1
|
Kolahchi Z, Henkel N, Eladawi MA, Villarreal EC, Kandimalla P, Lundh A, McCullumsmith RE, Cuevas E. Sex and Gender Differences in Alzheimer's Disease: Genetic, Hormonal, and Inflammation Impacts. Int J Mol Sci 2024; 25:8485. [PMID: 39126053 PMCID: PMC11313277 DOI: 10.3390/ijms25158485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Two-thirds of Americans with Alzheimer's disease are women, indicating a profound variance between the sexes. Variances exist between the sexes in the age and intensity of the presentation, cognitive deficits, neuroinflammatory factors, structural and functional brain changes, as well as psychosocial and cultural circumstances. Herein, we summarize the existing evidence for sexual dimorphism and present the available evidence for these distinctions. Understanding these complexities is critical to developing personalized interventions for the prevention, care, and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Zahra Kolahchi
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA; (Z.K.); (E.C.V.)
| | - Nicholas Henkel
- Department of Neurosciences and Neurological Disorders, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA; (N.H.); (M.A.E.); (P.K.); (A.L.); (R.E.M.)
| | - Mahmoud A. Eladawi
- Department of Neurosciences and Neurological Disorders, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA; (N.H.); (M.A.E.); (P.K.); (A.L.); (R.E.M.)
| | - Emma C. Villarreal
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA; (Z.K.); (E.C.V.)
| | - Prathik Kandimalla
- Department of Neurosciences and Neurological Disorders, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA; (N.H.); (M.A.E.); (P.K.); (A.L.); (R.E.M.)
| | - Anna Lundh
- Department of Neurosciences and Neurological Disorders, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA; (N.H.); (M.A.E.); (P.K.); (A.L.); (R.E.M.)
| | - Robert E. McCullumsmith
- Department of Neurosciences and Neurological Disorders, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA; (N.H.); (M.A.E.); (P.K.); (A.L.); (R.E.M.)
- ProMedica Neurosciences Center, Toledo, OH 43606, USA
| | - Elvis Cuevas
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA; (Z.K.); (E.C.V.)
| |
Collapse
|
2
|
Ke YD, van Hummel A, Au C, Chan G, Lee WS, van der Hoven J, Przybyla M, Deng Y, Sabale M, Morey N, Bertz J, Feiten A, Ippati S, Stevens CH, Yang S, Gladbach A, Haass NK, Kril JJ, Blair IP, Delerue F, Ittner LM. Targeting 14-3-3θ-mediated TDP-43 pathology in amyotrophic lateral sclerosis and frontotemporal dementia mice. Neuron 2024; 112:1249-1264.e8. [PMID: 38366598 DOI: 10.1016/j.neuron.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/20/2023] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by cytoplasmic deposition of the nuclear TAR-binding protein 43 (TDP-43). Although cytoplasmic re-localization of TDP-43 is a key event in the pathogenesis of ALS/FTD, the underlying mechanisms remain unknown. Here, we identified a non-canonical interaction between 14-3-3θ and TDP-43, which regulates nuclear-cytoplasmic shuttling. Neuronal 14-3-3θ levels were increased in sporadic ALS and FTD with TDP-43 pathology. Pathogenic TDP-43 showed increased interaction with 14-3-3θ, resulting in cytoplasmic accumulation, insolubility, phosphorylation, and fragmentation of TDP-43, resembling pathological changes in disease. Harnessing this increased affinity of 14-3-3θ for pathogenic TDP-43, we devised a gene therapy vector targeting TDP-43 pathology, which mitigated functional deficits and neurodegeneration in different ALS/FTD mouse models expressing mutant or non-mutant TDP-43, including when already symptomatic at the time of treatment. Our study identified 14-3-3θ as a mediator of cytoplasmic TDP-43 localization with implications for ALS/FTD pathogenesis and therapy.
Collapse
Affiliation(s)
- Yazi D Ke
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Annika van Hummel
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Carol Au
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Gabriella Chan
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Wei Siang Lee
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Julia van der Hoven
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Magdalena Przybyla
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Yuanyuan Deng
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Miheer Sabale
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Nicolle Morey
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Josefine Bertz
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Astrid Feiten
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Stefania Ippati
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Claire H Stevens
- School of Chemistry and Molecular Bioscience, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Shu Yang
- Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Amadeus Gladbach
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Nikolas K Haass
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Jillian J Kril
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2050, Australia
| | - Ian P Blair
- Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Fabien Delerue
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Lars M Ittner
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
3
|
Van Dam D, Valkenburg F, Van Kolen K, Pintelon I, Timmermans JP, De Deyn PP. Behavioral and Neuropathological Phenotyping of the Tau58/2 and Tau58/4 Transgenic Mouse Models for FTDP-17. Life (Basel) 2023; 13:2088. [PMID: 37895469 PMCID: PMC10608666 DOI: 10.3390/life13102088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The Tau58/2 and Tau58/4 mouse lines expressing 0N4R tau with a P301S mutation mimic aspects of frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). In a side-by-side comparison, we report the age-dependent development of cognitive, motor, and behavioral deficits in comparison with the spatial-temporal evolution of cellular tau pathology in both models. METHODS We applied the SHIRPA primary screen and specific neuromotor, behavioral, and cognitive paradigms. The spatiotemporal development of tau pathology was investigated immunohistochemically. Levels of sarkosyl-insoluble paired helical filaments were determined via a MesoScale Discovery biomarker assay. RESULTS Neuromotor impairments developed from age 3 months in both models. On electron microscopy, spinal cord neurofibrillary pathology was visible in mice aged 3 months; however, AT8 immunoreactivity was not yet observed in Tau58/4 mice. Behavioral abnormalities and memory deficits occurred at a later stage (>9 months) when tau pathology was fully disseminated throughout the brain. Spatiotemporally, tau pathology spread from the spinal cord via the midbrain to the frontal cortex, while the hippocampus was relatively spared, thus explaining the late onset of cognitive deficits. CONCLUSIONS Our findings indicate the face and construct validity of both Tau58 models, which may provide new, valuable insights into the pathologic effects of tau species in vivo and may consequently facilitate the development of new therapeutic targets to delay or halt neurodegenerative processes occurring in tauopathies.
Collapse
Affiliation(s)
- Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, University of Antwerp, Wilrijk, 2610 Antwerp, Belgium;
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Femke Valkenburg
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, University of Antwerp, Wilrijk, 2610 Antwerp, Belgium;
| | - Kristof Van Kolen
- Neuroscience Department, Janssen Research and Development, 2340 Beerse, Belgium;
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium; (I.P.); (J.-P.T.)
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium; (I.P.); (J.-P.T.)
| | - Peter Paul De Deyn
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, University of Antwerp, Wilrijk, 2610 Antwerp, Belgium;
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
4
|
van Hummel A, Taleski G, Sontag J, Feiten AF, Ke YD, Ittner LM, Sontag E. Methyl donor supplementation reduces phospho-Tau, Fyn and demethylated protein phosphatase 2A levels and mitigates learning and motor deficits in a mouse model of tauopathy. Neuropathol Appl Neurobiol 2023; 49:e12931. [PMID: 37565253 PMCID: PMC10947299 DOI: 10.1111/nan.12931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/27/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Reduced folate status and elevated levels of circulating homocysteine are modifiable risk factors for cognitive decline and dementia. Disturbances in one-carbon metabolism are associated with the pathological accumulation of phosphorylated tau, a hallmark feature of prevalent dementia, including Alzheimer's disease and subgroups of frontotemporal dementia. METHODS Here, using transgenic TAU58/2 mouse models of human tauopathy, we tested whether dietary supplementation with L-methylfolate (the active folate form), choline and betaine can reduce tau phosphorylation and associated behavioural phenotypes. RESULTS TAU58/2 mice fed with the methyl donor-enriched diet showed reduced phosphorylation of tau at the pathological S202 (CP13) and S396/S404 (PHF-1) epitopes and alleviation of associated motor and learning deficits. Compared with mice on the control diet, the decrease in cortical phosphorylated tau levels in mice fed with the methyl donor-enriched diet was associated with enhanced methylation of protein phosphatase 2A, the major brain tau Ser/Thr phosphatase. It also correlated with a reduction in protein levels of Fyn, a tau tyrosine kinase that plays a central role in mediating pathological tau-induced neurodegeneration. Conversely, Fyn expression levels were increased in mice with deficiencies in folate metabolism. CONCLUSIONS Our findings provide the first experimental evidence that boosting one-carbon metabolism with L-methylfolate, choline and betaine can mitigate key pathological, learning and motor deficits in a tauopathy mouse model. They give support to using a combination of methyl donors as a preventive or disease-modifying strategy for tauopathies.
Collapse
Affiliation(s)
- Annika van Hummel
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Goce Taleski
- School of Biomedical Sciences and PharmacyUniversity of NewcastleCallaghanNew South WalesAustralia
- Hunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Jean‐Marie Sontag
- School of Biomedical Sciences and PharmacyUniversity of NewcastleCallaghanNew South WalesAustralia
- Hunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Astrid Feentje Feiten
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Yazi D. Ke
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Lars M. Ittner
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Estelle Sontag
- School of Biomedical Sciences and PharmacyUniversity of NewcastleCallaghanNew South WalesAustralia
- Hunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| |
Collapse
|
5
|
Padmanabhan P, Götz J. Clinical relevance of animal models in aging-related dementia research. NATURE AGING 2023; 3:481-493. [PMID: 37202516 DOI: 10.1038/s43587-023-00402-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/21/2023] [Indexed: 05/20/2023]
Abstract
Alzheimer's disease (AD) and other, less prevalent dementias are complex age-related disorders that exhibit multiple etiologies. Over the past decades, animal models have provided pathomechanistic insight and evaluated countless therapeutics; however, their value is increasingly being questioned due to the long history of drug failures. In this Perspective, we dispute this criticism. First, the utility of the models is limited by their design, as neither the etiology of AD nor whether interventions should occur at a cellular or network level is fully understood. Second, we highlight unmet challenges shared between animals and humans, including impeded drug transport across the blood-brain barrier, limiting effective treatment development. Third, alternative human-derived models also suffer from the limitations mentioned above and can only act as complementary resources. Finally, age being the strongest AD risk factor should be better incorporated into the experimental design, with computational modeling expected to enhance the value of animal models.
