants or heterologous prion proteins. The findings show that the biological properties of scrapie isolates display different patterns of geographical distribution in Europe and suggest that goat BSE could be reliably discriminated from a wide range of biologically and geographically diverse goat prion isolates. Finally, most field prion isolates showed composite strain features, with discrete strain components or sub-strains being present in different proportions in individual goats or tissues. This has important implications for understanding the nature and evolution of scrapie strains and their transmissibility to other species, including humans.
Collapse
Affiliation(s)
- Romolo Nonno
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy.
| | | | | | - Christine Fast
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, Greifswald-Isle of Riems, Germany
| | | | - John Spiropoulos
- Animal and Plant Health Agency, New Haw, Addlestone, Surrey, United Kingdom
| | - Isabelle Lantier
- INRA-Centre Val de Loire, Infectiologie et Santé Publique, Nouzilly, France
| | - Olivier Andreoletti
- UMR INRA ENVT 1225- IHAP, École Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Laura Pirisinu
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Michele A Di Bari
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | | | - Theodoros Sklaviadis
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Pier Luigi Acutis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Cristina Acin
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Alex Bossers
- Wageningen BioVeterinary Research, Lelystad, the Netherlands
| | - Jorge G Jacobs
- Wageningen BioVeterinary Research, Lelystad, the Netherlands
| | - Gabriele Vaccari
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Claudia D'Agostino
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Barbara Chiappini
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Frederic Lantier
- INRA-Centre Val de Loire, Infectiologie et Santé Publique, Nouzilly, France
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, Greifswald-Isle of Riems, Germany
| | - Umberto Agrimi
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | | | | |
Collapse
|
5
|
Langeveld JPM, Pirisinu L, Jacobs JG, Mazza M, Lantier I, Simon S, Andréoletti O, Acin C, Esposito E, Fast C, Groschup M, Goldmann W, Spiropoulos J, Sklaviadis T, Lantier F, Ekateriniadou L, Papasavva-Stylianou P, van Keulen LJM, Acutis PL, Agrimi U, Bossers A, Nonno R. Four types of scrapie in goats differentiated from each other and bovine spongiform encephalopathy by biochemical methods. Vet Res 2019; 50:97. [PMID: 31767033 PMCID: PMC6878695 DOI: 10.1186/s13567-019-0718-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/16/2019] [Indexed: 01/03/2023] Open
Abstract
Scrapie in goats has been known since 1942, the archetype of prion diseases in which only prion protein (PrP) in misfolded state (PrPSc) acts as infectious agent with fatal consequence. Emergence of bovine spongiform encephalopathy (BSE) with its zoonotic behaviour and detection in goats enhanced fears that its source was located in small ruminants. However, in goats knowledge on prion strain typing is limited. A European-wide study is presented concerning the biochemical phenotypes of the protease resistant fraction of PrPSc (PrPres) in over thirty brain isolates from transmissible spongiform encephalopathy (TSE) affected goats collected in seven countries. Three different scrapie forms were found: classical scrapie (CS), Nor98/atypical scrapie and one case of CH1641 scrapie. In addition, CS was found in two variants-CS-1 and CS-2 (mainly Italy)-which differed in proteolytic resistance of the PrPres N-terminus. Suitable PrPres markers for discriminating CH1641 from BSE (C-type) appeared to be glycoprofile pattern, presence of two triplets instead of one, and structural (in)stability of its core amino acid region. None of the samples exhibited BSE like features. BSE and these four scrapie types, of which CS-2 is new, can be recognized in goats with combinations of a set of nine biochemical parameters.
Collapse
Affiliation(s)
- Jan P M Langeveld
- Wageningen BioVeterinary Research (WBVR), Wageningen University & Research, Houtribweg 39, 8221RA, Lelystad, The Netherlands.