Collapse
Affiliation(s)
- Pranesh Padmanabhan
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
6
|
Cis-p-tau plays crucial role in lysolecithin-induced demyelination and subsequent axonopathy in mouse optic chiasm. Exp Neurol 2023; 359:114262. [PMID: 36343678 DOI: 10.1016/j.expneurol.2022.114262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating disease that leads to axon degeneration as the major cause of everlasting neurological disability. The cis-phosphorylated tau (cis-p-tau) is an isoform of tau phosphorylated on threonine 231 and causes tau fails to bind micro-tubules and promotes assembly. It gains toxic function and forms tangles in the cell which finally leads to cell death. An antibody raised against cis- p-tau (cis mAb) detects this isoform and induces its clearance. Here, we investigated the formation of cis-p-tau in a lysophosphatidylcholine (LPC)-induced prolonged demyelination model as well as the beneficial effects of its clearance using cis mAb. Cis -p-tau was increased in the lesion site, especially in axons and microglia. Behavioral and functional studies were performed using visual cliff test, visual placing test, and visual evoked potential recording. Cis-p-tau clearance resulted in decreased gliosis, protected myelin and reduced axon degeneration. Analysis of behavioral and electrophysiological data showed that clearance of cis-p-tau by cis mAb treatment improved the visual acuity along with the integrity of the optic pathway. Our results highlight the opportunity of using cis mAb as a new therapy for protecting myelin and axons in patients suffering from MS.
Collapse
|
7
|
Deng Y, Bi M, Delerue F, Forrest SL, Chan G, van der Hoven J, van Hummel A, Feiten AF, Lee S, Martinez-Valbuena I, Karl T, Kovacs GG, Morahan G, Ke YD, Ittner LM. Loss of LAMP5 interneurons drives neuronal network dysfunction in Alzheimer's disease. Acta Neuropathol 2022; 144:637-650. [PMID: 35780436 PMCID: PMC9467963 DOI: 10.1007/s00401-022-02457-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/30/2022] [Accepted: 06/21/2022] [Indexed: 01/28/2023]
Abstract
In Alzheimer's disease (AD), where amyloid-β (Aβ) and tau deposits in the brain, hyperexcitation of neuronal networks is an underlying disease mechanism, but its cause remains unclear. Here, we used the Collaborative Cross (CC) forward genetics mouse platform to identify modifier genes of neuronal hyperexcitation. We found LAMP5 as a novel regulator of hyperexcitation in mice, critical for the survival of distinct interneuron populations. Interestingly, synaptic LAMP5 was lost in AD brains and LAMP5 interneurons degenerated in different AD mouse models. Genetic reduction of LAMP5 augmented functional deficits and neuronal network hypersynchronicity in both Aβ- and tau-driven AD mouse models. To this end, our work defines the first specific function of LAMP5 interneurons in neuronal network hyperexcitation in AD and dementia with tau pathology.
Collapse
Affiliation(s)
- Yuanyuan Deng
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Mian Bi
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Fabien Delerue
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Shelley L Forrest
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Gabriella Chan
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Julia van der Hoven
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Annika van Hummel
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Astrid F Feiten
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Seojin Lee
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Ivan Martinez-Valbuena
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Tim Karl
- School of Medicine, Western Sydney University, Sydney, NSW, 2560, Australia
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Department of Laboratory Medicine and Pathobiology and Department of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, M5S 2S1, Canada
| | - Grant Morahan
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, Perth, WA, 6150, Australia
| | - Yazi D Ke
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Lars M Ittner
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
8
|
Coles M, Steiner-Lim GZ, Karl T. Therapeutic properties of multi-cannabinoid treatment strategies for Alzheimer’s disease. Front Neurosci 2022; 16:962922. [PMID: 36117622 PMCID: PMC9479694 DOI: 10.3389/fnins.2022.962922] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/10/2022] [Indexed: 12/02/2022] Open
Abstract
Alzheimer’s disease (AD) is a debilitating neurodegenerative disease characterized by declining cognition and behavioral impairment, and hallmarked by extracellular amyloid-β plaques, intracellular neurofibrillary tangles (NFT), oxidative stress, neuroinflammation, and neurodegeneration. There is currently no cure for AD and approved treatments do not halt or slow disease progression, highlighting the need for novel therapeutic strategies. Importantly, the endocannabinoid system (ECS) is affected in AD. Phytocannabinoids, including cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC), interact with the ECS, have anti-inflammatory, antioxidant, and neuroprotective properties, can ameliorate amyloid-β and NFT-related pathologies, and promote neurogenesis. Thus, in recent years, purified CBD and THC have been evaluated for their therapeutic potential. CBD reversed and prevented the development of cognitive deficits in AD rodent models, and low-dose THC improved cognition in aging mice. Importantly, CBD, THC, and other phytochemicals present in Cannabis sativa interact with each other in a synergistic fashion (the “entourage effect”) and have greater therapeutic potential when administered together, rather than individually. Thus, treatment of AD using a multi-cannabinoid strategy (such as whole plant cannabis extracts or particular CBD:THC combinations) may be more efficacious compared to cannabinoid isolate treatment strategies. Here, we review the current evidence for the validity of using multi-cannabinoid formulations for AD therapy. We discuss that such treatment strategies appear valid for AD therapy but further investigations, particularly clinical studies, are required to determine optimal dose and ratio of cannabinoids for superior effectiveness and limiting potential side effects. Furthermore, it is pertinent that future in vivo and clinical investigations consider sex effects.
Collapse
Affiliation(s)
- Madilyn Coles
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Genevieve Z. Steiner-Lim
- NICM Health Research Institute and Translational Health Research Institute (THRI), Western Sydney University, Penrith, NSW, Australia
| | - Tim Karl
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Neuroscience Research Australia, Randwick, NSW, Australia
- *Correspondence: Tim Karl,
| |
Collapse
|
9
|
Kreilaus F, Przybyla M, Ittner L, Karl T. Cannabidiol (CBD) treatment improves spatial memory in 14-month-old female TAU58/2 transgenic mice. Behav Brain Res 2022; 425:113812. [PMID: 35202719 DOI: 10.1016/j.bbr.2022.113812] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 02/13/2022] [Accepted: 02/19/2022] [Indexed: 12/29/2022]
Abstract
Frontotemporal dementia (FTD) and Alzheimer's disease (AD) share the pathological hallmark of intracellular neurofibrillary tangles, which result from the hyperphosphorylation of microtubule associated protein tau. The P301S mutation in human tau carried by TAU58/2 transgenic mice results in brain pathology and behavioural deficits relevant to FTD and AD. The phytocannabinoid cannabidiol (CBD) exhibits properties beneficial for multiple pathological processes evident in dementia. Therefore, 14-month-old female TAU58/2 transgenic and wild type-like (WT) littermates were treated with 100mg/kg CBD or vehicle i.p. starting three weeks prior to conducting behavioural paradigms relevant to FTD and AD. TAU58/2 females exhibited impaired motor function, reduced bodyweight and less anxiety behaviour compared to WT. An impaired spatial reference memory of vehicle-treated transgenic mice were restored by chronic CBD treatment. Chronic CBD also reduced anxiety-like behaviors and decreased contextual fear-associated freezing in all mice. Chronic remedial CBD treatment ameliorated several disease-relevant phenotypes in 14-month-old TAU58/2 transgenic mice, suggesting potential for the treatment of tauopathy-related behavioural impairments including cognitive deficits.
Collapse
Affiliation(s)
- Fabian Kreilaus
- School of Medicine, Western Sydney University, NSW 2560, Australia
| | - Magdalena Przybyla
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie University, NSW 2109, Australia
| | - Lars Ittner
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie University, NSW 2109, Australia
| | - Tim Karl
- School of Medicine, Western Sydney University, NSW 2560, Australia; Neuroscience Research Australia (NeuRA), NSW 2031, Australia; School of Medical Sciences, University of New South Wales, NSW 2052, Australia.
| |
Collapse
|
10
|
Przybyla M, van Eersel J, van Hummel A, van der Hoven J, Sabale M, Harasta A, Müller J, Gajwani M, Prikas E, Mueller T, Stevens CH, Power J, Housley GD, Karl T, Kassiou M, Ke YD, Ittner A, Ittner LM. Onset of hippocampal network aberration and memory deficits in P301S tau mice are associated with an early gene signature. Brain 2021; 143:1889-1904. [PMID: 32375177 DOI: 10.1093/brain/awaa133] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/10/2020] [Accepted: 03/04/2020] [Indexed: 01/30/2023] Open
Abstract
Hyperphosphorylation and deposition of tau in the brain characterizes frontotemporal dementia and Alzheimer's disease. Disease-associated mutations in the tau-encoding MAPT gene have enabled the generation of transgenic mouse models that recapitulate aspects of human neurodegenerative diseases, including tau hyperphosphorylation and neurofibrillary tangle formation. Here, we characterized the effects of transgenic P301S mutant human tau expression on neuronal network function in the murine hippocampus. Onset of progressive spatial learning deficits in P301S tau transgenic TAU58/2 mice were paralleled by long-term potentiation deficits and neuronal network aberrations during electrophysiological and EEG recordings. Gene-expression profiling just prior to onset of apparent deficits in TAU58/2 mice revealed a signature of immediate early genes that is consistent with neuronal network hypersynchronicity. We found that the increased immediate early gene activity was confined to neurons harbouring tau pathology, providing a cellular link between aberrant tau and network dysfunction. Taken together, our data suggest that tau pathology drives neuronal network dysfunction through hyperexcitation of individual, pathology-harbouring neurons, thereby contributing to memory deficits.
Collapse
Affiliation(s)
- Magdalena Przybyla
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, 2109, NSW, Australia
| | - Janet van Eersel
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, 2109, NSW, Australia
| | - Annika van Hummel
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, 2109, NSW, Australia
| | - Julia van der Hoven
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, 2109, NSW, Australia
| | - Miheer Sabale
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, 2109, NSW, Australia
| | - Anne Harasta
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, 2109, NSW, Australia
| | - Julius Müller
- Genome Informatics at Molecular Health GmbH, Heidelberg, Germany
| | - Mehul Gajwani
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, 2109, NSW, Australia.,Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Emmanuel Prikas
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, 2109, NSW, Australia
| | - Thomas Mueller
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, 2109, NSW, Australia
| | - Claire H Stevens
- School of Chemistry and Molecular Bioscience, University of Wollongong and the Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - John Power
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Gary D Housley
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Tim Karl
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Michael Kassiou
- School of Chemistry, University of Sydney, Sydney, NSW, Australia
| | - Yazi D Ke
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, 2109, NSW, Australia
| | - Arne Ittner
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, 2109, NSW, Australia
| | - Lars M Ittner
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, 2109, NSW, Australia
| |
Collapse
|
11
|
Kreilaus F, Masanetz R, Watt G, Przybyla M, Ittner A, Ittner L, Karl T. The behavioural phenotype of 14-month-old female TAU58/2 transgenic mice. Behav Brain Res 2021; 397:112943. [PMID: 33017638 DOI: 10.1016/j.bbr.2020.112943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/20/2020] [Accepted: 09/26/2020] [Indexed: 10/23/2022]
Abstract
Frontotemporal dementia (FTD) and Alzheimer's disease (AD) exhibit intracellular inclusions [neurofibrillary tangles (NFT's)] of microtubule-associated protein tau that contributes to neuronal dysfunction and death. Mutations in the microtubule-associated protein tau (MAPT) gene leads to tau hyperphosphorylation and promotes NFT formation. The TAU58/2 transgenic mouse model expresses mutant human tau (P301S mutation) and exhibits behavioural abnormalities relevant to dementia in early adulthood. Here we comprehensively determined the behavioural phenotype of TAU58/2 transgenic female mice at 14 months of age using test paradigms relevant to FTD and AD. TAU58/2 females showed a significant motor deficit and lower bodyweight compared to WT littermates. Transgenic females failed to habituate to the test arena in the light-dark test. Interestingly, transgenics did not exhibit an anxiolytic-like phenotype and intermediate-term spatial learning in the cheeseboard test was intact. However, a significant learning deficit was detected in the 1st trial across test days indicating impaired long-term spatial memory. In addition, the preference for a previously rewarded location was absent in transgenic females during probe trial testing. Finally, TAU58/2 mice had a defective acoustic startle response and impaired sensorimotor gating. In conclusion TAU58/2 mice exhibit several behavioural deficits that resemble those observed in human FTD and AD. Additionally, we observed a novel startle response deficit in these mice. At 14 months of age, TAU58/2 females represent a later disease stage and are therefore a potentially useful model to test efficacy of therapeutics to reverse or ameliorate behavioural deficits in post-onset tauopapthy-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Fabian Kreilaus
- School of Medicine, Western Sydney University, NSW 2560, Australia
| | - Rebecca Masanetz
- School of Medicine, Western Sydney University, NSW 2560, Australia; Faculty of Medical and Life Sciences, Hochschule Furtwangen University, 78054 Villingen-Schwenningen, Germany
| | - Georgia Watt
- School of Medicine, Western Sydney University, NSW 2560, Australia
| | - Magdalena Przybyla
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie University, NSW 2109, Australia
| | - Arne Ittner
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie University, NSW 2109, Australia
| | - Lars Ittner
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie University, NSW 2109, Australia
| | - Tim Karl
- School of Medicine, Western Sydney University, NSW 2560, Australia; Neuroscience Research Australia (NeuRA), NSW 2031, Australia; School of Medical Sciences, University of New South Wales, NSW 2052, Australia.
| |
Collapse
|
12
|
Di J, Siddique I, Li Z, Malki G, Hornung S, Dutta S, Hurst I, Ishaaya E, Wang A, Tu S, Boghos A, Ericsson I, Klärner FG, Schrader T, Bitan G. The molecular tweezer CLR01 improves behavioral deficits and reduces tau pathology in P301S-tau transgenic mice. ALZHEIMERS RESEARCH & THERAPY 2021; 13:6. [PMID: 33397489 PMCID: PMC7784007 DOI: 10.1186/s13195-020-00743-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Molecular tweezers (MTs) are broad-spectrum inhibitors of abnormal protein aggregation. A lead MT, called CLR01, has been demonstrated to inhibit the aggregation and toxicity of multiple amyloidogenic proteins in vitro and in vivo. Previously, we evaluated the effect of CLR01 in the 3 × Tg mouse model of Alzheimer's disease, which overexpresses mutant human presenilin 1, amyloid β-protein precursor, and tau and found that subcutaneous administration of the compound for 1 month led to a robust reduction of amyloid plaques, neurofibrillary tangles, and microgliosis. CLR01 also has been demonstrated to inhibit tau aggregation in vitro and tau seeding in cell culture, yet because in Alzheimer's disease (AD) and in the 3 × Tg model, tau hyperphosphorylation and aggregation are thought to be downstream of Aβ insults, the study in this model left open the question whether CLR01 affected tau in vivo directly or indirectly. METHODS To determine if CLR01 could ameliorate tau pathology directly in vivo, we tested the compound similarly using the P301S-tau (line PS19) mouse model. Mice were administered 0.3 or 1.0 mg/kg per day CLR01 and tested for muscle strength and behavioral deficits, including anxiety- and disinhibition-like behavior. Their brains then were analyzed by immunohistochemical and biochemical assays for pathological forms of tau, neurodegeneration, and glial pathology. RESULTS CLR01 treatment ameliorated muscle-strength deterioration, anxiety-, and disinhibition-like behavior. Improved phenotype was associated with decreased levels of pathologic tau forms, suggesting that CLR01 exerts a direct effect on tau in vivo. Limitations of the study included a relatively short treatment period of the mice at an age in which full pathology is not yet developed. In addition, high variability in this model lowered the statistical significance of the findings of some outcome measures. CONCLUSIONS The findings suggest that CLR01 is a particularly attractive candidate for the treatment of AD because it targets simultaneously the two major pathogenic proteins instigating and propagating the disease, amyloid β-protein (Aβ), and tau, respectively. In addition, our study suggests that CLR01 can be used for the treatment of other tauopathies in the absence of amyloid pathology.
Collapse
Affiliation(s)
- Jing Di
- Department of Neurology, David Geffen School of Medicine, University of California, Gordon Neuroscience Research Building, Room 451, 635 Charles E. Young Drive South, Los Angeles, CA, 90095-7334, USA
| | - Ibrar Siddique
- Department of Neurology, David Geffen School of Medicine, University of California, Gordon Neuroscience Research Building, Room 451, 635 Charles E. Young Drive South, Los Angeles, CA, 90095-7334, USA
| | - Zizheng Li
- Department of Neurology, David Geffen School of Medicine, University of California, Gordon Neuroscience Research Building, Room 451, 635 Charles E. Young Drive South, Los Angeles, CA, 90095-7334, USA
| | - Ghattas Malki
- Department of Neurology, David Geffen School of Medicine, University of California, Gordon Neuroscience Research Building, Room 451, 635 Charles E. Young Drive South, Los Angeles, CA, 90095-7334, USA
| | - Simon Hornung
- Department of Neurology, David Geffen School of Medicine, University of California, Gordon Neuroscience Research Building, Room 451, 635 Charles E. Young Drive South, Los Angeles, CA, 90095-7334, USA.,Present Address: Division of Peptide Biochemistry, Technical University of Munich, Freising, Germany
| | - Suman Dutta
- Department of Neurology, David Geffen School of Medicine, University of California, Gordon Neuroscience Research Building, Room 451, 635 Charles E. Young Drive South, Los Angeles, CA, 90095-7334, USA
| | - Ian Hurst
- Department of Neurology, David Geffen School of Medicine, University of California, Gordon Neuroscience Research Building, Room 451, 635 Charles E. Young Drive South, Los Angeles, CA, 90095-7334, USA
| | - Ella Ishaaya
- Department of Neurology, David Geffen School of Medicine, University of California, Gordon Neuroscience Research Building, Room 451, 635 Charles E. Young Drive South, Los Angeles, CA, 90095-7334, USA
| | - Austin Wang
- Department of Neurology, David Geffen School of Medicine, University of California, Gordon Neuroscience Research Building, Room 451, 635 Charles E. Young Drive South, Los Angeles, CA, 90095-7334, USA
| | - Sally Tu
- Department of Neurology, David Geffen School of Medicine, University of California, Gordon Neuroscience Research Building, Room 451, 635 Charles E. Young Drive South, Los Angeles, CA, 90095-7334, USA
| | - Ani Boghos
- Department of Neurology, David Geffen School of Medicine, University of California, Gordon Neuroscience Research Building, Room 451, 635 Charles E. Young Drive South, Los Angeles, CA, 90095-7334, USA
| | - Ida Ericsson
- Department of Neurology, David Geffen School of Medicine, University of California, Gordon Neuroscience Research Building, Room 451, 635 Charles E. Young Drive South, Los Angeles, CA, 90095-7334, USA
| | | | - Thomas Schrader
- Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine, University of California, Gordon Neuroscience Research Building, Room 451, 635 Charles E. Young Drive South, Los Angeles, CA, 90095-7334, USA. .,Brain Research Institute, University of California, Los Angeles, CA, USA. .,Molecular Biology Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Ahmed RM, Halliday G, Hodges JR. Hypothalamic symptoms of frontotemporal dementia disorders. HANDBOOK OF CLINICAL NEUROLOGY 2021; 182:269-280. [PMID: 34266598 DOI: 10.1016/b978-0-12-819973-2.00019-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Frontotemporal dementia (FTD) has traditionally been regarded as a disease of cognition and behavior, but emerging evidence suggests that the disease also affects body functions including changes in eating behavior and metabolism, autonomic function, sleep behavior, and sexual function. Central to these changes are potentially complex neural networks involving the hypothalamus, with hypothalamic atrophy shown in behavioral variant FTD. The physiological changes found in FTD are reviewed and the key neural networks and neuroendocrine changes mediating these changes in function discussed, including the ability to use these changes as biomarkers to aid in disease diagnosis, monitoring disease progression, and as potential treatment targets.