| | - Laura Pirisinu
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanita (ISS), 299-00161, Rome, Italy
| | - Jorg G Jacobs
- Wageningen BioVeterinary Research (WBVR), Wageningen University & Research, Houtribweg 39, 8221RA, Lelystad, The Netherlands
| | - Maria Mazza
- Italian Reference Centre for TSEs, Istituto Zooprofilattico Sperimentale del Piemonte (IZSTO), 10154, Turin, TO, Italy
| | - Isabelle Lantier
- UMR 1282 ISP, Institut National de la Recherche Agronomique (INRA), University of Tours, 37380, Nouzilly, France
| | - Stéphanie Simon
- Commissariat à l'Énergie Atomique (CEA), 91191, Gif-sur-Yvette, France
| | - Olivier Andréoletti
- UMR INRA/ENVT 1225 IHAP, École Nationale Vétérinaire de Toulouse (ENVT), 31300, Toulouse, France
| | - Cristina Acin
- Research Centre for TSE and Emerging Transmissible Diseases, University of Zaragoza (UNIZAR), 50013, Zaragoza, Spain
| | - Elena Esposito
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanita (ISS), 299-00161, Rome, Italy
| | - Christine Fast
- Friedrich-Loeffler-Institut (FLI), Institute of Novel and Emerging Infectious Diseases, Greifswald-Isle of Riems, 17493, Greifswald, Germany
| | - Martin Groschup
- Friedrich-Loeffler-Institut (FLI), Institute of Novel and Emerging Infectious Diseases, Greifswald-Isle of Riems, 17493, Greifswald, Germany
| | - Wilfred Goldmann
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh (UEDIN), Easter Bush, Midlothian, EH25 9RG, UK
| | - John Spiropoulos
- Department of Pathology, Animal and Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| | - Theodoros Sklaviadis
- School of Pharmacy, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece
| | - Frederic Lantier
- UMR 1282 ISP, Institut National de la Recherche Agronomique (INRA), University of Tours, 37380, Nouzilly, France
| | - Loukia Ekateriniadou
- Hellenic Agricultural Organization DEMETER, Veterinary Research Institute, 57001, Thessaloniki, Greece
| | | | - Lucien J M van Keulen
- Wageningen BioVeterinary Research (WBVR), Wageningen University & Research, Houtribweg 39, 8221RA, Lelystad, The Netherlands
| | - Pier-Luigi Acutis
- Italian Reference Centre for TSEs, Istituto Zooprofilattico Sperimentale del Piemonte (IZSTO), 10154, Turin, TO, Italy
| | - Umberto Agrimi
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanita (ISS), 299-00161, Rome, Italy
| | - Alex Bossers
- Wageningen BioVeterinary Research (WBVR), Wageningen University & Research, Houtribweg 39, 8221RA, Lelystad, The Netherlands
| | - Romolo Nonno
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanita (ISS), 299-00161, Rome, Italy
| |
Collapse
|
6
|
Bradford BM, Wijaya CAW, Mabbott NA. Discrimination of Prion Strain Targeting in the Central Nervous System via Reactive Astrocyte Heterogeneity in CD44 Expression. Front Cell Neurosci 2019; 13:411. [PMID: 31551718 PMCID: PMC6746926 DOI: 10.3389/fncel.2019.00411] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/26/2019] [Indexed: 01/15/2023] Open
Abstract
Prion diseases or transmissible spongiform encephalopathies are fatal, progressive, neurodegenerative, protein-misfolding disorders. Prion diseases may arise spontaneously, be inherited genetically or be acquired by infection and affect a variety of mammalian species including humans. Prion infections in the central nervous system (CNS) cause extensive neuropathology, including abnormal accumulations of misfolded host prion protein, vacuolar change resulting in sponge-like (spongiform) appearance of CNS tissue, neurodegeneration and reactive glial responses. Many different prion agent strains exist and these can differ based on disease duration, clinical signs and the targeting and distribution of the neuropathology in distinct brain areas. Reactive astrocytes are a prominent feature in the prion disease affected CNS as revealed by distinct morphological changes and upregulation of glial fibrillary acidic protein (GFAP). The CD44 antigen is a transmembrane glycoprotein involved in cell-cell interactions, cell adhesion and migration. Here we show that CD44 is also highly expressed in a subset of reactive astrocytes in regions of the CNS targeted by prions. Astrocyte heterogeneity revealed by differential CD44 upregulation occurs coincident with the earliest neuropathological changes during the pre-clinical phase of disease, and is not affected by the route of infection. The expression and distribution of CD44 was compared in brains from a large collection of 15 distinct prion agent strains transmitted to mice of different prion protein (Prnp) genotype backgrounds. Our data show that the pattern of CD44 upregulation observed in the hippocampus in each prion agent strain and host Prnp genotype combination was unique. Many mouse-adapted prion strains and hosts have previously been characterized based on the pattern of the distribution of the spongiform pathology or the misfolded PrP deposition within the brain. Our data show that CD44 expression also provides a reliable discriminatory marker of prion infection with a greater dynamic range than misfolded prion protein deposition, aiding strain identification. Together, our data reveal CD44 as a novel marker to detect reactive astrocyte heterogeneity during CNS prion disease and for enhanced identification of distinct prion agent strains.