Collapse
Affiliation(s)
- Rebekah M Ahmed
- Memory and Cognition Clinic, Department of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Central Sydney Medical School and Brain & Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| | - Glenda Halliday
- Central Sydney Medical School and Brain & Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - John R Hodges
- Central Sydney Medical School and Brain & Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
14
|
Ittner A, Asih PR, Tan ARP, Prikas E, Bertz J, Stefanoska K, Lin Y, Volkerling AM, Ke YD, Delerue F, Ittner LM. Reduction of advanced tau-mediated memory deficits by the MAP kinase p38γ. Acta Neuropathol 2020; 140:279-294. [PMID: 32725265 DOI: 10.1007/s00401-020-02191-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 01/12/2023]
Abstract
Hyperphosphorylation of the neuronal tau protein contributes to Alzheimer's disease (AD) by promoting tau pathology and neuronal and cognitive deficits. In contrast, we have previously shown that site-specific tau phosphorylation can inhibit toxic signals induced by amyloid-β (Aβ) in mouse models. The post-synaptic mitogen-activated protein (MAP) kinase p38γ mediates this site-specific phosphorylation on tau at Threonine-205 (T205). Using a gene therapeutic approach, we draw on this neuroprotective mechanism to improve memory in two Aβ-dependent mouse models of AD at stages when advanced memory deficits are present. Increasing activity of post-synaptic kinase p38γ that targets T205 in tau reduced memory deficits in symptomatic Aβ-induced AD models. Reconstitution experiments with wildtype human tau or phosphorylation-deficient tauT205A showed that T205 modification is critical for downstream effects of p38γ that prevent memory impairment in APP-transgenic mice. Furthermore, genome editing of the T205 codon in the murine Mapt gene showed that this single side chain in endogenous tau critically modulates memory deficits in APP-transgenic Alzheimer's mice. Ablating the protective effect of p38γ activity by genetic p38γ deletion in a tau transgenic mouse model that expresses non-pathogenic tau rendered tau toxic and resulted in impaired memory function in the absence of human Aβ. Thus, we propose that modulating neuronal p38γ activity serves as an intrinsic tau-dependent therapeutic approach to augment compromised cognition in advanced dementia.
Collapse
|
15
|
van der Hoven J, van Hummel A, Przybyla M, Asih PR, Gajwani M, Feiten AF, Ke YD, Ittner A, van Eersel J, Ittner LM. Contribution of endogenous antibodies to learning deficits and astrocytosis in human P301S mutant tau transgenic mice. Sci Rep 2020; 10:13845. [PMID: 32796905 PMCID: PMC7428012 DOI: 10.1038/s41598-020-70845-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 03/31/2020] [Indexed: 11/09/2022] Open
Abstract
Antibodies have been explored extensively as a potential therapeutic for Alzheimer’s disease, where amyloid-β (Aβ) peptides and the tau protein deposit in patient brains. While the major focus of antibody-based therapy development was on Aβ, arguably with limited success in clinical trials, targeting tau has become an emerging strategy, possibly extending therapies to dementias with isolated tau pathology. Interestingly, low titres of autoantibodies to pathological tau have been described in humans and transgenic mouse models, but their pathophysiological relevance remained elusive. Here, we used two independent approaches to deplete the B-cell lineage and hence antibody formation in human P301S mutant tau transgenic mice, TAU58/2. TAU58/2 mice were either crossed with the B-cell-deficient Ighm knockout line (muMT−/−) or treated with anti-CD20 antibodies that target B-cell precursors. In both models, B-cell depletion significantly reduced astrocytosis in TAU58/2 mice. Only when B-cells were absent throughout life, in TAU58/2.muMT−/− mice, were spatial learning deficits moderately aggravated while motor performance improved as compared to B-cell-competent TAU58/2 mice. This was associated with changes in brain region-specific tau solubility. No other relevant behavioural or neuropathological changes were observed in TAU58/2 mice in the absence of B-cells/antibodies. Taken together, our data suggests that the presence of antibodies throughout life contributes to astrocytosis in TAU58/2 mice and limits learning deficits, while other deficits and neuropathological changes appear to be independent of the presence of B-cells/antibodies.
Collapse
Affiliation(s)
- Julia van der Hoven
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Annika van Hummel
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Magdalena Przybyla
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Prita R Asih
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Mehul Gajwani
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Astrid F Feiten
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Yazi D Ke
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Arne Ittner
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Janet van Eersel
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Lars M Ittner
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia. .,School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
16
|
Watt G, Chesworth R, Przybyla M, Ittner A, Garner B, Ittner LM, Karl T. Chronic cannabidiol (CBD) treatment did not exhibit beneficial effects in 4-month-old male TAU58/2 transgenic mice. Pharmacol Biochem Behav 2020; 196:172970. [PMID: 32562718 DOI: 10.1016/j.pbb.2020.172970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/27/2020] [Accepted: 06/16/2020] [Indexed: 10/24/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive cognitive decline, motor impairments, and accumulation of hallmark proteins, amyloid-beta (Aβ) and tau. Traditionally, transgenic mouse models for AD have focused on Aβ pathology, however, recently a number of tauopathy transgenic models have been developed, including the TAU58/2 transgenic model. Cannabidiol (CBD), a non-toxic constituent of the Cannabis sativa plant, has been shown to prevent and reverse cognitive deficits in Aβ transgenic mouse models of AD. Importantly, the therapeutic properties of CBD on the behavioural phenotype of tauopathy mouse models have not been investigated. We assessed the impact of chronic CBD treatment (i.e. 50 mg/kg CBD i.p. administration starting 3 weeks prior to behavioural assessments) on disease-relevant behaviours of 4-month-old TAU58/2 transgenic males in paradigms for anxiety, motor functions, and cognition. TAU58/2 transgenic males demonstrated reduced body weight, anxiety and impaired motor functions. Furthermore, they demonstrated increased freezing in fear conditioning compared to wild type-like animals. Interestingly, both sociability and social recognition memory were intact in AD transgenic mice. Chronic CBD treatment did not affect behavioural changes in transgenic males. In summary, 4-month-old TAU58/2 transgenic males exhibited no deficits in social recognition memory, suggesting that motor deficits and changes in anxiety at this age do not impact on social domains. The moderate increase in fear-associated memory needs further investigation but could be related to differences in fear extinction. Future investigations will need to clarify CBD's therapeutic potential for reversing motor deficits in TAU58/2 transgenic mice by considering alternative CBD treatment designs including changed CBD dosing.
Collapse
Affiliation(s)
- Georgia Watt
- School of Medicine, Western Sydney University, Campbelltown, Australia
| | - Rose Chesworth
- School of Medicine, Western Sydney University, Campbelltown, Australia
| | - Magdalena Przybyla
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Australia
| | - Arne Ittner
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Australia
| | - Brett Garner
- School of Chemistry and Molecular Bioscience, Illawarra Health and Medical Research Institute, University of Wollongong, Australia
| | - Lars M Ittner
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Australia
| | - Tim Karl
- School of Medicine, Western Sydney University, Campbelltown, Australia; Neuroscience Research Australia (NeuRA), Randwick, Australia.
| |
Collapse
|
17
|
Stevens CH, Guthrie NJ, van Roijen M, Halliday GM, Ooi L. Increased Tau Phosphorylation in Motor Neurons From Clinically Pure Sporadic Amyotrophic Lateral Sclerosis Patients. J Neuropathol Exp Neurol 2020; 78:605-614. [PMID: 31131395 DOI: 10.1093/jnen/nlz041] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by the progressive degeneration of motor neurons. There is a pathological and genetic link between ALS and frontotemporal lobar degeneration (FTLD). Although FTLD is characterized by abnormal phosphorylated tau deposition, it is unknown whether tau is phosphorylated in ALS motor neurons. Therefore, this study assessed tau epitopes that are commonly phosphorylated in FTLD, including serine 396 (pS396), 214 (pS214), and 404 (pS404) in motor neurons from clinically pure sporadic ALS cases compared with controls. In ALS lower motor neurons, tau pS396 was observed in the nucleus or the nucleus and cytoplasm. In ALS upper motor neurons, tau pS396 was observed in the nucleus, cytoplasm, or both the nucleus and cytoplasm. Tau pS214 and pS404 was observed only in the cytoplasm of upper and lower motor neurons in ALS. The number of motor neurons (per mm2) positive for tau pS396 and pS214, but not pS404, was significantly increased in ALS. Furthermore, there was a significant loss of phosphorylated tau-negative motor neurons in ALS compared with controls. Together, our data identified a complex relationship between motor neurons positive for tau phosphorylated at specific residues and disease duration, suggesting that tau phosphorylation plays a role in ALS.
Collapse
Affiliation(s)
- Claire H Stevens
- School of Chemistry and Molecular Bioscience, University of Wollongong.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | - Natalie J Guthrie
- School of Chemistry and Molecular Bioscience, University of Wollongong.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | | | - Glenda M Halliday
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Lezanne Ooi
- School of Chemistry and Molecular Bioscience, University of Wollongong.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| |
Collapse
|
18
|
Watt G, Przybyla M, Zak V, van Eersel J, Ittner A, Ittner LM, Karl T. Novel Behavioural Characteristics of Male Human P301S Mutant Tau Transgenic Mice - A Model for Tauopathy. Neuroscience 2020; 431:166-175. [PMID: 32058066 DOI: 10.1016/j.neuroscience.2020.01.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 01/28/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterised by progressive cognitive decline and the accumulation of two hallmark proteins, amyloid-beta (Aβ) and tau. Traditionally, transgenic mouse models for AD have generally focused on Aβ pathology, however, in recent years a number of tauopathy transgenic mouse models have been developed, including the TAU58/2 mouse model. These mice develop tau pathology and neurofibrillary tangles from 2 months of age and show motor impairments and alterations in the behavioural response to elevated plus maze (EPM) testing. The cognitive and social phenotype of this model has not yet been assessed comprehensively. Furthermore, the behavioural changes seen in the EPM have previously been linked to both anxiety and disinhibitory phenotypes. Thus, this study assessed 4-month-old TAU58/2 males comprehensively for disinhibitory and social behaviours, social recognition memory, and sensorimotor gating. TAU58/2 males demonstrated reduced exploration and anxiety-like behaviours but no changes to disinhibitory behaviours, reduced sociability in the social preference test and impaired acoustic startle and prepulse inhibition. Aggressive and socio-positive behaviours were not affected except a reduction in the occurrence of nosing and anogenital sniffing. Our study identified new phenotypic characteristics of young adult male TAU58/2 transgenic mice and clarified the nature of changes detected in the behavioural response of these mice to EPM testing. Social withdrawal and inappropriate social behaviours are common symptoms in both AD and FTD patients and impaired sensorimotor gating is seen in moderate-late stage AD, emphasising the relevance of the TAU58/2 model to these diseases.
Collapse
Affiliation(s)
- Georgia Watt
- School of Medicine, Western Sydney University, Campbelltown, Australia
| | - Magdalena Przybyla
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Australia
| | - Valeria Zak
- School of Medicine, Western Sydney University, Campbelltown, Australia
| | - Janet van Eersel
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Australia
| | - Arne Ittner
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Australia
| | - Lars M Ittner
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Australia
| | - Tim Karl
- School of Medicine, Western Sydney University, Campbelltown, Australia; Neuroscience Research Australia (NeuRA), Randwick, Australia.
| |
Collapse
|
19
|
Gomes LA, Hipp SA, Rijal Upadhaya A, Balakrishnan K, Ospitalieri S, Koper MJ, Largo-Barrientos P, Uytterhoeven V, Reichwald J, Rabe S, Vandenberghe R, von Arnim CAF, Tousseyn T, Feederle R, Giudici C, Willem M, Staufenbiel M, Thal DR. Aβ-induced acceleration of Alzheimer-related τ-pathology spreading and its association with prion protein. Acta Neuropathol 2019; 138:913-941. [PMID: 31414210 DOI: 10.1007/s00401-019-02053-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 12/15/2022]
Abstract
Extracellular deposition of amyloid β-protein (Aβ) in amyloid plaques and intracellular accumulation of abnormally phosphorylated τ-protein (p-τ) in neurofibrillary tangles (NFTs) represent pathological hallmark lesions of Alzheimer's disease (AD). Both lesions develop in parallel in the human brain throughout the preclinical and clinical course of AD. Nevertheless, it is not yet clear whether there is a direct link between Aβ and τ pathology or whether other proteins are involved in this process. To address this question, we crossed amyloid precursor protein (APP) transgenic mice overexpressing human APP with the Swedish mutation (670/671 KM → NL) (APP23), human wild-type APP (APP51/16), or a proenkephalin signal peptide linked to human Aβ42 (APP48) with τ-transgenic mice overexpressing human mutant 4-repeat τ-protein with the P301S mutation (TAU58). In 6-month-old APP23xTAU58 and APP51/16xTAU58 mice, soluble Aβ was associated with the aggravation of p-τ pathology propagation into the CA1/subiculum region, whereas 6-month-old TAU58 and APP48xTAU58 mice neither exhibited significant amounts of p-τ pathology in the CA1/subiculum region nor displayed significant levels of soluble Aβ in the forebrain. In APP23xTAU58 and APP51/16xTAU58 mice showing an acceleration of p-τ propagation, Aβ and p-τ were co-immunoprecipitated with cellular prion protein (PrPC). A similar interaction between PrPC, p-τ and Aβ was observed in human AD brains. This association was particularly noticed in 60% of the symptomatic AD cases in our sample, suggesting that PrPC may play a role in the progression of AD pathology. An in vitro pull-down assay confirmed that PrPC is capable of interacting with Aβ and p-τ. Using a proximity ligation assay, we could demonstrate proximity (less than ~ 30-40 nm distance) between PrPC and Aβ and between PrPC and p-τ in APP23xTAU58 mouse brain as well as in human AD brain. Proximity between PrPC and p-τ was also seen in APP51/16xTAU58, APP48xTAU58, and TAU58 mice. Based on these findings, it is tempting to speculate that PrPC is a critical player in the interplay between Aβ and p-τ propagation at least in a large group of AD cases. Preexisting p-τ pathology interacting with PrPC, thereby, appears to be a prerequisite for Aβ to function as a p-τ pathology accelerator via PrPC.
Collapse
Affiliation(s)
- Luis Aragão Gomes
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU-Leuven, Leuven, Belgium
- Leuven Brain Institute, KU-Leuven, Leuven, Belgium
| | - Silvia Andrea Hipp
- Laboratory for Neuropathology, Institute of Pathology, University of Ulm, Ulm, Germany
- Anasthesiology and Intensive Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Ajeet Rijal Upadhaya
- Laboratory for Neuropathology, Institute of Pathology, University of Ulm, Ulm, Germany
| | - Karthikeyan Balakrishnan
- Laboratory for Neuropathology, Institute of Pathology, University of Ulm, Ulm, Germany
- Department of Gene Therapy, University of Ulm, Ulm, Germany
| | - Simona Ospitalieri
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU-Leuven, Leuven, Belgium
- Leuven Brain Institute, KU-Leuven, Leuven, Belgium
| | - Marta J Koper
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU-Leuven, Leuven, Belgium
- Leuven Brain Institute, KU-Leuven, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, KU Leuven (University of Leuven), Leuven, Belgium
- VIB, Center for Brain and Disease Research, Leuven, Belgium
| | - Pablo Largo-Barrientos
- VIB, Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU-Leuven, Leuven, Belgium
| | - Valerie Uytterhoeven
- VIB, Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU-Leuven, Leuven, Belgium
| | - Julia Reichwald
- Novartis Institutes for Biomedical Sciences, Basel, Switzerland
| | - Sabine Rabe
- Novartis Institutes for Biomedical Sciences, Basel, Switzerland
| | - Rik Vandenberghe
- Leuven Brain Institute, KU-Leuven, Leuven, Belgium
- Experimental Neurology Group, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Department of Neurology, UZ-Leuven, Leuven, Belgium
| | - Christine A F von Arnim
- Department of Neurology, University of Ulm, Ulm, Germany
- Clinic for Neurogeriatrics and Neurological Rehabilitation, University- und Rehabilitation Hospital Ulm (RKU), Ulm, Germany
| | | | - Regina Feederle
- Institute for Diabetes and Obesity, Monoclonal Antibody Research Group, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
| | - Camilla Giudici
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377, Munich, Germany
| | - Michael Willem
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University Munich, 81377, Munich, Germany
| | | | - Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU-Leuven, Leuven, Belgium.
- Leuven Brain Institute, KU-Leuven, Leuven, Belgium.
- Laboratory for Neuropathology, Institute of Pathology, University of Ulm, Ulm, Germany.
- Department of Pathology, UZ Leuven, Leuven, Belgium.
| |
Collapse
|
20
|
Cheng H, Deaton LM, Qiu M, Ha S, Pacoma R, Lao J, Tolley V, Moran R, Keeton A, Lamb JR, Fathman J, Walker JR, Schumacher AM. Tau overexpression exacerbates neuropathology after repeated mild head impacts in male mice. Neurobiol Dis 2019; 134:104683. [PMID: 31765727 DOI: 10.1016/j.nbd.2019.104683] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/22/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023] Open
Abstract
Repeated mild traumatic brain injury (rmTBI) can lead to development of chronic traumatic encephalopathy (CTE), which is characterized by progressive neurodegeneration with presence of white matter damage, gliosis and hyper-phosphorylated tau. While animal models of rmTBI have been documented, few characterize the molecular pathogenesis and expression profiles of relevant injured brain regions. Additionally, while the usage of transgenic tau mice in rmTBI is prevalent, the effects of tau on pathological outcomes has not been well studied. Here we characterized a 42-impact closed-head rmTBI paradigm on 3-4 month old male C57BL/6 (WT) and Tau-overexpressing mice (Tau58.4). This injury paradigm resulted in chronic gliosis, T-cell infiltration, and demyelination of the optic nerve and associated white matter tracts at 1-month post-injury. At 3-months post-injury, Tau58.4 mice showed progressive neuroinflammation and neurodegeneration in multiple brain regions compared to WT mice. Corresponding to histopathology, RNAseq of the optic nerve tract at 1-month post-injury showed significant upregulation of inflammatory pathways and downregulation of myelin synthetic pathways in both genotypes. However, Tau58.4 mice showed additional changes in neurite development, protein processing, and cell stress. Comparisons with published transcriptomes of human Alzheimer's Disease and CTE revealed common signatures including neuroinflammation and downregulation of protein phosphatases. We next investigated the demyelination and T-cell infiltration phenotypes to determine whether these offer potential avenues for therapeutic intervention. Tau58.4 mice were treated with the histamine H3 receptor antagonist GSK239512 for 1-month post-injury to promote remyelination of white matter lesions. This restored myelin gene expression to sham levels but failed to repair the histopathologic lesions. Likewise, injured T-cell-deficient Rag2/Il2rg (R2G2) mice also showed evidence for inflammation and loss of myelin. However, unlike immune-competent mice, R2G2 mice had altered myeloid cell gene expression and fewer demyelinated lesions. Together this data shows that rmTBI leads to chronic white matter inflammatory demyelination and axonal loss exacerbated by human tau overexpression but suggests that immune-suppression and remyelination alone are insufficient to reverse damage.