Collapse
Affiliation(s)
- Barry M Bradford
- The Roslin Institute and R(D)SVS, The University of Edinburgh, Edinburgh, United Kingdom
| | - Christianus A W Wijaya
- The Roslin Institute and R(D)SVS, The University of Edinburgh, Edinburgh, United Kingdom
| | - Neil A Mabbott
- The Roslin Institute and R(D)SVS, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
7
|
Neuroinflammation, Microglia, and Cell-Association during Prion Disease. Viruses 2019; 11:v11010065. [PMID: 30650564 PMCID: PMC6356204 DOI: 10.3390/v11010065] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
Prion disorders are transmissible diseases caused by a proteinaceous infectious agent that can infect the lymphatic and nervous systems. The clinical features of prion diseases can vary, but common hallmarks in the central nervous system (CNS) are deposition of abnormally folded protease-resistant prion protein (PrPres or PrPSc), astrogliosis, microgliosis, and neurodegeneration. Numerous proinflammatory effectors expressed by astrocytes and microglia are increased in the brain during prion infection, with many of them potentially damaging to neurons when chronically upregulated. Microglia are important first responders to foreign agents and damaged cells in the CNS, but these immune-like cells also serve many essential functions in the healthy CNS. Our current understanding is that microglia are beneficial during prion infection and critical to host defense against prion disease. Studies indicate that reduction of the microglial population accelerates disease and increases PrPSc burden in the CNS. Thus, microglia are unlikely to be a foci of prion propagation in the brain. In contrast, neurons and astrocytes are known to be involved in prion replication and spread. Moreover, certain astrocytes, such as A1 reactive astrocytes, have proven neurotoxic in other neurodegenerative diseases, and thus might also influence the progression of prion-associated neurodegeneration.
Collapse
|
8
|
Bett C, Piccardo P, Cervenak J, Torres JM, Asher DM, Gregori L. Both murine host and inoculum modulate expression of experimental variant Creutzfeldt-Jakob disease. J Gen Virol 2018; 99:422-433. [PMID: 29458529 DOI: 10.1099/jgv.0.001017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) are infections that are experimentally transmissible to laboratory animals. TSE agents (prions) can be serially passaged in the same animal species. The susceptibility of mice to infection with specific TSE agents can be unpredictable and must be established empirically. We challenged wild-type C57BL/6 and RIIIS/J mice and transgenic mice overexpressing bovine prion protein (TgBo110) with a human brain infected with variant Creutzfeldt-Jakob disease (vCJD) agent and pooled brains of macaques experimentally infected with human vCJD agent (first-passage macaque vCJD). The human vCJD brain yielded a wide range of infectivity titres in different mouse models; TgBo110 mice were the most sensitive. In contrast, infectivity titres of macaque vCJD brain were similar in all three murine models. The brains of RIIIS/J mice infected with both human and macaque vCJD had mild or no vacuolation, while infected C57BL/6 and TgBo110 mice had spongiform degeneration with vacuolation. Abnormal prion protein (PrPTSE) extracted from the brains of vCJD-infected TgBo110 mice displayed different glycosylation profiles and had greater resistance to denaturation by guanidine hydrochloride than PrPTSE from infected wild-type mice or from either inoculum. Those histopathological features of TSE and physical properties of PrPTSE in mice with experimental vCJD were intrinsic to the host, even though we also observed differences between wild-type mice infected with either agent, suggesting a modulatory effect of the inoculum. This study compared three widely used mouse models infected with two different vCJD inocula. The results show that the host plays a major role in manifestations of experimental TSEs.
Collapse
Affiliation(s)
- Cyrus Bett
- U.S. Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Blood Research and Review, Department of Emerging and Transfusion Transmitted Diseases, Laboratory of Bacterial and Transmissible Spongiform Encephalopathy Agents, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Pedro Piccardo
- U.S. Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Blood Research and Review, Department of Emerging and Transfusion Transmitted Diseases, Laboratory of Bacterial and Transmissible Spongiform Encephalopathy Agents, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Juraj Cervenak
- U.S. Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Blood Research and Review, Department of Emerging and Transfusion Transmitted Diseases, Laboratory of Bacterial and Transmissible Spongiform Encephalopathy Agents, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Juan-Maria Torres
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CISA-INIA), 28130 Valdeolmos, Madrid, Spain
| | - David M Asher
- U.S. Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Blood Research and Review, Department of Emerging and Transfusion Transmitted Diseases, Laboratory of Bacterial and Transmissible Spongiform Encephalopathy Agents, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Luisa Gregori
- U.S. Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Blood Research and Review, Department of Emerging and Transfusion Transmitted Diseases, Laboratory of Bacterial and Transmissible Spongiform Encephalopathy Agents, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| |
Collapse
|
9
|
Pathology of Animal Transmissible Spongiform Encephalopathies (TSEs). Food Saf (Tokyo) 2017; 5:1-9. [PMID: 32231922 DOI: 10.14252/foodsafetyfscj.2016027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/24/2016] [Indexed: 11/21/2022] Open
Abstract
Pathology is the study of the structural and functional changes produced by diseases or - more specifically - the lesions they cause. To achieve this pathologists employ various approaches. These include description of lesions that are visible to the naked eye which are the subject of anatomic pathology and changes at the cellular level that are visible under the microscope, the subject of histopathology. Changes at the molecular level which are identified by probes that target specific molecules - mainly proteins that are detected using immunohistochemistry (IHC). As transmissible spongiform encephalopathies (TSEs) do not cause visible lesions anatomic pathology is not applicable to their study. For decades the application of histopathology to detect vacuoles or plaques was the only means of confirming TSE disease. The subsequent discovery of the cellular prion protein (PrPC) and its pathogenic isoform, PrPSc, which is a ubiquitous marker of TSEs, led to the production of anti-PrP antibodies, and enabled the development of PrPSc detection techniques such as immunohistochemistry, Histoblot and PET-blot that have evolved in parallel with similar biochemical methods such as Western blot and ELISA. These methods offer greater sensitivity than histopathology in TSE diagnosis and crucially they can be applied to analyze various phenotypic aspects of single TSE sources increasing the amount of data and offering higher discriminatory power. The above principles are applied to diagnose and define TSE phenotypes which form the basis of strain characterisation.
Collapse
|
10
|
Abstract
A Transmissible Spongiform Encephalopathy (TSE) agent from one species generally transmits poorly to a new species, a phenomenon known as the species barrier. However once in the new species it generally but not always adapts and then more readily transmits within the new host. No single test is available to determine accurately the ability of a prion strain to transmit between species. Evaluating the species barrier for any prion strain has to take into consideration as much information as can be gathered for that strain from surveillance and research. The interactions of the agent with a particular host can be measured by in vivo and in vitro methods and assessing the species barrier needs to make full use of all the tools available. This review will identify the important considerations that need to be made when evaluating the species barrier.
Collapse
|
11
|
González L, Chianini F, Hunter N, Hamilton S, Gibbard L, Martin S, Dagleish MP, Sisó S, Eaton SL, Chong A, Algar L, Jeffrey M. Stability of murine scrapie strain 87V after passage in sheep and comparison with the CH1641 ovine strain. J Gen Virol 2016; 96:3703-3714. [PMID: 26611906 DOI: 10.1099/jgv.0.000305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Breed- and prion protein (PRNP) genotype-related disease phenotype variability has been observed in sheep infected with the 87V murine scrapie strain. Therefore, the stability of this strain was tested by inoculating sheep-derived 87V brain material back into VM mice. As some sheep-adapted 87V disease phenotypes were reminiscent of CH1641 scrapie, transgenic mice (Tg338) expressing ovine prion protein (PrP) were inoculated with the same sheep-derived 87V sources and with CH1641. Although at first passage in VM mice the sheep-derived 87V sources showed some divergence from the murine 87V control, all the characteristics of murine 87V infection were recovered at second passage from all sheep sources. These included 100 % attack rates and indistinguishable survival times, lesion profiles, immunohistochemical features of disease-associated PrP accumulation in the brain and PrP biochemical properties. All sheep-derived 87V sources, as well as CH1641, were transmitted to Tg338 mice with identical clinical, pathological, immunohistochemical and biochemical features. While this might potentially indicate that sheep-adapted 87V and CH1641 are the same strain, profound divergences were evident, as murine 87V was unable to infect Tg338 mice but was lethal for VM mice, while the reverse was true for CH1641. These combined data suggest that: (i) murine 87V is stable and retains its properties after passage in sheep; (ii) it can be isolated from sheep showing a CH1641-like or a more conventional scrapie phenotype; and (iii) sheep-adapted 87V scrapie, with conventional or CH1641-like phenotype, is biologically distinct from experimental CH1641 scrapie, despite the fact that they behave identically in a single transgenic mouse line.