Collapse
Affiliation(s)
- Hank Cheng
- Department of General Medical Biology, Genomics Institute for the Novartis Research Foundation, San Diego, CA 92121, USA.
| | - Lisa M Deaton
- Department of General Medical Biology, Genomics Institute for the Novartis Research Foundation, San Diego, CA 92121, USA.
| | - Minhua Qiu
- Department of General Medical Biology, Genomics Institute for the Novartis Research Foundation, San Diego, CA 92121, USA.
| | - Sukwon Ha
- Department of General Medical Biology, Genomics Institute for the Novartis Research Foundation, San Diego, CA 92121, USA.
| | - Reynand Pacoma
- Department of General Medical Biology, Genomics Institute for the Novartis Research Foundation, San Diego, CA 92121, USA.
| | - Jianmin Lao
- Department of General Medical Biology, Genomics Institute for the Novartis Research Foundation, San Diego, CA 92121, USA.
| | - Valerie Tolley
- Department of General Medical Biology, Genomics Institute for the Novartis Research Foundation, San Diego, CA 92121, USA.
| | - Rita Moran
- Department of General Medical Biology, Genomics Institute for the Novartis Research Foundation, San Diego, CA 92121, USA.
| | - Amber Keeton
- Department of General Medical Biology, Genomics Institute for the Novartis Research Foundation, San Diego, CA 92121, USA.
| | - John R Lamb
- Department of General Medical Biology, Genomics Institute for the Novartis Research Foundation, San Diego, CA 92121, USA
| | - John Fathman
- Department of General Medical Biology, Genomics Institute for the Novartis Research Foundation, San Diego, CA 92121, USA.
| | - John R Walker
- Department of General Medical Biology, Genomics Institute for the Novartis Research Foundation, San Diego, CA 92121, USA.
| | - Andrew M Schumacher
- Department of General Medical Biology, Genomics Institute for the Novartis Research Foundation, San Diego, CA 92121, USA.
| |
Collapse
|
21
|
Progressive age-dependent motor impairment in human tau P301S overexpressing mice. Behav Brain Res 2019; 376:112158. [PMID: 31442549 DOI: 10.1016/j.bbr.2019.112158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/13/2019] [Accepted: 08/17/2019] [Indexed: 12/31/2022]
Abstract
This study assessed the development of motor deficits in female hTau.P301S transgenic mice from 1.5 to 5.5 months of age. The test battery included clasping reflex, grid hanging, Rotarod test, spontaneous explorative activity, Catwalk gait analysis, and nest building. Starting from the age of 2-3 months the mice showed marked hyperactivity, abnormal placing of weight on the hindlimbs and defective nest building in their home cage. These behavioral impairments did not progress with age. In addition, there was a progressive development of hindlimb clasping, inability to stay on a rotating rod or hang on a metal grid, and gait impairment. Depending on the measured output parameter, the motor impairment became significant from 3 to 4 months onwards and rapidly worsened until the age of 5.5 months with little inter-individual variation. The progressive motor impairment was paralleled by a robust increase in AT8 p-tau positive neurons in deep cerebellar nuclei and pontine brainstem between 3 and 5.5 months of age. The quick and steadily progressive motor impairment between 3 and 5.5 months of age accompanied by robust development of tau pathology in the hindbrain makes this mouse well suited for preclinical studies aiming at slowing down tau pathology associated with primary or secondary tauopathies.
Collapse
|
22
|
Mouse induced pluripotent stem cells-derived Alzheimer's disease cerebral organoid culture and neural differentiation disorders. Neurosci Lett 2019; 711:134433. [PMID: 31421155 DOI: 10.1016/j.neulet.2019.134433] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 11/20/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, characterized by cognitive impairment. However, the pathogenesis of AD are very complicated, and the theories of Aβ and neurofibrillary tangles cannot explain all pathological alterations and clinical symptoms. Here, we used three-dimensional (3D) neural organoids culture derived from mouse induced pluripotent stem cells (iPSCs) to investigate the pathological mechanisms of AD. In this study, AD cerebral organoids were generated by overexpressing familial AD mutations (APP and PS1 genes) in mouse induced pluripotent stem cells, so that the early pathogenesis of AD could be investigated well with protein and cellular phenotype analyses. The results showed that AD cerebral organoids appeared some AD pathological alterations, and high levels of Aβ and p-Tau were induced as well. Furthermore, the number of GFAP-positive astrocytes and glutamatergic excitatory neurons increased significantly, but the number of GABAergic interneurons decreased. In conclusion, we suggest that cerebral organoids are a suitable AD model for scientific study, and that will provide us a novel insight into the understanding of the pathogenesis of AD.
Collapse
|
23
|
Ke YD, Chan G, Stefanoska K, Au C, Bi M, Müller J, Przybyla M, Feiten A, Prikas E, Halliday GM, Piguet O, Kiernan MC, Kassiou M, Hodges JR, Loy CT, Mattick JS, Ittner A, Kril JJ, Sutherland GT, Ittner LM. CNS cell type-specific gene profiling of P301S tau transgenic mice identifies genes dysregulated by progressive tau accumulation. J Biol Chem 2019; 294:14149-14162. [PMID: 31366728 DOI: 10.1074/jbc.ra118.005263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 07/24/2019] [Indexed: 12/20/2022] Open
Abstract
The microtubule-associated protein tau undergoes aberrant modification resulting in insoluble brain deposits in various neurodegenerative diseases, including frontotemporal dementia (FTD), progressive supranuclear palsy, and corticobasal degeneration. Tau aggregates can form in different cell types of the central nervous system (CNS) but are most prevalent in neurons. We have previously recapitulated aspects of human FTD in mouse models by overexpressing mutant human tau in CNS neurons, including a P301S tau variant in TAU58/2 mice, characterized by early-onset and progressive behavioral deficits and FTD-like neuropathology. The molecular mechanisms underlying the functional deficits of TAU58/2 mice remain mostly elusive. Here, we employed functional genomics (i.e. RNAseq) to determine differentially expressed genes in young and aged TAU58/2 mice to identify alterations in cellular processes that may contribute to neuropathy. We identified genes in cortical brain samples differentially regulated between young and old TAU58/2 mice relative to nontransgenic littermates and by comparative analysis with a dataset of CNS cell type-specific genes expressed in nontransgenic mice. Most differentially-regulated genes had known or putative roles in neurons and included presynaptic and excitatory genes. Specifically, we observed changes in presynaptic factors, glutamatergic signaling, and protein scaffolding. Moreover, in the aged mice, expression levels of several genes whose expression was annotated to occur in other brain cell types were altered. Immunoblotting and immunostaining of brain samples from the TAU58/2 mice confirmed altered expression and localization of identified and network-linked proteins. Our results have revealed genes dysregulated by progressive tau accumulation in an FTD mouse model.
Collapse
Affiliation(s)
- Yazi D Ke
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Gabriella Chan
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Kristie Stefanoska
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Carol Au
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Mian Bi
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Julius Müller
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Magdalena Przybyla
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Astrid Feiten
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Emmanuel Prikas
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Glenda M Halliday
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales 2005, Australia
| | - Olivier Piguet
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales 2005, Australia.,School of Psychology, University of Sydney, Sydney, New South Wales 2005, Australia.,ARC Centre of Excellence in Cognition and Its Disorders, University of Sydney, Sydney, New South Wales 2005, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales 2005, Australia.,Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, New South Wales 2005, Australia
| | - Michael Kassiou
- School of Chemistry, University of Sydney, Sydney, New South Wales 2005, Australia
| | - John R Hodges
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales 2005, Australia
| | - Clement T Loy
- Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales 2010, Australia.,Sydney School of Public Health, University of Sydney, New South Wales 2006, Australia
| | - John S Mattick
- Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales 2010, Australia
| | - Arne Ittner
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Jillian J Kril
- Charles Perkins Centre and Discipline of Pathology, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales 2005, Australia
| | - Greg T Sutherland
- Charles Perkins Centre and Discipline of Pathology, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales 2005, Australia
| | - Lars M Ittner
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
24
|
Rodriguez L, Mdzomba JB, Joly S, Boudreau-Laprise M, Planel E, Pernet V. Human Tau Expression Does Not Induce Mouse Retina Neurodegeneration, Suggesting Differential Toxicity of Tau in Brain vs. Retinal Neurons. Front Mol Neurosci 2018; 11:293. [PMID: 30197586 PMCID: PMC6117378 DOI: 10.3389/fnmol.2018.00293] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/03/2018] [Indexed: 02/03/2023] Open
Abstract
The implication of the microtubule-associated protein (MAP) Tau in the ocular manifestations of Alzheimer’s disease (AD) is elusive due to the lack of relevant animal model. However, signs of AD have been reported in the brain of transgenic mice expressing human Tau (hTau). To assess whether hTau is sufficient to induce AD pathogenesis in the retina as well, in the present study, we compared the retinal structure and function of KO mice deprived of Tau (mTKO) with those of transgenic mice expressing hTau. Our results revealed that hTau is particularly abundant in the inner nuclear layer (INL) cells of the retina. By electroretinogram (ERG) recording, light-induced retinal cell activation was not altered in hTau compared with mTKO littermates. Surprisingly, the ERG response mediated by cone photoreceptor stimulation was even stronger in hTau than in mTKO retinae. Immunofluorescent analysis of retinal sections allowed us to observe thicker inner retina in hTau than in mTKO eyes. By Western Blotting (WB), the upregulation of mTOR that was found in hTau mice may underlie retinal structure and function increases. Taken together, our results not only indicate that hTau expression is not toxic for retinal cells but they also suggest that it may play a positive role in visual physiology. The use of hTau may be envisaged to improve visual recovery in ocular diseases affecting the retinal function such as glaucoma or diabetic retinopathy.