Collapse
Affiliation(s)
- Lorenzo González
- Animal and Plant Health Agency (APHA-Lasswade), Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Francesca Chianini
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Nora Hunter
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Scott Hamilton
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Louise Gibbard
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Stuart Martin
- Animal and Plant Health Agency (APHA-Lasswade), Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Mark P Dagleish
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Sílvia Sisó
- Animal and Plant Health Agency (APHA-Lasswade), Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Samantha L Eaton
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Angela Chong
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Lynne Algar
- Animal and Plant Health Agency (APHA-Lasswade), Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Martin Jeffrey
- Animal and Plant Health Agency (APHA-Lasswade), Pentlands Science Park, Penicuik EH26 0PZ, UK
| |
Collapse
|
12
|
Carroll JA, Striebel JF, Rangel A, Woods T, Phillips K, Peterson KE, Race B, Chesebro B. Prion Strain Differences in Accumulation of PrPSc on Neurons and Glia Are Associated with Similar Expression Profiles of Neuroinflammatory Genes: Comparison of Three Prion Strains. PLoS Pathog 2016; 12:e1005551. [PMID: 27046083 PMCID: PMC4821575 DOI: 10.1371/journal.ppat.1005551] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/14/2016] [Indexed: 12/31/2022] Open
Abstract
Misfolding and aggregation of host proteins are important features of the pathogenesis of neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia and prion diseases. In all these diseases, the misfolded protein increases in amount by a mechanism involving seeded polymerization. In prion diseases, host prion protein is misfolded to form a pathogenic protease-resistant form, PrPSc, which accumulates in neurons, astroglia and microglia in the CNS. Here using dual-staining immunohistochemistry, we compared the cell specificity of PrPSc accumulation at early preclinical times post-infection using three mouse scrapie strains that differ in brain regional pathology. PrPSc from each strain had a different pattern of cell specificity. Strain 22L was mainly associated with astroglia, whereas strain ME7 was mainly associated with neurons and neuropil. In thalamus and cortex, strain RML was similar to 22L, but in substantia nigra, RML was similar to ME7. Expression of 90 genes involved in neuroinflammation was studied quantitatively using mRNA from thalamus at preclinical times. Surprisingly, despite the cellular differences in PrPSc accumulation, the pattern of upregulated genes was similar for all three strains, and the small differences observed correlated with variations in the early disease tempo. Gene upregulation correlated with activation of both astroglia and microglia detected in early disease prior to vacuolar pathology or clinical signs. Interestingly, the profile of upregulated genes in scrapie differed markedly from that seen in two acute viral CNS diseases (LaCrosse virus and BE polytropic Friend retrovirus) that had reactive gliosis at levels similar to our prion-infected mice. Accumulation of aggregates of misfolded protein in brain is a common feature of the damage seen in several neurodegenerative diseases including prion disease, Alzheimer’s disease and Parkinson’s disease. In the present work three strains of prion disease differed in accumulation of the disease-associated prion protein (PrPSc) on neurons and astroglial cells. These patterns were first detectable in the thalamus at 40–60 days after inoculation. This coincided with initial detection of gliosis and PrPSc deposition, but was far in advance of clinical signs or spongiform pathology. In spite of the different patterns of cellular PrPSc deposition, these three strains had similar patterns of expression of a large number of genes known to be active during neuroinflammatory responses and gliosis. However, the gene upregulation in scrapie differed markedly from that seen in two neurovirulent viral diseases, which also had abundant glial responses similar to those observed with prion infection.