Collapse
Affiliation(s)
- Léa Rodriguez
- CUO-Recherche, Centre de Recherche du CHU de Québec, Quebec, QC, Canada.,Département d'ophtalmologie, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Julius Baya Mdzomba
- CUO-Recherche, Centre de Recherche du CHU de Québec, Quebec, QC, Canada.,Département d'ophtalmologie, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Sandrine Joly
- CUO-Recherche, Centre de Recherche du CHU de Québec, Quebec, QC, Canada.,Département d'ophtalmologie, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Mélissa Boudreau-Laprise
- CUO-Recherche, Centre de Recherche du CHU de Québec, Quebec, QC, Canada.,Département d'ophtalmologie, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Emmanuel Planel
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Quebec, QC, Canada.,Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Vincent Pernet
- CUO-Recherche, Centre de Recherche du CHU de Québec, Quebec, QC, Canada.,Département d'ophtalmologie, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| |
Collapse
|
25
|
van Hummel A, Chan G, van der Hoven J, Morsch M, Ippati S, Suh L, Bi M, Asih PR, Lee WS, Butler TA, Przybyla M, Halliday GM, Piguet O, Kiernan MC, Chung RS, Ittner LM, Ke YD. Selective Spatiotemporal Vulnerability of Central Nervous System Neurons to Pathologic TAR DNA-Binding Protein 43 in Aged Transgenic Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1447-1456. [DOI: 10.1016/j.ajpath.2018.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/19/2018] [Accepted: 03/08/2018] [Indexed: 12/14/2022]
|
26
|
Baker S, Polanco JC, Götz J. Extracellular Vesicles Containing P301L Mutant Tau Accelerate Pathological Tau Phosphorylation and Oligomer Formation but Do Not Seed Mature Neurofibrillary Tangles in ALZ17 Mice. J Alzheimers Dis 2018; 54:1207-1217. [PMID: 27567840 DOI: 10.3233/jad-160371] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In Alzheimer's disease, the distribution of neurofibrillary tangles, a histological hallmark comprised of phosphorylated forms of the protein tau, follows a distinct pattern through anatomically connected brain regions. The well-documented correlation between the severity of tau pathology and disease progression implies a prion-like seeding and spreading mechanism for tau. Experimentally, this has been addressed in transgenic mice by the injection of protein lysates isolated from brains of transgenic mice or patients with tauopathies, including AD, that were shown to behave like seeds, accelerating tau pathology and tangle formation in predisposed mice. More specifically, in vivo data suggest that brain lysates from mice harboring the P301S mutation of tau can seed protein aggregation when injected into the hippocampi of human wild-type tau transgenic ALZ17 mice. Here, we compared the seeding potential of lysates and extracellular vesicles enriched for exosomes (EVs) from wild-type and human P301L tau transgenic rTg4510 mouse brains. We show that transgenic EVs cause increased tau phosphorylation and soluble oligomer formation in a manner comparable to that of freely available proteins in brain lysates, a prerequisite for the formation of mature protein aggregates.
Collapse
|
27
|
Alzheimer’s Disease and Frontotemporal Lobar Degeneration: Mouse Models. NEURODEGENER DIS 2018. [DOI: 10.1007/978-3-319-72938-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
28
|
Yuan Q, Yang J, Wu W, Lin ZX. Motor deficits are independent of axonopathy in an Alzheimer's disease mouse model of TgCRND8 mice. Oncotarget 2017; 8:97900-97912. [PMID: 29228660 PMCID: PMC5716700 DOI: 10.18632/oncotarget.18429] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022] Open
Abstract
There have been an increasing number of reports of non-cognitive symptoms in Alzheimer's disease (AD). Some symptoms are associated with the loss of motor functions, e.g. gait disturbances, disturbed activity level and balance. Consistent with clinical findings, several AD mouse models harboring amyloid pathology develop motor impairment. Although the factors that contribute to the motor deficits have not yet been determined, it has been suggested that axonopathy is one of the key factors that may contribute to this particular feature of the disease. Our previous study found that TgCRND8 mice exhibited profound motor deficits as early as 3 months old. In this study, we explored the possible factors that may be related to motor deficits in TgCRND8 mice. Results from silver, neurofilament and amyloid precursor protein (APP) staining revealed no axonopathy occurred in the brain and spinal cord of TgCRND8 mice at the age of 3 months. Anterograde labeling of corticospinal tract of spinal cord and electronic microscopy (EM) analysis showed that no axonopathy occurred in TgCRND8 mice at the age of 3 months. According to these results, it could be concluded that no axonal alterations were evident in the TgCRND8 mice when motor deficits was overt. Thus, axonopathy may play a less prominent role in motor deficits in AD. These results suggest that mechanisms by which motor function undergo impairment in AD need to be further studied.
Collapse
Affiliation(s)
- Qiuju Yuan
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Brain Research Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jian Yang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wutian Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Research Center of Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- GHM Institute of CNS regeneration, Jinan University, Guangzhou, China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Brain Research Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
29
|
Ittner A, Chua SW, Bertz J, Volkerling A, van der Hoven J, Gladbach A, Przybyla M, Bi M, van Hummel A, Stevens CH, Ippati S, Suh LS, Macmillan A, Sutherland G, Kril JJ, Silva APG, Mackay JP, Poljak A, Delerue F, Ke YD, Ittner LM. Site-specific phosphorylation of tau inhibits amyloid-β toxicity in Alzheimer's mice. Science 2017; 354:904-908. [PMID: 27856911 DOI: 10.1126/science.aah6205] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/09/2016] [Accepted: 10/19/2016] [Indexed: 12/17/2022]
Abstract
Amyloid-β (Aβ) toxicity in Alzheimer's disease (AD) is considered to be mediated by phosphorylated tau protein. In contrast, we found that, at least in early disease, site-specific phosphorylation of tau inhibited Aβ toxicity. This specific tau phosphorylation was mediated by the neuronal p38 mitogen-activated protein kinase p38γ and interfered with postsynaptic excitotoxic signaling complexes engaged by Aβ. Accordingly, depletion of p38γ exacerbated neuronal circuit aberrations, cognitive deficits, and premature lethality in a mouse model of AD, whereas increasing the activity of p38γ abolished these deficits. Furthermore, mimicking site-specific tau phosphorylation alleviated Aβ-induced neuronal death and offered protection from excitotoxicity. Our work provides insights into postsynaptic processes in AD pathogenesis and challenges a purely pathogenic role of tau phosphorylation in neuronal toxicity.
Collapse
Affiliation(s)
- Arne Ittner
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia.
| | - Sook Wern Chua
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Josefine Bertz
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Alexander Volkerling
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Julia van der Hoven
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Amadeus Gladbach
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Magdalena Przybyla
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Mian Bi
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Annika van Hummel
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia.,Motor Neuron Disease Unit, School of Medical Sciences, UNSW, Sydney, New South Wales 2052, Australia
| | - Claire H Stevens
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Stefania Ippati
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Lisa S Suh
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia.,Discipline of Pathology, Sydney Medical School, University of Sydney, Sydney, New South Wales 2050, Australia
| | - Alexander Macmillan
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, UNSW, Sydney, New South Wales 2052, Australia
| | - Greg Sutherland
- Discipline of Pathology, Sydney Medical School, University of Sydney, Sydney, New South Wales 2050, Australia
| | - Jillian J Kril
- Discipline of Pathology, Sydney Medical School, University of Sydney, Sydney, New South Wales 2050, Australia
| | - Ana P G Silva
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales 2050, Australia
| | - Joel P Mackay
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales 2050, Australia
| | - Anne Poljak
- Biomedical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW, Sydney, New South Wales 2052, Australia
| | - Fabien Delerue
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia.,Transgenic Animal Unit, Mark Wainwright Analytical Centre, UNSW, Sydney, New South Wales 2052, Australia
| | - Yazi D Ke
- Motor Neuron Disease Unit, School of Medical Sciences, UNSW, Sydney, New South Wales 2052, Australia
| | - Lars M Ittner
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia. .,Transgenic Animal Unit, Mark Wainwright Analytical Centre, UNSW, Sydney, New South Wales 2052, Australia.,Neuroscience Research Australia, Sydney, New South Wales 2031, Australia
| |
Collapse
|
30
|
Chua SW, Cornejo A, van Eersel J, Stevens CH, Vaca I, Cueto M, Kassiou M, Gladbach A, Macmillan A, Lewis L, Whan R, Ittner LM. The Polyphenol Altenusin Inhibits in Vitro Fibrillization of Tau and Reduces Induced Tau Pathology in Primary Neurons. ACS Chem Neurosci 2017; 8:743-751. [PMID: 28067492 DOI: 10.1021/acschemneuro.6b00433] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In Alzheimer's disease, the microtubule-associated protein tau forms intracellular neurofibrillary tangles (NFTs). A critical step in the formation of NFTs is the conversion of soluble tau into insoluble filaments. Accordingly, a current therapeutic strategy in clinical trials is aimed at preventing tau aggregation. Here, we assessed altenusin, a bioactive polyphenolic compound, for its potential to inhibit tau aggregation. Altenusin inhibits aggregation of tau protein into paired helical filaments in vitro. This was associated with stabilization of tau dimers and other oligomers into globular structures as revealed by atomic force microscopy. Moreover, altenusin reduced tau phosphorylation in cells expressing pathogenic tau, and prevented neuritic tau pathology induced by incubation of primary neurons with tau fibrils. However, treatment of tau transgenic mice did not improve neuropathology and functional deficits. Taken together, altenusin prevents tau fibrillization in vitro and induced tau pathology in neurons.
Collapse
Affiliation(s)
- Sook Wern Chua
- Dementia
Research Unit, School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, NSW 2052, Australia
| | - Alberto Cornejo
- Dementia
Research Unit, School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, NSW 2052, Australia
- Faculty
of Medicine, Medical Technology School, University Andrés Bello, Sazié 2315, Santiago, Chile
| | - Janet van Eersel
- Dementia
Research Unit, School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, NSW 2052, Australia
| | - Claire H. Stevens
- Dementia
Research Unit, School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, NSW 2052, Australia
| | - Inmaculada Vaca
- Department
of Chemistry, Faculty of Science, University of Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Mercedes Cueto
- Institute for Natural Products and Agrobiology CSIC, 38206 La Laguna, Tenerife, Spain
| | - Michael Kassiou
- School
of Chemistry and Faculty of Health Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Amadeus Gladbach
- Dementia
Research Unit, School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, NSW 2052, Australia
| | - Alex Macmillan
- Biomedical
Imaging Facility, Mark Wainright Analytical Centre, UNSW Australia, Sydney, NSW 2052, Australia
| | - Lev Lewis
- Biomedical
Imaging Facility, Mark Wainright Analytical Centre, UNSW Australia, Sydney, NSW 2052, Australia
| | - Renee Whan
- Biomedical
Imaging Facility, Mark Wainright Analytical Centre, UNSW Australia, Sydney, NSW 2052, Australia
| | - Lars M. Ittner
- Dementia
Research Unit, School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, NSW 2052, Australia
- Neuroscience Research Australia, Sydney, NSW 2031, Australia
| |
Collapse
|
31
|
Age-dependent alterations in neuronal activity in the hippocampus and visual cortex in a mouse model of Juvenile Neuronal Ceroid Lipofuscinosis (CLN3). Neurobiol Dis 2017; 100:19-29. [DOI: 10.1016/j.nbd.2016.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/20/2016] [Accepted: 12/28/2016] [Indexed: 11/19/2022] Open
|
32
|
Tan RH, Ke YD, Ittner LM, Halliday GM. ALS/FTLD: experimental models and reality. Acta Neuropathol 2017; 133:177-196. [PMID: 28058507 DOI: 10.1007/s00401-016-1666-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/19/2016] [Accepted: 12/30/2016] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis is characterised by a loss of upper and lower motor neurons and characteristic muscle weakness and wasting, the most common form being sporadic disease with neuronal inclusions containing the tar DNA-binding protein 43 (TDP-43). Frontotemporal lobar degeneration is characterised by atrophy of the frontal and/or temporal lobes, the most common clinical form being the behavioural variant, in which neuronal inclusions containing either TDP-43 or 3-repeat tau are most prevalent. Although the genetic mutations associated with these diseases have allowed various experimental models to be developed, the initial genetic forms identified remain the most common models employed to date. It is now known that these first models faithfully recapitulate only some aspects of these diseases and do not represent the majority of cases or the most common overlapping pathologies. Newer models targeting the main molecular pathologies are still rare and in some instances, lack significant aspects of the molecular pathology. However, these diseases are complex and multigenic, indicating that experimental models may need to be targeted to different disease aspects. This would allow information to be gleaned from a variety of different yet relevant models, each of which has the capacity to capture a certain aspect of the disease, and together will enable a more complete understanding of these complex and multi-layered diseases.