Collapse
Affiliation(s)
- James A. Carroll
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - James F. Striebel
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - Alejandra Rangel
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - Tyson Woods
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - Katie Phillips
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - Karin E. Peterson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - Brent Race
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - Bruce Chesebro
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
13
|
Scientific Opinion on a request for a review of a scientific publication concerning the zoonotic potential of ovine scrapie prions. EFSA J 2015. [DOI: 10.2903/j.efsa.2015.4197] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
14
|
Maddison BC, Spiropoulos J, Vickery CM, Lockey R, Owen JP, Bishop K, Baker CA, Gough KC. Incubation of ovine scrapie with environmental matrix results in biological and biochemical changes of PrP(Sc) over time. Vet Res 2015; 46:46. [PMID: 25928902 PMCID: PMC4415298 DOI: 10.1186/s13567-015-0179-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/02/2015] [Indexed: 11/15/2022] Open
Abstract
Ovine scrapie can be transmitted via environmental reservoirs. A pool of ovine scrapie isolates were incubated on soil for one day or thirteen months and eluted prion was used to challenge tg338 mice transgenic for ovine PrP. After one-day incubation on soil, two PrPSc phenotypes were present: G338 or Apl338ii. Thirteen months later some divergent PrPSc phenotypes were seen: a mixture of Apl338ii with either G338 or P338, and a completely novel PrPSc deposition, designated Cag338. The data show that prolonged ageing of scrapie prions within an environmental matrix may result in changes in the dominant PrPSc biological/biochemical properties.
Collapse
Affiliation(s)
- Ben C Maddison
- ADAS UK, School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, College Road, Sutton Bonington, Leicestershire, UK.
| | - John Spiropoulos
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, UK.
| | | | - Richard Lockey
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, UK. .,Current address: University of Southampton, Southampton, SO17 1BJ, UK.
| | - Jonathan P Owen
- ADAS UK, School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, College Road, Sutton Bonington, Leicestershire, UK.
| | - Keith Bishop
- ADAS UK, School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, College Road, Sutton Bonington, Leicestershire, UK.
| | - Claire A Baker
- ADAS UK, School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, College Road, Sutton Bonington, Leicestershire, UK.
| | - Kevin C Gough
- School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, College Road, Sutton Bonington, Leicestershire, UK.
| |
Collapse
|
15
|
Corda E, Thorne L, Beck KE, Lockey R, Green RB, Vickery CM, Holder TM, Terry LA, Simmons MM, Spiropoulos J. Ability of wild type mouse bioassay to detect bovine spongiform encephalopathy (BSE) in the presence of excess scrapie. Acta Neuropathol Commun 2015; 3:21. [PMID: 25853789 PMCID: PMC4382846 DOI: 10.1186/s40478-015-0194-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/05/2015] [Indexed: 11/10/2022] Open
Abstract
Introduction Scrapie and bovine spongiform encephalopathy (BSE) are transmissible spongiform encephalopathies (TSEs) which naturally affect small and large ruminants respectively. However, small ruminants, which are susceptible to BSE under experimental conditions, have been exposed to the same or similar contaminated food additives as cattle. To date two natural cases of BSE in small ruminants have been reported. As a result surveillance projects, combined with appropriate control measures, have been established throughout the European Union (EU) to minimize the overall incidence of small ruminant TSEs. Although BSE can be differentiated from classical scrapie (subsequently referred to as scrapie) if appropriate discriminatory tests are applied, the value of these tests in BSE/scrapie co-infection scenarios has not been evaluated fully. Mouse bioassay is regarded as the gold standard regarding differentiation of distinct TSE strains and has been used as to resolve TSE cases were laboratory tests produced equivocal results. However, the ability of this method to discriminate TSE strains when they co-exist has not been examined systematically. To address this issue we prepared in vitro mixtures of ovine BSE and scrapie and used them to challenge RIII, C57BL/6 and VM mice. Results Disease phenotype analysis in all three mouse lines indicated that most phenotypic parameters (attack rates, incubation periods, lesion profiles and Western blots) were compatible with scrapie phenotypes as were immunohistochemistry (IHC) data from RIII and C57BL/6 mice. However, in VM mice that were challenged with BSE/scrapie mixtures a single BSE-associated IHC feature was identified, indicating the existence of BSE in animals where the scrapie phenotype was dominant. Conclusions We conclude that wild type mouse bioassay is of limited value in detecting BSE in the presence of scrapie particularly if the latter is in relative excess. Electronic supplementary material The online version of this article (doi:10.1186/s40478-015-0194-2) contains supplementary material, which is available to authorized users.
Collapse
|