Collapse
Affiliation(s)
- Rachel H Tan
- Neuroscience Research Australia, Randwick, NSW, 2031, Australia
- School of Medical Sciences, University of NSW, Sydney, NSW, 2052, Australia
- Brain and Mind Centre, Sydney Medical School, the University of Sydney, Sydney, NSW, 2006, Australia
| | - Yazi D Ke
- Motor Neuron Disease Unit, Department of Anatomy, Faculty of Medicine, University of NSW, Sydney, NSW, 2052, Australia
| | - Lars M Ittner
- Neuroscience Research Australia, Randwick, NSW, 2031, Australia.
- Dementia Research Unit, Department of Anatomy, Faculty of Medicine, University of NSW, Sydney, NSW, 2052, Australia.
| | - Glenda M Halliday
- Neuroscience Research Australia, Randwick, NSW, 2031, Australia.
- School of Medical Sciences, University of NSW, Sydney, NSW, 2052, Australia.
- Brain and Mind Centre, Sydney Medical School, the University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
33
|
van Hummel A, Bi M, Ippati S, van der Hoven J, Volkerling A, Lee WS, Tan DCS, Bongers A, Ittner A, Ke YD, Ittner LM. No Overt Deficits in Aged Tau-Deficient C57Bl/6.Mapttm1(EGFP)Kit GFP Knockin Mice. PLoS One 2016; 11:e0163236. [PMID: 27736877 PMCID: PMC5063411 DOI: 10.1371/journal.pone.0163236] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/06/2016] [Indexed: 12/25/2022] Open
Abstract
Several mouse lines with knockout of the tau-encoding MAPT gene have been reported in the past; they received recent attention due to reports that tau reduction prevented Aβ-induced deficits in mouse models of Alzheimer’s disease. However, the effects of long-term depletion of tau in vivo remained controversial. Here, we used the tau-deficient GFP knockin line Mapttm1(EGFP)kit on a pure C57Bl/6 background and subjected a large cohort of males and females to a range of motor, memory and behavior tests and imaging analysis, at the advanced age of over 16 months. Neither heterozygous nor homozygous Mapttm1(EGFP)kit mice presented with deficits or abnormalities compared to wild-type littermates. Differences to reports using other tau knockout models may be due to different genetic backgrounds, respective gene targeting strategies or other confounding factors, such as nutrition. To this end, we report no functional or morphological deficits upon tau reduction or depletion in aged mice.
Collapse
Affiliation(s)
- Annika van Hummel
- Dementia Research Unit, Department of Anatomy, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Mian Bi
- Dementia Research Unit, Department of Anatomy, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Stefania Ippati
- Dementia Research Unit, Department of Anatomy, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Julia van der Hoven
- Dementia Research Unit, Department of Anatomy, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Alexander Volkerling
- Dementia Research Unit, Department of Anatomy, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Wei S. Lee
- Dementia Research Unit, Department of Anatomy, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Daniel C. S. Tan
- Dementia Research Unit, Department of Anatomy, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Andre Bongers
- Biological Resources Imaging Laboratory, Mark Wainright Analytical Centre, University of New South Wales, Sydney, NSW, Australia
| | - Arne Ittner
- Dementia Research Unit, Department of Anatomy, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Yazi D. Ke
- Motor Neuron Disease Unit, Department of Anatomy, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Lars M. Ittner
- Dementia Research Unit, Department of Anatomy, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
- * E-mail:
| |
Collapse
|
34
|
Vickers J, Kirkcaldie M, Phipps A, King A. Alterations in neurofilaments and the transformation of the cytoskeleton in axons may provide insight into the aberrant neuronal changes of Alzheimer’s disease. Brain Res Bull 2016; 126:324-333. [DOI: 10.1016/j.brainresbull.2016.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 01/09/2023]
|
35
|
Przybyla M, Stevens CH, van der Hoven J, Harasta A, Bi M, Ittner A, van Hummel A, Hodges JR, Piguet O, Karl T, Kassiou M, Housley GD, Ke YD, Ittner LM, van Eersel J. Disinhibition-like behavior in a P301S mutant tau transgenic mouse model of frontotemporal dementia. Neurosci Lett 2016; 631:24-29. [DOI: 10.1016/j.neulet.2016.08.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/19/2016] [Accepted: 08/04/2016] [Indexed: 11/28/2022]
|
36
|
Impulsivity, decreased social exploration, and executive dysfunction in a mouse model of frontotemporal dementia. Neurobiol Learn Mem 2016; 130:34-43. [DOI: 10.1016/j.nlm.2016.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/07/2016] [Accepted: 01/16/2016] [Indexed: 12/12/2022]
|
37
|
Amyotrophic lateral sclerosis and frontotemporal dementia: distinct and overlapping changes in eating behaviour and metabolism. Lancet Neurol 2016; 15:332-42. [PMID: 26822748 DOI: 10.1016/s1474-4422(15)00380-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 11/17/2015] [Accepted: 12/02/2015] [Indexed: 12/12/2022]
Abstract
Metabolic changes incorporating fluctuations in weight, insulin resistance, and cholesterol concentrations have been identified in several neurodegenerative disorders. Whether these changes result from the neurodegenerative process affecting brain regions necessary for metabolic regulation or whether they drive the degenerative process is unknown. Emerging evidence from epidemiological, clinical, pathological, and experimental studies emphasises a range of changes in eating behaviours and metabolism in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). In ALS, metabolic changes have been linked to disease progression and prognosis. Furthermore, changes in eating behaviour that affect metabolism have been incorporated into the diagnostic criteria for FTD, which has some clinical and pathological overlap with ALS. Whether the distinct and shared metabolic and eating changes represent a component of the proposed spectrum of the two diseases is an intriguing possibility. Moreover, future research should aim to unravel the complex connections between eating, metabolism, and neurodegeneration in ALS and FTD, and aim to understand the potential for targeting modifiable risk factors in disease development and progression.
Collapse
|
38
|
Li YQ, Tan MS, Yu JT, Tan L. Frontotemporal Lobar Degeneration: Mechanisms and Therapeutic Strategies. Mol Neurobiol 2015; 53:6091-6105. [PMID: 26537902 DOI: 10.1007/s12035-015-9507-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/20/2015] [Indexed: 12/11/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) is characterized by progressive deterioration of frontal and anterior temporal lobes of the brain and often exhibits frontotemporal dementia (FTD) on clinic, in <65-year-old patients at the time of diagnosis. Interdisciplinary approaches combining genetics, molecular and cell biology, and laboratory animal science have revealed some of its potential molecular mechanisms. Although there is still no effective treatment to delay, prevent, and reverse the progression of FTD, emergence of agents targeting molecular mechanisms has been beginning to promote potential pharmaceutical development. Our review summarizes the latest new findings of FTLD and challenges in FTLD therapy.
Collapse
Affiliation(s)
- Ya-Qing Li
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Meng-Shan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China. .,Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA.
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
39
|
Ke YD, van Hummel A, Stevens CH, Gladbach A, Ippati S, Bi M, Lee WS, Krüger S, van der Hoven J, Volkerling A, Bongers A, Halliday G, Haass NK, Kiernan M, Delerue F, Ittner LM. Short-term suppression of A315T mutant human TDP-43 expression improves functional deficits in a novel inducible transgenic mouse model of FTLD-TDP and ALS. Acta Neuropathol 2015; 130:661-78. [PMID: 26437864 DOI: 10.1007/s00401-015-1486-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/26/2015] [Accepted: 09/27/2015] [Indexed: 12/28/2022]
Abstract
The nuclear transactive response DNA-binding protein 43 (TDP-43) undergoes relocalization to the cytoplasm with formation of cytoplasmic deposits in neurons in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Pathogenic mutations in the TDP-43-encoding TARDBP gene in familial ALS as well as non-mutant human TDP-43 have been utilized to model FTD/ALS in cell culture and animals, including mice. Here, we report novel A315T mutant TDP-43 transgenic mice, iTDP-43(A315T), with controlled neuronal over-expression. Constitutive expression of human TDP-43(A315T) resulted in pronounced early-onset and progressive neurodegeneration, which was associated with compromised motor performance, spatial memory and disinhibition. Muscle atrophy resulted in reduced grip strength. Cortical degeneration presented with pronounced astrocyte activation. Using differential protein extraction from iTDP-43(A315T) brains, we found cytoplasmic localization, fragmentation, phosphorylation and ubiquitination and insolubility of TDP-43. Surprisingly, suppression of human TDP-43(A315T) expression in mice with overt neurodegeneration for only 1 week was sufficient to significantly improve motor and behavioral deficits, and reduce astrogliosis. Our data suggest that functional deficits in iTDP-43(A315T) mice are at least in part a direct and transient effect of the presence of TDP-43(A315T). Furthermore, it illustrates the compensatory capacity of compromised neurons once transgenic TDP-43 is removed, with implications for future treatments.
Collapse
|